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Stroboscopically robust gates for capacitively coupled singlet-triplet qubits
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Recent work on Ising-coupled double-quantum-dot spin qubits in GaAs with voltage-controlled exchange
interaction has shown improved two-qubit gate fidelities from the application of oscillating exchange along
with a strong magnetic field gradient between adjacent dots [npj Quantum Inf. 3, 3 (2017)]. By examining how
noise propagates in the time-evolution operator of the system, we find an optimal set of parameters that provide
passive stroboscopic circumvention of errors in two-qubit gates to first order. We predict over 99% two-qubit
gate fidelities in the presence of quasistatic and 1/f noise, which is an order-of-magnitude improvement over the
typical unoptimized implementation.
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I. INTRODUCTION

Quantum-dot spin qubits provide a promising platform
for quantum computing due to their potential scalability and
relatively long coherence times. For single-spin qubits [1],
one-qubit operations with gate fidelities exceeding the fault-
tolerant threshold have been realized in single-spin qubits
[2], but two-qubit gates have much lower fidelities [3,4].
Likewise, for singlet-triplet spin qubits [5,6], which we focus
on below, a recent two-qubit experiment reported only up
to 90% entangling gate fidelity [7]. This can be improved
by circumventing the effects of the two main noise sources,
namely, fluctuations in the electric confining potential and
fluctuations in the Zeeman energy difference between the
quantum dots.

The fluctuation in the confining potential is often attributed
to thermal fluctuations in the occupation of nearby charge
traps, i.e., charge noise, thus leading to fluctuations in the
local electric field [8]. Relative to the timescale of spin-qubit
rotation times, these fluctuations can be treated quasistatically
as a first approximation, but the actual power spectral density
of charge noise in these qubit systems has been measured to
behave like 1/ f 0.7 in GaAs [9] and 1/ f in Si [10,11] out to
tens or even hundreds of kHz. The quasistatic part of the noise
can be addressed by applying composite pulse sequences,
where noisy gate operations are applied sequentially such
that the gate errors conspire to cancel one another. These
sequences, however, typically only suppress noise that is slow
on the timescale of the sequence and amplify noise that is
faster [12].

The Zeeman fluctuations manifest in two ways, depending
on how the gradient is generated. When the gradient comes
from the Overhauser effect due to the hyperfine coupling of
the dot electron with the nuclear spin of the host semicon-
ductor, such as in GaAs-based architectures using dynamical
nuclear spin polarization [13–15], electron-mediated nuclear
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spin flip-flops produce 1/ f 2 noise [16,17] that is essentially
quasistatic. When the gradient comes from a micromagnet
structure [18], as used in some GaAs devices [19,20] and
which is necessary for silicon-based architectures with far
fewer spinful nuclei [21], it is possible for charge noise to also
couple in via small shifts in the dot position, again resulting
in higher frequency noise [22].

Two-qubit gate fidelity in singlet-triplet systems is mostly
limited by charge noise when the qubit dynamics is dominated
by the exchange interaction [5,23]. Recent work on capac-
itively coupled, double-quantum-dot spin qubits with gate-
controlled exchange coupling between the spins has demon-
strated suppression of charge noise by applying a strong
magnetic gradient between the two dots in each qubit that
is much stronger than the exchange interaction [7]. An ana-
lytical expression for the full time-evolution operator of this
particular system can be obtained by using the rotating-wave
approximation (RWA) [24].

In this work, we analyze how perturbations in the control
parameters of a capacitively coupled singlet-triplet system
affect the time evolution and present a strategy to minimize
those effects. In Sec. II, we derive the time-evolution operator
using the RWA. We consider in Sec. III two different parame-
ter regimes for two qubits with similar energy splitting: when
the magnetic field gradient dominates the splitting and when
the exchange interaction dominates instead. We calculate the
leading order errors and show that certain parameter choices
result in a synchronization of oscillating error terms such that
a passive reduction of gate errors occurs at specific times.
In Sec. IV we examine the effects of the optimization in the
presence of both quasistatic noise and 1/f noise. We find that
our optimization isolates the effects of noise into particular
SU(4) basis elements, allowing us to prescribe composite
pulse sequences to mitigate the remaining errors. In principle,
this work allows the improvement of experimental two-qubit
gate fidelities to above 99%. While most of our work is
presented in the limit of zero pulse rise time, we show in
Appendix A that typical finite rise times do not pose a
challenge to the stroboscopic error suppression.
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II. THE TIME-EVOLUTION OPERATOR

We consider a system of capacitively coupled singlet-
triplet qubits, which corresponds directly to the experimental
setup in Ref. [7], but our results are also applicable to any
system similarly described by a static Ising coupling and local
driving fields. The effective two-qubit Hamiltonian is given
by

H =
2∑

i=1

(
Ji + ji cos[ωit]

2
σ

(i)
Z + hi

2
σ

(i)
X

)
+ α σZZ , (1)

where σi j ≡ σ
(1)
i ⊗ σ

(2)
j with {i, j} ∈ {I, X,Y, Z} collectively

form a fifteen-dimensional SU(4) basis. The exchange inter-
action between two spins in the ith qubit is a function of the
difference in electrochemical potential between the dots εi,
which can vary in time. By oscillating εi, the exchange is
caused to oscillate at a driving frequency ωi, which makes
the effective exchange interaction oscillate about an average
value Ji with an amplitude ji. The static, longitudinal magnetic
field gradient is denoted by hi; this can be generated by
using either a micromagnet or, in GaAs, through the hyperfine
interaction between the dot electrons and the nuclear spins
in the semiconductor. Thus, the static part of a qubit’s total
energy splitting is �i ≡

√
h2

i + J2
i . Finally, α is the electro-

static coupling strength between the adjacent qubits, which is
proportional to the product of the two qubits’ electric dipole
moments.

Reference [24] reported an approximate time-evolution
operator for the aforementioned Hamiltonian using the RWA.
There it was implicitly assumed that jiJi

2�i
� �i. We lift this

assumption and apply the same formalism to find a more
general description of the time evolution. We begin by first
performing a local rotation to align the x axis along the vector
sum of the combined local static fields,

U = exp

[
ı

2

2∑
i=1

φiσ
(i)

Y

]
U1 exp

[
− ı

2

2∑
i=1

φiσ
(i)

Y

]
, (2)

where φi ≡ tan−1(Ji/hi ), and U is the laboratory-frame prop-
agator. We then transform to the rotating frame,

U1 = exp

[
−ı

2∑
i=1

(
ωit + ξi(t )

2

)
σ

(i)
X

]
U2, (3)

where the inclusion of ξi(t ) = jiJi sin (ωit )
ωi�i

generalizes Ref. [24].
We perform the RWA by doing a coarse-grain time average
over a timescale 1/α � τ � max{1/ωi}. The addition of
ξi (t )

2 in the local rotation causes some of the terms in the
rotating-frame Hamiltonian to have nontrivial averages. The
time-averaged propagator is given by

U2 = exp

[
−ıt

(
2∑

i=1

[
χiσ

(i)
Z + �i − ωi

2
σ

(i)
X

]

− h1J2α

�1�2
J1

[
j1J1

ω1�1

]
σZX − h2J1α

�1�2
J1

[
j2J2

ω2�2

]
σXZ

+ J1J2α

�1�2
σXX + h1h2α

2�1�2
(IYY σYY + IZZσZZ )

)]
, (4)

where Ji[z] is the ith-order Bessel function of the first kind,

χi ≡ hiωiJ1[ ji Ji
ωi�i

]

2Ji
is the Rabi frequency, and

IYY = 1

τ

∫ τ

0
2 sin (ω1t + ξ1) sin (ω2t + ξ2)dt, (5)

IZZ = 1

τ

∫ τ

0
2 cos (ω1t + ξ1) cos (ω2t + ξ2)dt . (6)

We require ωi � {| hi ji
2�i

|, α} to ensure the validity of the RWA.

To gain a better understanding of the entangling dynamics,
we take another transformation to eliminate the remaining
local operators in the Hamiltonian:

U2 = exp

[
−ıt

2∑
i=1

(
�i − ωi

2
σ

(i)
X + χiσ

(i)
Z

)]
U3. (7)

We set the control field at resonance with the energy splitting,
ωi = �i, thus eliminating the σ

(i)
X terms. Note that by com-

pletely dropping this off-resonant term below, we have limited
the validity of our analysis to cases where perturbations in
�i are much less than χi. Lifting this assumption would not
permit us to obtain a time-independent Hamiltonian. Nonethe-
less, this is not an unrealistic assumption. At this point, we can
proceed the same way as in Ref. [24]. We apply another round
of the RWA, which requires |χi| � α. If ||χ1| − |χ2|| � α,
the average time-evolution operator is given by

U3 = exp

[−ıαt

2

(
h1h2IYY + 2J1J2

2�1�2
(σXX + σYY )

+ h1h2

�1�2
IZZσZZ

)]
, (8)

but if ||χ1| − |χ2|| � α, we instead have

U3 = exp

[
−ıt

αh1h2

2�1�2
IZZσZZ

]
. (9)

This reduces to the result of Ref. [24] in the regime hi � Ji,
which is experimentally relevant [7], but it becomes quite
different when the exchange is dominant, as in earlier experi-
ments [5,23].

The entangling dynamics depend on whether the qubit
energy splittings �i are nearly equal or not. If the difference
between the two energy splittings is much larger than α, |�1 −
�2| � α, IZZ and IYY become small. Looking at Eqs. (8) and
(9), one can avoid a suppressed coupling rate by setting the
Rabi frequencies equal to one another, χ1 = χ2, and operating
in the large exchange regime, Ji � hi. On the other hand,
if the two qubits have similar energy splittings, the effective
coupling rate is ∼α, regardless of which parameter dominates.

III. FIRST-ORDER ERROR CHANNELS

As previously mentioned, the magnetic field gradient hi in
singlet-triplet systems is produced by either micromagnets,
as demonstrated in a silicon-based experiments [21], or the
hyperfine interaction between the quantum dot electron and
the nuclear spins, as has often been used in the case of GaAs
[13–15]. Whereas the latter case allows for some fine-tuning
of hi through dynamic nuclear polarization, the same is not
true for micromagnets. Thus, we consider two main cases of
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experimental relevance—when hi is tunable and when it is
not. Furthermore, the sensitivity of the qubits to fluctuations
depends on the parameter regime at work. If Ji and hi are
completely uncorrelated, the fluctuation on the qubit energy
splitting is given by

δ�2
i = J2

i δJ2
i + h2

i δh2
i

�2
i

. (10)

Note that when either Ji or hi completely dominates the energy
splitting, the noise due to the weaker one is suppressed by a
factor of their ratio. We know from experiments that δhi is
mostly quasistatic on the timescale of the gates [16,17] and
δJi contains both a quasistatic and a 1/f component [9]. Thus,
it is best to suppress the 1/f δJi errors by choosing hi � Ji

and then correct the residual quasistatic errors with spin echo
protocols. This is consistent with the improvement reported in
Ref. [7] when the magnetic field gradient was increased.

As discussed in the previous section, rapid entanglement
in the hi � Ji regime only occurs when the two-qubit energy
splittings are tuned close to one another (h1 ≈ h2). If one is
forced to work with fixed but very different gradients (|h1 −
h2| � min{hi}), which is a possible scenario when micromag-
nets are used, then one must work in the Ji � hi regime.
Therefore, we will limit our discussion to these two cases:
when hi is dominant and when Ji is dominant. We assume
similar qubit energy splittings in both cases for convenience,
particularly when simplifying Eqs. (5) and (6).

A. Similar qubits with hi � Ji

We consider a system of similar qubits (�1 = �2) where
the magnetic field gradient dominates the energy splitting
(hi � Ji,�i 
 hi) and the driving frequencies are equal and
at resonance with the energy splitting (ω1 = ω2 ≡ ω = �i) in
the absence of noise. For simplicity, we take the case where
the Rabi frequencies of the two qubits are dissimilar [Eq. (9)],
although our analysis can be extended to the similar Rabi case
easily. In this parameter regime, we can expand J1[z] to first
order and obtain χi ≈ hi ji

4�i
, and ξi(t ) ≈ 0, which allows us to

evaluate IYY = IZZ ≈ 1. Thus, combining Eqs. (2), (3), (7),
and (9), the total time-evolution can be written as

U (t ) = R1(t ) exp

[
−ıt

αh1h2

2�1�2
σZZ

]
R2(t ), (11)

where the purely local operators R1(t ) and R2(t ) are given by

R1(t ) = exp

[
ı

2

2∑
i=1

φiσ
(i)

Y

]
exp

[
−ı

2∑
i=1

ωit

2
σ

(i)
X

]

× exp

[
−ıt

2∑
i=1

χiσ
(i)
Z

]
,

R2(t ) = exp

[
−ı

2

2∑
i=1

φiσ
(i)

Y

]
. (12)

Since Eq. (11) is already canonically decomposed into local
and nonlocal parts [25], it is clear to see how to “undo” the
local part of the evolution that accompanies the entangling
gate. By applying additional local operations, R†

1 and R†
2, in

the absence of coupling, we obtain a purely nonlocal σZZ gate,

R†
1(t )U (t )R†

2(t ) = exp

[
−ıt

αh1h2

2�1�2
σZZ

]
. (13)

So far we have been careful to distinguish between �1 and
�2 so as to allow for the perturbative effect of noise, but
other than that we have not discussed the effect of such a
perturbation. Noise during the original entangling operation
produces errors in both the nonlocal phase of Eq. (11) and
in its accompanying local operations given in Eq. (12). The
pre- and postapplied locals, R†

i , only undo the ideal local
rotations accompanying the entangling gate, but any random
perturbations are left uncanceled. By expanding each term in
Eqs. (11) and (12) to first order in perturbations δJi, δ ji, δhi,
and δα, and commuting all of the perturbations to the right,
we may write the effect of the noise in the form

Unl (t ) = R†
1(t )U (t )(1 + �0(t ))R†

2(t )

= exp

[
−ıt

αh1h2

2�1�2
σZZ

]
(1 + �(t ))


 exp

[
−ıt

α

2
σZZ

]
(1 + �(t )), (14)

where 1 is the identity operator, �0 contains the first-order
perturbation of the physical entangling operation U , and � ≡
R2�0R†

2 is the resulting perturbation in the purely nonlocal
operation. The approximate equality makes use of the fact that
powers of Ji/hi are negligibly small compared to the dominant
errors we wish to correct. The error � due to the perturbations
is reported in Table I in terms of its projections onto the 15
SU(4) basis elements, henceforth referred to as error channels,

� = 1

4

∑
i j

tr(σi j�)σi j . (15)

One prominent feature of these error channels is their
oscillatory behavior. Notice that one can, for example, choose
parameters such that sin(χit ) = 0 at the end of the entangling
gate. By doing so, one effectively eliminates several error
terms in Table I. If we also choose parameters such that
cos(ωt ) = 0 at the time that the gate is complete, all but five of
the error channels in Table I (σZI , σIZ , σY I , σIY , and σZZ ) will
be synchronized to vanish at the gate time. We are thus left
with a gate that is partially corrected, for both quasistatic and
1/f noise. This stroboscopic circumvention of error requires
no knowledge of the errors involved, only that they are small
enough for the higher-order terms in the error expansion to
remain insignificant.

Specifically, stroboscopic error elimination can be
achieved by choosing

t = (m + 1/2)π/ω, (16)

ji = 4ni�iω

hi(m + 1/2)

 4niω

(m + 1/2)
, (17)

where m and ni are integers. We also want to produce a given
nonlocal phase, exp[ı θ

2 σZZ ], at the end of the operation. So, we
have another constraint from Eq. (13), which we can satisfy to
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TABLE I. First-order errors obtained by projecting � onto an SU(4) basis formed by Kronecker
products of Pauli operators.

σIX

(
ı(h2δJ2−J2δh2 ) cos(ωt )

2�2
2

− ı(h2δh2+J2δJ2 )
h2 j2

)
cos

( h1h2αt
�1�2

)
sin(2χ2t )

σIY
ı(h2δJ2−J2δh2 )(cos(

h1h2αt
�1�2

) cos(ωt ) cos(2χ2t )−1)

2�2
2

+ 2ı(h2δh2+J2δJ2 ) cos(
h1h2αt
�1�2

) sin2 (χ2t )

h2 j2

σIZ
ı(h2δJ2−J2δh2 )( j2J2t−2�2 sin(ωt ))

4�3
2

− ıh2tδ j2
4�2

σX I

(
ı(h1δJ1−J1δh1 ) cos(ωt )

2�2
1

− ı(h1δh1+J1δJ1 )
h1 j1

)
cos

( h1h2αt
�1�2

)
sin(2χ1t )

σX X 0

σXY 0

σX Z

(
ı(h1δJ1−J1δh1 ) cos(ωt ) cos(2χ1t )

2�2
1

+ 2ı(h1δh1+J1δJ1 ) sin2 (χ1t )
h1 j1

)
sin

( h1h2αt
�1�2

)
σY I

ı(h1δJ1−J1δh1 )(cos(
h1h2αt
�1�2

) cos(ωt ) cos(2χ1t )−1)

2�2
1

+ 2ı(h1δh1+J1δJ1 ) cos(
h1h2αt
�1�2

) sin2 (χ1t )

h1 j1

σY X 0

σYY 0

σY Z

(
ı(J1δh1−h1δJ1 ) cos(ωt )

2�2
1

+ ı(h1δh1+J1δJ1 )
h1 j1

)
sin

( h1h2αt
�1�2

)
sin(2χ1t )

σZI
ı(h1δJ1−J1δh1 )( j1J1t−2�1 sin(ωt ))

4�3
1

− ıh1tδ j1
4�1

σZX

(
ı(h2δJ2−J2δh2 ) cos(ωt ) cos(2χ2t )

2�2
2

+ 2ı(h2δh2+J2δJ2 ) sin2 (χ2t )
h2 j2

)
sin

( h1h2αt
�1�2

)
σZY

(
ı(J2δh2−h2δJ2 ) cos(ωt ) sin(2χ2t )

2�2
2

+ ı(h2δh2+J2δJ2 ) sin(2χ2t )
h2 j2

)
sin

( h1h2αt
�1�2

)
sin(2χ2t )

σZZ
ıh2J1αt (h1δJ1−J1δh1 )

2�3
1�2

+ ıh1J2αt (h2δJ2−J2δh2 )
2�1�3

2
− ıh1h2tδα

2�1�2

good approximation by choosing m such that∣∣∣∣ (m + 1/2)π

ω
α − θ

∣∣∣∣ (18)

is minimized. Due to the typically weak coupling, α/ω � 1,
the minimum value is likewise small and occurs at a large
value of integer m (corresponding to a gate time containing
many cycles of the driving field).

As mentioned earlier, we must take care to stay within a
parameter regime where the RWA is valid. We use some of
the remaining free parameters to ensure that the RWA remains
valid for the choices above that lead to error cancellation. We
enforce the RWA condition of resonant driving (ω = �1 =
�2) by setting

h2 =
√

h2
1 + J2

1 − J2
2 
 h1, (19)

with the values of Ji still free as of yet other than being small
compared to hi. We enforce the RWA conditions on the driving
amplitude of |χi| � α and ||χ1| − |χ2|| � α by taking the
integers of Eq. (17) such that n2 = 2n1 in order to maximize
the difference in Rabi frequencies while keeping both large
(which can be ensured via the choice of n1). In the case of
detuning-controlled singlet-triplet qubits, due to the empiri-
cally exponential dependence of the exchange interaction on
the detuning [9,23], δJi ∝ Ji and it is advantageous to choose
small values of Ji, but while still maintaining Ji > ji in order
to avoid calling for negative exchange. So, we will choose

values of Ji slightly larger than ji. Without loss of generality,
and for the sake of concreteness, we take j1 = 2 j2, J1 =
2J2. Finally, another physical consideration specific to the
capacitively coupled singlet-triplet system is the treatment of
perturbations in the coupling, δα. Since α is proportional to
the product of the derivatives of the exchange interactions in
each qubit and the proportionality constant is such that δα is
about 2 orders of magnitude smaller than δJi [23], its effects
are negligible and can safely be ignored.

We summarize and combine all of the constraints above in
the following set of robustness conditions:

h1, J1, n1, α, θ are free and subject to

α � ji < Ji � hi with n1 ∈ Z, ω =
√

h2
1 + J2

1 
 h1,

J1 = 2J2, j1 = 2 j2, h2 =
√

h2
1 − 3J2

1 
 h1

m = nint

(
θ

π

ω

α
− 1

2

)
, t = (m + 1/2)π/ω,

j1 = 4n1�1ω

h1(m + 1/2)

 4n1ω

(m + 1/2)
, (20)

where it suffices to meet the approximate equalities due
to the condition Ji � hi, and nint(x) is the nearest integer
function. The effect of these constraints on the first-order error
channels is shown in Table II. With the parameter choices
of Eq. (20), the surviving five error channels are left with

012347-4



STROBOSCOPICALLY ROBUST GATES FOR … PHYSICAL REVIEW A 99, 012347 (2019)

TABLE II. The same errors reported in Table I after substituting
the optimized parameters.

σIY ı J2δh2−h2δJ2
2�2

2

σIZ ı ((−1)mh2−2n2J2π )(J2δh2−h2δJ2 )
2h2�2

2
− ıh2tδ j2

4�2

σY I ı J1δh1−h1δJ1
2�2

1

σZI ı ((−1)mh1−2n1J1π )(J1δh1−h1δJ1 )
2h1�2

1
− ıh1tδ j1

4�1

σZZ
ıh2J1αt (h1δJ1−J1δh1 )

2�3
1�2

+ ıh1J2αt (h2δJ2−J2δh2 )
2�1�3

2
− ıh1h2tδα

2�1�2

terms that are approximately proportional to δ ji
α

, δJi
hi

, Ji
hi

δhi
hi

,
Ji
hi

δJi
hi

, ( Ji
hi

)
2 δJi

hi
, and ( Ji

hi
)
2 δhi

hi
. The last four terms in the list are

clearly negligible. By invoking the exponential behavior of
the exchange interaction, we have δJi = dJi

dεi
δεi ∝ Jiδεi, which

indicates that the second term in the list is also suppressed for
Ji � hi. However, the first term in the list is not necessarily
small. Errors from δ ji accumulate linearly with the gate time
and are, consequently, effectively proportional to 1/α. Again,
noting that the empirically exponential nature of the exchange
implies δ ji ∝ ji, it is possible to avoid unnecessarily large δ ji
by choosing the free integer n1 that appears in ji to be as
small as possible while still maintaining the RWA condition
of |χi| � α. The low-frequency content of the remaining δ ji
error can be removed by inserting a refocusing π pulse about
the x axis of each qubit in between two entangling gates.
This is a well-known strategy [26–28], making use of the
fact that the local σXX insertion commutes with the nonlo-
cal σZZ phase but anticommutes with the σIZ and σZI error
terms.

Since we are left with only five error channels, extracting
the first-order error of the refocused entangling gate as in
Eq. (14) is analytically straightforward. The refocusing pro-
cess shuffles these errors among the SU(4) basis elements,
some of which appear in the σXX , σYY , σXY , and σY X channels.
These errors commute with the nonlocal σZZ phase, which
suggests that concatenating with a local π pulse about the z
axis of either qubit, e.g., σZI , can be used to further correct the
residual errors in the refocused gate.

B. Similar qubits with Ji � hi

We follow the same process as before, but now we assume
that the magnetic field gradients are fixed. Since we are taking
Ji � hi, the terms in the propagator that are proportional to
h1h2
�1�2

are negligibly small. Thus, to generate an entangling
gate, it is preferable for us to take the case where ||χ1| −
|χ2|| � α [Eq. (8)]. Ignoring the negligible terms, the time
evolution is

U (t ) = R1(t ) exp

[
−ıt

αJ1J2

2�1�2
(σXX + σYY )

]
R2(t ) (21)


 R1(t ) exp

[
−ıt

α

2
(σXX + σYY )

]
R2(t ), (22)

where the purely local operators R1(t ) and R2(t ) are
given by

R1(t ) = exp

[
−ı

2

2∑
i=1

φiσ
(i)

Y

]
exp

[
−ı

2∑
i=1

ωit + ξi(t )

2
σ

(i)
X

]

× exp

[
−ıt

2∑
i=1

χiσ
(i)
Z

]
,

R2(t ) = exp

[
ı

2

2∑
i=1

φiσ
(i)

Y

]
. (23)

The error channels for this evolution can be calculated in a
similar fashion as in the previous case; the results are reported
in Appendix B.

We proceed to our goal of synchronizing the error terms so
that they vanish at the gate time. We can eliminate a number
of error terms by choosing our parameters so that sin(χit )
and cos[ωit + ξi(t )] simultaneously vanish at the gate time.
However, as before, a significant amount of error remains
in the σIZ and σZI channels. In this case, though, we cannot
simply apply a refocusing π pulse, since these error channels
do not commute with the entanglement generator σXX + σYY .
Fortunately, Ref. [28] offers a sequence of 10 local π pulses
interspersed between short entangling operations that can
deal with these anticommuting errors to first order while
reducing the entanglement generator to σXX . Therefore, it is
again possible in principle to generate high-fidelity entangling
gates from a combination of stroboscopic decoupling and
composite pulses in this parameter regime.

However, we must note that the assumption following
Eq. (7) of δ�i � χi is likely unrealistic in this Ji � hi case
for the charge noise levels currently reported in singlet-triplet
qubits. Quasistatic fluctuations in the detuning, δε, typically
have a standard deviation of several μV [9], and around J ∼
GHz, this can cause δ�i ∼ 10 MHz, whereas in this regime
χi 
 hi/4 ∼ 10 MHz as well. We estimate that roughly an
order-of-magnitude decrease in the charge noise strength,
down to under a microvolt, would be required in order to
safely neglect off-resonance errors. Note that the previous
case of hi � Ji did not have this problem because there δ�i

is dominated by magnetic noise, which is typically ∼10 neV,
whereas in that regime χi � ji/4 ∼ 100 neV. Therefore, the
case of similar qubits with hi � Ji is a more feasible operating
regime for our proposed high-fidelity two-qubit gates in a
double-quantum-dot singlet-triplet system. In the context of
silicon singlet-triplet qubits with micromagnet gradients, this,
along with our discussion at the beginning of Sec. III, means
that the silicon devices must be engineered to either allow
enough tunability of the magnetic differences across each
qubit (via dot positioning, etc.) for them to be equalized in
situ, or to physically reduce charge noise in the device. The
former seems an easier target.

IV. SIMULATIONS

We now examine the effects of our optimization in the
presence of quasistatic magnetic noise and 1/ f 0.7 charge
noise [9]. We will simulate the fidelity of controlled
PHASE (CPHASE) gates generated by a single-shot pulse, a
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TABLE III. Average controlled-PHASE (CPHASE) fidelity in the
presence of 20-neV magnetic noise and 8-μV quasistatic charge
noise with a 1/ f 0.7 component of 0.9 nV/

√
Hz at 1 MHz.

Sequence 〈F 〉unoptimized 〈F 〉optimized

No refocusing 0.768 0.811
Singly refocused 0.950 0.974
Doubly refocused 0.944 0.996

single-spin-echo composite pulse, and a double-spin-echo
composite pulse for both unoptimized and stroboscopically
optimized parameters.

We report in Table III a summary of the calculated fi-
delities. The magnetic noise was generated from a normal
distribution with a standard deviation of 20 neV [29,30]. To
generate the charge noise, we superimposed 20 random tele-
graph noises with the appropriate weighting [31] and relax-
ation times ranging from 1 MHz to 1 GHz [7] evenly spaced
on a logarithmic scale with an amplitude of 0.9 nV/

√
Hz at

1 MHz. An additional quasistatic noise component is added
to ensure that the integrated power spectral density from 0 to
1 MHz is consistent with the experimentally reported noise
amplitude of 8 μV [9]. Finally, we translated the noise in
detuning ε into noise in exchange J by using an exponential
fit on the data reported in Ref. [9].

We numerically solve for the time-evolution operator using
the unapproximated, time-dependent Hamiltonian (1) with the
optimal parameters predicted by the RWA analysis above, and
then convert it to a CPHASE gate by using the perfect local
operations prescribed by the RWA, as in the left-hand side of
Eq. (13). Note that for these numerical calculations we do not
assume that the RWA is accurate; e.g., we do not assume now
that the right-hand side of Eq. (13) holds. We calculate the
average two-qubit gate fidelity [32]

〈F 〉 = 1

16

⎡
⎣4 + 1

5

∑
σi j

tr[U1σi jU
†
1 U2σi jU

†
2 ]

⎤
⎦, (24)

where U1 is the ideal CPHASE and U2 is the actual noisy
evolution, which we obtain purely numerically for a given set
of parameter values and averaging over 1000 different noise
realizations. Any error due to the RWA is also included in that
fidelity.

A summary of all the parameter values used in the sim-
ulations is provided in Table IV. We have taken α = 2π ×
2.3 MHz in all cases for consistency. For all pulse sequences

the same unoptimized parameters are used, obtained from
Ref. [24], consistent with the range reported in experiment
[7]. On the other hand, the optimized parameters are chosen
following the rules in Eq. (20). We choose the free parameters
h1 = 1 GHz, J1 = 80 MHz, and n1 = 4 for the no-refocusing
and singly refocused case, ensuring that h1 � J1 > j1. On
the other hand, we take h1 = 1.5 GHz, J1 = 150 MHz, and
n1 = 2 for the doubly refocused case in order to compensate
for the shorter gate time needed. These immediately determine
the values of ω, J2, and h2 shown in Table IV. The value
of θ can either be π/2, π/4, or π/8, depending on which
composite pulse sequence is being performed, as we discuss
below.

As previously mentioned, all the simulations target a
CPHASE gate. When applying the singly refocusing pulse, we
replace the simple CPHASE gate Unl (tπ/2) with the composite
CPHASE gate,

Unl (tπ/4)πXXUnl (tπ/4)πXX , (25)

where Unl (tθ ) is the noisy entangling gate targeting a nonlocal
phase θ , and πab is a local π rotation about the a axis of
the first qubit and the b axis of the second qubit. The doubly
refocused composite pulse requires twice as many component
gates, but note that the entangling time is not any longer since
each entangling component is shorter,

[Unl (tπ/8)πXXUnl (tπ/8)πXX]πZI [Unl (tπ/8)πXXUnl (tπ/8)πXX]πZI

= Unl (tπ/8)πXXUnl (tπ/8)πY XUnl (tπ/8)πXXUnl (tπ/8)πY X .

(26)

We further examine how our optimization behaves under
a range of noise amplitudes. We keep the amplitude of the
1/ f 0.7 charge noise component the same as before for con-
sistency, but we generate quasistatic noise with amplitudes
ranging from 0 to 24 neV (μV) for magnetic (charge) noise.
A contour plot of the average infidelity as a function of
quasistatic noise strength for the case of doubly refocused
gates is provided in Fig. 1. We find that combining our
optimization scheme with the doubly refocusing pulse yields
an order-of-magnitude improvement in fidelity compared to
the unoptimized case. We emphasize that this improvement
can be attributed to the isolation of error onto specific channels
presented in Table II. In fact, if one can further reduce the
average fluctuations in the magnetic field gradient (e.g., down
to 8 neV [29]), it is possible to generate a CPHASE gate with
average fidelities over 99% using only the singly refocusing
pulse.

TABLE IV. Local parameters used in the simulations.

Unoptimized, Optimized, Optimized,
Parameters ( 1

2π
MHz) all cases no refocusing/singly refocused doubly refocused

J1 266 80 150
J2 320 40 75
j1 69 74 147
j2 36 37 73
h1 922 1000 1500
h2 905 1002 1506
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FIG. 1. Average infidelity as a function of noise strength for the unoptimized (left) and optimized (right) case after applying a doubly
refocusing π pulse. The values in the axes indicate the strength of quasistatic noise. 1/f noise is added to the exchange with an amplitude of
0.9 nV/

√
Hz at 1 MHz.

V. CONCLUSION

We theoretically analyze the first-order effects of errors in
two capacitively coupled singlet-triplet qubits by perturbing
parameters in the time-evolution operator derived using the
RWA. We examined two extreme regions of the parameter
space and showed that it is better to operate in the parame-
ter regime where the magnetic field gradient dominates the
exchange than the opposite case.

We find that certain choices of parameter lead to passive,
stroboscopic circumvention of errors. This enables the iso-
lation of the errors onto specific basis elements of SU(4),
consequently allowing the application of a composite pulse
sequence to mitigate the residual errors. Our numerical sim-
ulations show that our analytic prescription produces CPHASE

gates with fidelities above 99% using only four applications of
local π pulses on each qubit, which is an order-of-magnitude
improvement over an unoptimized implementation.
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APPENDIX A: EFFECTS OF EXCHANGE
RAMPING EVOLUTION

In the main text we considered only the case when the
exchange Ji(t ) is controlled using rectangular pulses both in
the beginning and the end of the evolution. Realistically, there
is a finite rise time τ to go from Ji(−τ ) ≈ 0 up to Ji(0) =
Ji + ji, and, since Eq. (20) tells us that the exchange should
have gone through an odd number of half cycles at the end of
the gate, back down from Ji(tgate ) = Ji to Ji(tgate + τ ) ≈ 0. We
now consider the effects of the evolution during the finite ramp
on our optimization scheme. We will show that the effects are
negligible, assuming typical values for the coupling, noise,
and rise time.

We choose the well-studied Rosen-Zener pulse shape
[33–35] for our ramp:

Ji(t ) =
{

Ji,u sech
(

2πt
τ

)
, −τ < t < 0

Ji,d sech
( 2π (t−tgate )

τ

)
, tgate < t < tgate + τ,

(A1)

where Ji,u = Ji + ji is the upward ramp amplitude and Ji,d =
Ji is the downward ramp amplitude. In addition, since there is
a rough proportionality between the average capacitive cou-
pling and the average exchanges, α ∝ J1J2 [23], the coupling
also has a finite ramping time. However, we take τ = 1 ns,
which is consistent with experimental ramp times in spin
qubits [36], and so a typical coupling that ranges up to 1–2
MHz [7,23] has a negligible effect on such a short timescale.
Thus the evolution during the ramp is dominated by the local
terms, and the ramping Hamiltonian takes the form

H =
2∑

i=1

(
Ji(t )

2
σ

(i)
Z + hi

2
σ

(i)
X

)
. (A2)

We first consider the case where the exchange is ramped
up. We begin by noting that since the spin operators for each
qubit commute, then we can separate the propagator into
U (t ) = U1(t )U2(t ). Each of these propagators are solutions to

ı
d

dt
Ui(t ) =

(
Ji,u sech

(
2πt
τ

)
2

σ
(i)
Z + hi

2
σ

(i)
X

)
Ui(t ). (A3)

In order for us to use known analytical results, we first rotate
to a frame so that

Ui(t ) = exp

[
ı
π

4
σ

(i)
Y

]
exp

[
ıt

hi

2
σ

(i)
Z

]
U ′

i (t ). (A4)

This allows us to write two coupled differential equations:

ı ṡ(t ) = Ji,u sech(2πt/τ )

2
e−ıhit p(t )

ı ṗ(t ) = Ji,u sech(2πt/τ )

2
eıhit s(t ), (A5)
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where U ′
i (t )ψ ′(to) = (s(t ), p(t ))T, and ψ ′(to) is the initial wave function. Using the results from Refs. [33,35], we can write the

time evolution in the rotating frame for t � 0 as

U ′
i (t ) = UI1 + UXσ

(i)
X + UYσ (i)

y + UZσ
(i)
Z , (A6)

where

UI = 1

2

{
2F1

[
− Ji,uτ

2
,

Ji,uτ

2
;

1 − ıhiτ

2
; z

]
+ 2F1

[
− Ji,uτ

2
,

Ji,uτ

2
;

1 + ıhiτ

2
; z

]}

UX = 1

4
Jiτ sech

[
t

τ

]{
e−ıhit

2F1
[
1 − Ji,uτ

2 , 1 + Ji,uτ

2 ; 3−ıhiτ
2 ; z

]
hiτ + ı

− eıhit
2F1

[
1 − Ji,uτ

2 , 1 + Ji,uτ

2 ; 3+ıhiτ
2 ; z

]
hiτ − ı

}

UY = ı
1

4
Jiτ sech

[
t

τ

]{
e−ıhit

2F1
[
1 − Ji,uτ

2 , 1 + Ji,uτ

2 ; 3−ıhiτ
2 ; z

]
hiτ + ı

+ eıhit
2F1

[
1 − Ji,uτ

2 , 1 + Ji,uτ

2 ; 3+ıhiτ
2 ; z

]
hiτ − ı

}

UZ = 1

2

{
2F1

[
−Ji,uτ

2
,

Ji,uτ

2
;

1 + ıhiτ

2
; z

]
− 2F1

[
−Ji,uτ

2
,

Ji,uτ

2
;

1 − ıhiτ

2
; z

]}
, (A7)

and 2F1[a, b; c; d] is Gauss’s hypergeometric function and
z = 1

2 (1 + tanh [ t
τ

]). We note that U ′
i (t ) satisfies the initial

condition U ′
i (−∞) = 1. In order to get the actual solution to

Eq. (A3) with Ui(−τ ) = 1, we use the composition property
of time-evolution operators:

Ui(t ; −τ ) = Ui(t ; −∞)U †
i (−τ ; −∞), (A8)

where U (t ; to) indicates the evolution from to to t . More
explicitly, the upward ramp propagator that corresponds to the
Hamiltonian in Eq. (A2) is approximately given by

Uu(t ; −τ ) = exp

[
ı
π

4

2∑
i=1

σ
(i)

Y

]
exp

[
ıt

2∑
i=1

hiσ
(i)
Z

]
U ′

1(t )

× U ′†
1 (−τ )U ′

2(t )U ′†
2 (−τ )

× exp

[
ıτ

2∑
i=1

hiσ
(i)
Z

]
exp

[
−ı

π

4

2∑
i=1

σ
(i)

Y

]
.

(A9)

To solve for the downward ramp evolution, we first note
that there is a relationship between the upward and downward
ramp Hamiltonian when their amplitudes are similar: Hd (t ) =
Hu(tgate − t ). Using this, then we can write the time evolution
of the downward ramp as

Ud (t ) = T exp

[
−ı

∫ t

tgate

Hd (t ′)dt ′
]
, (A10)

where T denotes the time-ordering operator. Using a simple
change of variable and using the composition property of
time-evolution operators, we can express the evolution of the
downward ramp in terms of the upward ramp:

Ud (t ) = T exp

[
−ı

∫ t

tgate

Hu(tgate − t ′)dt ′
]

= T exp

[
ı
∫ tgate−t

0
Hu(t ′′)dt ′′

]

= T exp

[
ı
∫ tgate−t

−τ

Hu(t ′′)dt ′′
]

× T exp

[
ı
∫ −τ

0
Hu(t ′′)dt ′′

]

= T exp

[
ı
∫ tgate−t

−τ

Hu(t ′′)dt ′′
]

×
(
T exp

[
ı
∫ 0

−τ

Hu(t ′′)dt ′′
])†

= Ūu(tgate − t ; −τ )Ū †
u (0,−τ ),

where the bar indicates change from Ji,u → −Ji,d , and hi →
−hi. Therefore, the downward ramp propagator is given by

Ud (t ; tgate ) = exp

[
ı
π

4

2∑
i=1

σ
(i)

Y

]
exp

[
−ı(τ − t )

2∑
i=1

hiσ
(i)
Z

]

× Ū ′
1(τ − t )Ū ′

1(0)Ū ′
2(τ − t )Ū ′

2(0)

× exp

[
−ı

π

4

2∑
i=1

σ
(i)

Y

]
. (A11)

Now that we have an analytical expression for the ramp
propagators, we can finally address how they affect the error
channels and our optimization. In the presence of noise, it
can be verified numerically with the parameters provided in
Sec. IV that perturbations in Ji result in infidelities that are
1–2 orders of magnitude smaller than the infidelities we report
in the main text. This can be mainly attributed to the fact
that hi � Ji and τ is relatively short. Thus, the dominant
source of error in the ramp evolution is due to perturbations
in the magnetic gradient δhi. However, if we assume 1-ns
ramp times and a standard deviation of δhi = 8 neV [29],
the resulting infidelities are also found to be an order of
magnitude smaller than those discussed in the main text. Thus,
provided that δhiτ is much less than the remaining errors
in Table II, then the errors associated with the ramp can be
neglected.

Finally, we address how the unperturbed ramp evolution
affects the error channels. The total evolution of the qubits is
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given by

U (t ) = Uu(t )R1(t ) exp

[
−ıt

αh1h2

�1�2
σZZ

]
R2(t )Ud (t ). (A12)

We can rewrite this into

U (t ) = Uu(t )(R1(t )R†
1(t ))R1(t ) exp

[
−ıt

αh1h2

�1�2
σZZ

]

× R2(t )(R†
2(t )R2(t ))Ud (t ). (A13)

We can further rewrite this in terms of our optimized gate
given in Eq. (14):

U (t ) = Uu(t )R1(t )Unl (t )R2(t )Ud . (A14)

Since Uu and Ud are purely local operations and provided
that the ramp errors are negligible, then applying an initial
local rotation R†

1(t )U †
u (t ) and a final local rotation U †

d (t )R†
2(t )

ensures that our optimized gate Unl (t ) and its errors are
unperturbed by the ramps.

APPENDIX B: ERROR CHANNELS

We present here a table of error channels for the dissimilar qubit case in Sec. III, see Table V.

TABLE V. First-order errors for the similar qubit case with Ji � hi. Due to the complexity of the error channels, we had only shown the
errors due to fluctuations in the first qubit. To find the effects of perturbations in the second qubit, one need only generate a second table where
the labels are swapped (1 ↔ 2 and σi j ↔ σ ji).

σIX 0

σIY 0

σIZ

( ı((J1δh1−h1δJ1 ) sin(ω1t+ξ1 )−2�2
1t (

∂χ1
∂h1

δh1+ ∂χ1
∂J1

δJ1 ))

2�2
1

− ıt ∂χ1
∂ j1

δ j1

)
sin2

( J1J2αt
�1�2

)
σX I

[( ı(h1δJ1−J1δh1 ) cos(ω1t+ξ1 )
2�2

1
− ı(h1δh1+J1δJ1 )

4χ1�1

)
sin(2χ1t ) − ı

2 cos(2χ1t )
(

∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂ j1

δ j1

)]
cos

( J1J2αt
�1�2

)
σX X

ıh1J2αt (J1δh1−h1δJ1 )
2�3

1�2
− ı J1J2tδα

2�1�2

σXY

( ı[(h1δJ1−J1δh1 ) sin(ω1t+ξ1 )+2�2
1t (

∂χ1
∂h1

δh1+ ∂χ1
∂J1

δJ1 )]

4�2
1

+ ı
2 t ∂χ1

∂ j1
δ j1

)
sin

( 2J1J2αt
�1�2

)
σX Z 0

σY I

[ ı(h1δJ1−J1δh1 )(cos(2χ1t ) cos(ω1t+ξ1 ))
2�2

1
+ ı(h1δh1+J1δJ1 ) sin2 (χ1t )

2χ1�1
+ ı

2 sin(2χ1t )
(

∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂ j1

δ j1

)]
cos

( J1J2αt
�1�2

)
σY X

( ı[(J1δh1−h1δJ1 ) sin(ω1t+ξ1 )−2�2
1t (

∂χ1
∂h1

δh1+ ∂χ1
∂J1

δJ1 )]

4�2
1

− ı
2 t ∂χ1

∂ j1
δ j1

)
sin

( 2J1J2αt
�1�2

)
σYY

ıh1J2αt (J1δh1−h1δJ1 )
2�3

1�2
− ı J1J2tδα

2�1�2

σY Z 0

σZI
ı[(J1δh1−h1δJ1 ) sin(ω1t+ξ1 )−2�2

1t (
∂χ1
∂h1

δh1+ ∂χ1
∂J1

δJ1 )]

2�2
1

− ıt ∂χ1
∂ j1

δ j1 cos2
( J1J2αt

�1�2

)
σZX

[ ı(J1δh1−h1δJ1 ) cos(2χ1t ) cos(ω1t+ξ1 )
2�2

1
− ı(h1δh1+J1δJ1 ) sin2(χ1t )

2χ1�1
− ı

2 sin(2χ1t )
(

∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂ j1

δ j1

)]
sin

( J1J2αt
�1�2

)
σZY

[( ı(h1δJ1−J1δh1 ) cos(ω1t+ξ1 )
2�2

1
− ı(h1δh1+J1δJ1 )

4χ1�1

)
sin(2χ1t ) − ı

2 cos(2χ1t )
(

∂ξ1
∂h1

δh1 + ∂ξ1
∂J1

δJ1 + ∂ξ1
∂ j1

δ j1

)]
sin

( J1J2αt
�1�2

)
σZZ 0
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[14] L. Cywiński, W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett.
102, 057601 (2009).
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