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Mixing of atomic levels by blackbody radiation and its consequences in an astrophysical context
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The mixing of atomic levels with opposite parity in the electric field induced by the blackbody radiation is
studied. These studies are applied to the case when the source of blackbody radiation is the Cosmic Microwave
Background. Our interest is focused on the 2s level of hydrogen, which played an important role during the epoch
of cosmological recombination. Our studies show that the broadening of the 2s level due to the mixing effect
induced by the blackbody radiation leads to a correction to the properties of Cosmic Microwave Background.
This correction is of the same order as the other important corrections found during the last decades and is at the
level of accuracy of the modern experimental data obtained from space probes.
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I. INTRODUCTION

The influence of the blackbody radiation (BBR) on the
atomic levels was an object of many investigations during the
last 50 years. Theoretical calculations of the Stark shifts and
broadening of atomic levels in the electric field produced by
the BBR as well as the corresponding experimental studies
are widely discussed in the literature [1–6]. The main goal of
these investigations in the last years was the creation of atomic
clocks and improvement of frequency standards. The current
definition of a second is based on the microwave transition
between the hyperfine levels of the 133Cs ground state [6]. The
operation of atomic clocks is generally carried out at room
temperature, whereas the definition of the second refers to
the clock transition in an atom at absolute zero. This implies
that the clock transition frequency should be corrected for
effects of finite temperature. The theoretical calculations of
BBR shift contribution were based on the simple quantum me-
chanical model (QM) when the atomic level broadening was
described by the emission and absorption of thermal (BBR)
photons. The corresponding expression for the broadening of
atomic level a then is [2] (in one-electron approximation)

�BBR−QM
a = 4

3
e2

∑
n

|〈a|r|n〉|2ω3
nanβ (ωna ), (1)

where |n〉 denote the one-electron wave functions (e.g.,
solutions of Hartree-Fock equations) corresponding to the
eigenvalues En, ωna = |En − Ea|, En are the energy levels,
nβ (ω) = (eβω − 1)−1, β = kBT , kB is the Boltzmann con-
stant, and T is the radiation temperature in kelvin. Summation
over n in Eq. (1) is extended over all atomic spectrum. Note
that only the states |n〉 with the parity opposite to the parity
of the |a〉 state contribute to the sum in Eq. (1). This means
that only E1 transitions are taken into account. In Eq. (1)
relativistic units h̄ = c = m = 1 are used (h̄ is the Planck
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constant, c is the speed of the light, m is the mass of electron).
For the description of the thermal effects the quantum electro-
dynamical (QED) methods were also successfully employed
[7]. A QED approach was applied recently for investigation of
atomic level broadening in the presence of BBR [8–10]. The
formula derived in [8] for the thermal line broadening is

�BBR−QED
a = 2e2

3π

∑
n

|〈a|r|n〉|2
∫ ∞

0
dωnβ (ω)ω3

×
[

�na

(ω̃na + ω)2+ 1
4�2

na

+ �na

(ω̃na − ω)2+ 1
4�2

na

]
,

(2)

Here ω̃na≡ En−Ea+�EL
na, �EL

na = �EL
n − �EL

a , �EL
a

is the corresponding radiative shift, �na = �n + �a, �n is the
natural width of the state |n〉. The other notations are the same
as in Eq. (1). This formula was derived in [8] as a contribution
of the Feynman graph (Fig. 1) within thermal QED. The
imaginary part of this graph corresponds to the broadening
�BBR−QED

a given by Eq. (2). A summation of the infinite
chain of self-energy insertions into the internal electron line in
Fig. 1 leads to geometric progression and to the corresponding
regularization of the singular energy denominators [11] (see
also [12]). After this regularization the expression in square
brackets in the integrand in Eq. (2) arises. This summation is
performed at the “resonant” values of the variable ω = ωna .
It can be easily seen that the contribution of the “resonant”
terms to the integral in Eq. (3) gives immediately the result
Eq. (1). Indeed, the “width” of the resonance is about �na

and the “height” of this area at the point of the resonance is
�−1

na . Then, when evaluating the contribution of this area to the
integral is approximately equal to ω3

nanβ (ωna ) as in Eq. (1).
Therefore we find

�BBR−QED−res
a = �BBR−QM

a , (3)

where �BBR−QED−res
a is the “resonant” part of �BBR−QED

a . The
nonresonant part �BBR−QED−nr

a of �BBR−QED
a given also by
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FIG. 1. Insertions of “ordinary” one-loop self-energy correc-
tion into the thermal one-loop self-energy correction leading to a
“dressed” electron propagator. The internal wavy line denotes the
virtual photon (ordinary photon propagator), while the photon line
together with the index γT corresponds to the thermal photon loop
(including the BBR photons).

Eq. (2) was interpreted as a “dynamic” mixing of the atomic
levels with opposite parities by the BBR field.

Apart from the atomic clocks and frequency standards one
of the most interesting applications of the theory of BBR
interaction with atoms (in particular with the hydrogen atom)
is the history of cosmological recombination. The main goal
of the investigations in [8–10] and [13] was to demonstrate
the importance of QED methods in atomic theory for descrip-
tion of the BBR interaction with atoms in the astrophysical
context. We may add that the similar effects can be of impor-
tance for the description of the BBR influence on the 21-cm
line profile [14,15]. In the course of the present work we
have reconsidered our previous numerical results presented in
[8–10] for the hydrogen atom in the BBR environment, as
well as the results for the helium atom [13]. We found that
the numbers presented for hydrogen in Table 3 in [8] and for
helium in Tables 6 and 7 in [13] are strongly overestimated.
They should be corrected by multiplication with a missing
factor α3.

More accurate calculations given in the present paper result
as follows. These results concern the behavior of the hydrogen
atom in the field of Cosmic Microwave Background (CMB) at
the epoch of cosmological recombination. The field of CMB
can be well approximated by the BBR field. We concentrate
on the broadening of the 2s level of hydrogen, which plays
a crucial role in the history of cosmological recombination.
The cosmological recombination started in the early universe
when the primordial plasma cooled down due to the expansion
of the universe to the temperature defined by equality kBT ≈
I , where I is the ionization potential for the ground state of
the hydrogen atom. This corresponds to the temperature T =
15 000 K. The recombination occurs when the equilibrium
between the process of the absorption and emission of photons
is violated and the radiation escapes from the matter. There
are two main channels for this escape. For the hydrogen
atom in the 2p state the first channel is the emission of the
Lyα (2p − 1s) photon in the red wing of the Lorentz profile.
Due to the expansion of the universe the frequency of this
photon will be redshifted below the absorption edge before
it will reach the neighboring atom [16]. The other channel
first considered in [16,17] consists of the population of the
2s state. The 2s state dominantly decays with emission of two
photons with nonresonant frequencies. These photons cannot
be absorbed by other atoms and the corresponding radiation
escapes the interaction with the matter.

Our calculation using Eq. (2) (see Sec. II) shows that for
all n > 2 the contribution of �

BBR−QED−res
2s,np strongly dominates

over �
BBR−QED−nr
2s,np at high radiation temperatures, but for the

FIG. 2. The spontaneous decay rate W
(2γ )
2s,1s = 8.229 s−1 (bold

line) and partial width �
BBR−QED
2s,2p (dashed line) as a function of red-

shift. With increasing temperature �
BBR−QED
2s,2p becomes comparable

with W
(2γ )
2s,1s due to the nonresonant contribution �

BBR−QED−nr
2s,2p .

low temperatures T < 300 K the contribution �
BBR−QED−nr
2s,np

dominates over the �
BBR−QED−res
2s,np . The situation is different

with the contribution �
BBR−QED−nr
2s,2p which dominates over

�
BBR−QED−res
2s,2p at high temperatures and becomes equal to

�
BBR−QM
2s,2p at low temperatures; see Fig. 2 and Tables I and II.

From the physical point of view �
BBR−QED−res
2s represents

the broadening of the 2s level via absorption of the reso-
nant thermal photons and transitions to the np levels. The
�

BBR−QED−nr
2s,2p contribution can be understood as the broad-

ening due to the influence of nonresonant thermal photons.
Since the terms �

BBR−QED−nr
2s,np depend on �np they can be

considered as “dynamic mixing” of the 2s state and np levels
by the alternating external BBR field. The connection of this

TABLE I. BBR-induced level width �
BBR−QED
2s [see Eq. (2)] and

partial decay width �
BBR−QED
2s,2p [see Eq. (2) with only one term n =

2p retained in the sum] in s−1 for the hydrogen atom at different
temperatures. The number in square brackets indicates the power of
ten. The full widths �

BBR−QED
2s become comparable with �

BBR−QM
2s

(see Table II) at high temperatures, when the resonant contribution
�

BBR−QM−res
2s dominates over the nonresonant one �

BBR−QM−nr
2s . The

partial width �
BBR−QED
2s,2p dominates over �

BBR−QM
2s,2p due to the nonres-

onant contribution �
BBR−QED−nr
2s,2p at high temperatures and becomes

comparable to it at low temperatures; see also Fig. 3. One has to note
that the accuracy of numerical evaluation of Eq. (2) is less then for
Eq. (1) due to the presence of integration over frequency ω which is
performed in a numerical way. However, this accuracy is sufficient
to trace the behavior of �

BBR−QED
2s .

T (K) �
BBR−QED
2s �

BBR−QED−nr
2s �

BBR−QED
2s,2p �

BBR−QED−nr
2s,2p

300 0.0041 0.0041 0.0041 0.0041
500 0.0115 0.0115 0.0110 0.0115
3000 4.6986[4] 0.4181 0.4136 0.4134
10 000 1.1216[7] 4.3002 4.5952 4.5948
20 000 5.0153[7] 18.362 18.381 18.380
30 000 9.6548[7] 43.064 41.357 41.356
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TABLE II. BBR-induced level width �
BBR−QM
2s [see Eq. (1)] and

partial decay width �
BBR−QM
2s,2p in s−1 for the hydrogen atom at different

temperatures. The numbers in square brackets indicate the power of
ten.

T (K) �
BBR−QM
2s �

BBR−QM
2s,2p

300 0.0000142 0.000014203
500 0.0000237 0.0000237
3000 4.69855[4] 0.000142041
10 000 1.12163[7] 0.000473474
20 000 5.01533[7] 0.00094695
30 000 9.65475[7] 0.00142043

“dynamic mixing” with the atomic level mixing in the static
electric field is considered in more detail in Sec. II.

Naturally, this mixing becomes most significant in
case n = 2p. The frequency of radiation associated with
�

BBR−QED−nr
2s,2p coincides neither with 2s − 1s nor with 2p − 1s

frequency but is distributed according to the Planck distri-
bution. This becomes evident if we take into account the
dependence on ω not only in the denominators but also in
the numerators in Eq. (2). The corresponding corrections to
�

BBR−QED−res
2s,2p are small but they demonstrate that the fre-

quency of the radiation related to the �
BBR−QED−nr
2s,2p part is

shifted from the 2s − 1s frequency by the small shift equal
to the frequency of the thermal photons.

In the resonant case, for �
BBR−QED−res
2s,2p the frequency

of radiation coincides with the 2p − 1s frequency. The
�

BBR−QED−res
2s,2p broadening can be interpreted as the 2s − 2p −

1s cascade contribution. Unlike �
BBR−QED−res
2s,2p = �

BBR−QM
2s,2p

the contribution of �
BBR−QED−nr
2s,2p remained unnoticed within

the QM approach but becomes evident with the application of
QED methods. Similar studies, also with employment of QED
methods were performed in [18,19] for the influence of BBR
radiation on the noncontact and Van der Waals friction forces.

II. CONNECTION WITH THE LEVEL MIXING IN THE
PRESENCE OF STATIC ELECTRIC FIELD

In the low-temperature limit Eq. (2) could be compared
with the effect of quadratic level mixing in the presence of
static electric field. External electric field mixes the opposite
parity states, for instance, the 2s and 2p states of hydrogen.
The mixed states can be denoted as 2s, 2p states. Then the
differential one-photon decay rate of the mixed 2s state can
be expressed as [20]

W
(1γ )
2s 1s

= WM1
2s 1s + e2a2

0E
2
0(

�EL
2p2s

)2 + 1
4�2

2p

WE1
2p1s , (4)

where E0 is the electric field strength and WM1
2s 1s is the decay

rate for the magnetic dipole transition 2s → 1s + γ (M1),
where γ (M1) denotes the magnetic dipole photon. In Eq. (4)
the Bohr radius in a.u., a0 = α (α is the fine structure
constant), a2

0 = |〈2s|r|2p〉|2, and �EL
2p2s is the Lamb shift.

This expression shows that the additional one-photon electric
dipole emission channel is allowed for the metastable 2s state
in the presence of an external electric field. The term linear in

the field vanishes after the integration over photon emission
directions and does not contribute to the total transition prob-
ability. Contrary to this the term quadratic in the field leads to
a significant increasing of the 2s level width [21,22].

In the low-temperature limit kBT � �EL
2p2s when the

maximum of Planckian distribution is located at small fre-
quencies the following approximation for the partial width
�

BBR−QED
2s,2p is valid:

�
BBR−QED
2s,2p ≈ 4e2

3π
|〈2s|r|2p〉|2

∫ ∞

0
dωnβ (ω)ω3

×
[

�2p(
�EL

2s 2p

)2 + 1
4�2

2p

]
. (5)

The integration over frequency ω in the expression (5), with
the use of the definition for the BBR-induced root mean
squared electric field (in a.u.) [2],

〈E2〉 = 1

2

∫ ∞

0

8α3

π
ω3nβ (ω)dω = 4π3

15
α3(kBT )4

= (8.319 V/cm)2[T (K)/300]4, (6)

leads to the second term in the expression (4), in which the
square of the electric field strength E2

0 is replaced by the
root mean squared value of 〈E2〉. Consequently, the radiation
process takes place at the resonant frequency ω2s1s , i.e., at
the frequency shifted by the Lamb shift relative to the Ly α

frequency, as in the case of a static electric field.
The values of �

BBR−QED
2s and �

BBR−QM
2s calculated with the

use of Eqs. (2) and (1), respectively, are presented in Tables I
and II. Formula (2) contains both contributions: resonant
�

BBR−QED−res
2s and nonresonant �

BBR−QED−nr
2s . One can single

out the nonresonant contribution from Eq. (2) with the use of
the following equality:

�
BBR−QED−nr
2s = �

BBR−QED
2s − �

BBR−QED−res
2s , (7)

where we assume �
BBR−QED−res
2s = �

BBR−QM
2s . The value

�
BBR−QED−nr
2s is also presented in Table I.

III. APPLICATION TO THE COSMOLOGICAL
RECOMBINATION PROBLEM

In this section we apply the QED method and in particular
Eq. (2) to the study of the influence of the BBR-like CMB ra-
diation on the cosmological recombination. The �

BBR−QED−res
2s,2p

part of atomic level broadening is well known and com-
monly used in the astrophysical equations for the balance
between the absorption (level population) and emission (level
depopulation) of photons by atomic electrons. However, the
�

BBR−QED−nr
2s,2p part was never yet considered in this respect. An

important characteristic of the cosmological recombination
status at the given redshift is the ionization fraction of the
primordial plasma, i.e., the ratio of free electron density to the
total density of hydrogen atoms and ions. Ionization fraction
is defined by the system of kinetic balance equations for the
level populations which accounts for all possible radiative
decay channels which allow one to reach the ground state.
Within the three-level approach (ground state, first excited
state, and continuum) this system can be reduced to one

012502-3



ZALIALIUTDINOV, SOLOVYEV, LABZOWSKY, AND PLUNIEN PHYSICAL REVIEW A 99, 012502 (2019)

ordinary differential equation [23]. In the standard three-level
recombination model only two channels are taken into ac-
count which lead to the ground state (i.e., to recombine): Lyα

transition 2p → 1s + γ (E1) and two-photon decay 2s →
1s + 2γ (E1). To estimate the contribution �

BBR−QED−nr
2s,2p to

the ionization history we start from the differential equation
for the ionization fraction xe = ne/nH, where ne is the free
electron number density and nH is the total number density of
hydrogen atoms and ions. The latter depend on redshift z as

nH = n0
H(1 + z)3, (8)

where n0
H is the value of hydrogen concentration at the present

epoch. The dependence of radiation temperature on redshift z

is given by

T = T0(1 + z), (9)

where T0 = 2.725 K is the present temperature of CMB radia-
tion. The time-dependent behavior of the hydrogen ionization
fraction in the isotropic homogeneous expanding universe
within the three-level model of the atom is described by the
kinetic equation [16,23],

dxe

dz
= CH

[
αHx2

e nH − βHexp
( − �E21

kBT

)
(1 − xe )

]
H (z)(1 + z)

, (10)

CH = 1 + KHW
(2γ )
2s,1snH(1 − xe )

1 + KH
(
W

(2γ )
2s,1s + βH

)
nH(1 − xe )

, (11)

KH = λ3
α

8πH (z)
. (12)

Here αH is the total recombination coefficient for the excited
states of hydrogen, βH is the total ionization coefficient,
λα is the wavelength of Lyα transition, W

(2γ )
2s,1s = 8.229 s−1

is the transition rate of spontaneous two-photon emission,
�E21 = E2s − E1s , and H (z) is the Hubble factor describing
the expansion of universe within the considered cosmological
model.

Following [16] one can compare the rate by which hy-
drogen is allowed to recombine because photons are being
redshifted out of the Lyα line with the rate of recombinations
via the two-photon emission process. This ratio is given
by [16]

Lyα rate

Two-photon rate
= 1

KHW
(2γ )
2s,1s

. (13)

If this the ratio (13) is small, recombination via the Lyα

channel is unimportant, and the factor CH in Eq. (10) reduces
to [16]

CH ≈ W
(2γ )
2s,1s

W
(2γ )
2s,1s + βH

, (14)

which is just the branching ratio for two-photon decay of
the 2s state of the hydrogen atom, i.e., the probability that
the hydrogen atom in the 2s state will decay via two-photon
emission before it is photodissociated. From Eq. (14) it is
evident that the broadening of the 2s state due to the res-
onant contribution �

BBR−QED−res
2s,2p = �

BBR−QM
2s,2p is negligible.

Throughout the entire period of hydrogen recombination
(800 < z < 1600) �

BBR−QM
2s,2p is of the order 10−4 s−1 (see

FIG. 3. The partial widths �
BBR−QED
2s,2p (dashed line) and �

BBR−QM
2s,2p

(dotted line) as a function of temperature. The value �
BBR−QED
2s,2p

dominates over �
BBR−QM
2s,2p at temperatures of cosmological hydrogen

recombination due to the nonresonant contribution �
BBR−QED−nr
2s,2p .

Table II and Fig. 3), and therefore should not be taken into
account. However, as it was shown in Sec. II, nonresonant
contribution �

BBR−QED−nr
2s,2p is about three orders of magnitude

larger than resonant one �
BBR−QED−res
2s,2p for the same recombi-

nation period (see Fig. 3). Then factor CH should be modified
to account for the contribution of �

BBR−QED−nr
2s,2p . This gives

C̃H = 1 + KHW
(2γ )
2s,1snH(1 − xe )

1 + KH
(
W

(2γ )
2s,1s + �

BBR−QED−nr
2s,2p + βH

)
nH(1 − xe )

.

(15)

In the case when the ratio (13) is small we have

C̃H ≈ W
(2γ )
2s,1s

W
(2γ )
2s,1s + �

BBR−QED−nr
2s,2p + βH

. (16)

Now C̃H is the branching ratio for decay of the 2s state
of the hydrogen atom with account for the �

BBR−QED−nr
2s,2p

FIG. 4. Relative difference �xe/xe in percentages as a function
of redshift z. The corresponding radiation temperature is given by
equality T = T0(1 + z), where T0 = 2.725 K is the present CMB
temperature.
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TABLE III. Recent improvements for �xe/xe [24,26]. Here z is the redshift corresponding to the maximum of �xe/xe.

Effect �xe/xe, % z

Partial frequency redistribution of the Lyα escape rate −1.2 900
Time-dependent corrections to the Lyα Sobolev escape probability +1.2 1000
Two-photon transitions from higher levels −0.4 1100
Stimulated two-photon transition 2s − 1s +0.6 900
Thermodynamic asymmetry in the Lyα profile −1.9 1100
Direct recombination from continuum for HI −0.0006 1280
Accounting for �

BBR−QED−nr
2s,2p (this work) +1.1 650

contribution to the broadening of the 2s state. The photoion-
ization coefficient βH in the denominators of Eqs. (14) and
(16) actually plays a role of n > 2 terms in the sum in
Eq. (2). The relative difference between ionization fractions
calculated from Eq. (10) with ordinary factor Eq. (11) and
with the modified one C̃H given by Eq. (15), i.e., �xe/xe ≡
(x̃e − xe )/xe, is presented in Fig. 4. Rate equations for the
ionization fraction were solved numerically with the standard
cosmological parameters [25].

IV. RESULTS AND DISCUSSION

The broadening of atomic levels due to the influence of
BBR was analyzed with the use of QED methods. A special
attention was paid to the behavior of the 2s level of the hy-
drogen atom. The peculiarities of this behavior are connected
with the metastable character of the 2s level. A standard
QM description of BBR broadening from the QED point of
view corresponds to the resonant scattering of thermal pho-
tons on atomic levels. Nonresonant scattering is commonly
neglected. However, for the 2s level in hydrogen nonresonant
BBR effects can dominate over the resonant one within some
temperature intervals. This effect is similar to the atomic level
mixing in an external electric field.

We found that accounting for the nonresonant contribution
�

BBR−QED−nr
2s,2p leads to a noticeable correction �xe to the ion-

ization fraction xe (i.e., to the ratio of free electron density to
the total density of hydrogen atoms and ions). The maximum
of ratio �xe/xe is about 1.1% at z = 650. This correction is of
the order magnitude of the other important corrections found
during the last decades (see Table III) and is at the level of
accuracy of the modern experimental methods for measuring
the CMB properties [25]. We also would stress that the appli-
cation of QED methods in the theory of thermal broadening of
the atomic levels allows one to trace effects, which remained
unnoticed by the simple QM approach. The correction appears
to be important in the history of cosmological recombination.
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