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We investigate the feasibility of single-shot Toffoli- and Fredkin-gate realizations in qubit arrays with
Heisenberg-type exchange interactions between adjacent qubits. As follows from the Lie-algebraic criteria of
controllability, such an array is rendered completely controllable—equivalent to allowing universal quantum
computation—by a Zeeman-like control field with two orthogonal components acting on a single “actuator”
qubit. Adopting this local-control setting, we start our analysis with piecewise-constant control fields and
determine the global maxima of the relevant figure of merit (target-gate fidelity) by combining the multistart-
based clustering algorithm and quasi-Newton type local optimization. We subsequently introduce important
practical considerations, such as finite frequency bandwidth of realistic fields and their leakage away from
the actuator. We find the shortest times required for high-fidelity Toffoli- and Fredkin-gate realizations and
provide comparisons to their respective two-qubit counterparts—controlled-NOT and exponential-SWAP. In
particular, the Toffoli-gate time compares much more favorably to that of controlled-NOT than in the standard
decomposition-based approach. This study indicates that the use of the single-shot approach can alleviate the
burden on control-generating hardware in future experimental realizations of multiqubit gates.
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I. INTRODUCTION

Recent years have witnessed rapid progress in the realm
of quantum computing (QC), along with the development
of methods for coherent control of a broad class of relevant
systems [1]. With single-qubit measurement- and control
fidelities being already above the fault-tolerance threshold,
the attention of workers in the field is now shifting to
implementing scalable qubit-array architectures required for
fault-tolerant QC [2]. Current developments in this direction
are an important stride toward the establishment of noisy
intermediate-scale quantum technology (systems containing
from 50 to a few hundred qubits) [3] in the next few years,
a prerequisite for reaching the goal of large-scale universal
QC (UQC). In particular, an array of nine spin qubits of
Loss-DiVincenzo type [4,5]—with Heisenberg-type exchange
interaction between adjacent qubits—has already been de-
ployed [6]. Arrays with this type of two-qubit coupling have
also been realized in other physical platforms [7,8].

The usefulness of Heisenberg interaction within the circuit
model of QC has long been amply appreciated, despite the
early realization that this interaction by itself—unlike its
lower-symmetry Ising and XY counterparts—does not allow
for UQC [9]. Importantly, it was demonstrated that UQC can
still be realized with Heisenberg interaction alone if encoded
qubit states are introduced, so that the role of logical qubits is
played by triples [9] or pairs [10] of physical qubits. This led
to the concept of encoded universality [11]. More recently,
another example for the versatility of this type of two-qubit
coupling was unravelled through Lie-algebraic studies of
spin-1/2 systems with time-independent interacting Hamilto-
nians, which are subject to external time-dependent control
fields coupled to certain internal degrees of freedom [12,13].

Namely, it was shown that a qubit array with “always-on”
Heisenberg interaction is rendered completely controllable
provided that at least two noncommuting controls—for ex-
ample, a Zeeman-type control Hamiltonian that corresponds
to a magnetic field with nonzero components in two mutually
orthogonal directions (e.g., x and y)—act on a single qubit
in the array [13]. In other words, an arbitrary quantum gate
on any subset of qubits within the given array can then be
enacted, which amounts to UQC. Such scenario, with external
control fields acting on a single qubit in an array, is the
extreme version of the local-control approach [14].

Regardless of the physical realization and its attendant type
of two-qubit coupling, one of the central challenges on the
way to a large-scale UQC is to reach sufficient accuracy in
realizing quantum gates for fault-tolerant QC [3]. A complex
quantum circuit—for instance, a multiqubit gate—can always
be decomposed into a sequence of primitive single- and two-
qubit gates [15]. Yet, such an approach is often impractical
due to prohibitively long operation times. Besides, the number
of gates needed to carry out a quantum algorithm grows
rapidly with the system size, with errors being accumulated
with each successive gate. One alternative to the established
decomposition-based approach entails the use of external con-
trol fields to enable fast single-shot realizations of multiqubit
gates. Control-based protocols [16,17] have proven to be a
viable route to optimized quantum-gate operations [18] in
systems ranging from superconducting [19–21] to nuclear-
spin-based qubit arrays [22].

This paper investigates the feasibility of single-shot real-
izations of two conditional three-qubit gates in qubit arrays
with Heisenberg interaction. To be more specific, it is focused
on quantum Toffoli and Fredkin gates facilitated by a Zeeman-

2469-9926/2019/99(1)/012345(12) 012345-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.012345&domain=pdf&date_stamp=2019-01-29
https://doi.org/10.1103/PhysRevA.99.012345
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type local control, this choice of gates being motivated by their
importance in quantum information processing [23]. These
two gates play key roles in reversible computing, each of them
forming a universal gate set together with the (single-qubit)
Hadamard gate [15]. The Toffoli gate is also an important
ingredient in quantum error correction (QEC) [26].

The implementation of the Toffoli gate was already at-
tempted in a variety of QC platforms using the standard
decomposition-based approach [24–26]. Yet, all those at-
tempts resulted in subthreshold fidelities, ranging from 68.5%
in circuit QED to 81% in photonic systems [25]. As regards
the Fredkin gate, the progress on the experimental side is
even less satisfactory. This gate was demonstrated nondeter-
ministically not so long ago in linear-optics experiments [27],
followed by the realization with a fidelity of around 68% in
the context of entangling continuous-variable bosonic modes
in three-dimensional circuit QED quite recently [28].

While a number of proposals for realizing Toffoli and Fred-
kin gates were put forward in recent years, these gates have
never been demonstrated in qubit arrays with Heisenberg-type
interaction. The principal rationale for realizing them in a
single-shot fashion stems from the fact that, e.g., for spin
qubits it has proven challenging to simultaneously achieve
fast, high-fidelity single- and two-qubit gates [5]. This state
of affairs is the main motivation for the present investigation.
While this study is also motivated by the recent physical
implementations of Heisenberg-coupled qubit arrays, here
we aim for generality and thus opt for an implementation-
independent investigation.

The most widely used approaches in high-dimensional
numerical optimization problems entail gradient-based greedy
algorithms for local optimization, which scale favorably with
the problem size [29]. Here we determine the global maxima
of the relevant figure of merit (gate fidelity) by combining a
greedy quasi-Newton type local-optimization technique and
the multistart-based clustering algorithm which facilitates
searches for global maxima of objective functions [30]. In
this manner, we find both the shortest times required for
high-fidelity realizations of the chosen conditional three-qubit
gates and the corresponding optimal control fields.

The remainder of this paper is organized as follows. To
set the stage, Sec. II recapitulates the main Lie-algebraic
results of quantum operator control, introduces the concept
of local control and, finally, explains its consequences for
qubit arrays with Heisenberg-type interactions. In Sec. III we
specify the system under investigation, describe its possible
physical realizations, and introduce our control objectives.
Sec. IV is set aside for the description of our envisioned
control scheme, as well as our procedures for finding optimal
piecewise-constant control fields and their spectral filtering.
The main findings of the paper are presented and discussed in
Sec. V. After an outlook on open-system effects in Sec. VI,
we conclude with a brief summary of the paper in Sec. VII.

II. LOCAL CONTROL IN QUBIT ARRAYS WITH
HEISENBERG INTERACTION

A. Lie–algebraic criteria of controllability

Consider a quantum system with a time-independent drift
Hamiltonian H0, which is acted upon by external control fields

f j (t ) ( j = 1, . . . , p) that couple to certain degrees of freedom
of the system represented by Hermitian operators Hj . Its total
Hamiltonian reads

H (t ) = H0 +
p∑

j=1

f j (t )Hj . (1)

The dynamical equation for the time-evolution operator of
the system, along with its initial condition, has the form
characteristic of bilinear control systems (for convenience,
hereafter we set h̄ = 1) [32]:

U̇ (t ) = −i

⎡
⎣H0 +

p∑
j=1

f j (t )Hj

⎤
⎦ U (t ), U (0) = 1n×n. (2)

The goal of a typical quantum-control problem is to find a
time t f > 0 and controls f j (t ) ∈ R such that a desired unitary
operation Utarget is reached at t = t f , i.e., U (t = t f ) = Utarget.
In particular, the system is completely controllable if its
dynamics governed by H (t ) can give rise—through appropri-
ately chosen fields f j (t )—to an arbitrary unitary operation on
its Hilbert space H (n = dim H), i.e., if the reachable set of
the system (the set of unitary operations achievable by varying
the controls) coincides with the Lie group U (n) or SU (n) [32].

The controllability criteria for quantum systems are for-
mulated using Lie-algebraic concepts [31], with the concept
of the dynamical Lie algebra (DLA) of the system playing
the central role [32]. For a system described by the Hamil-
tonian in Eq. (1), the DLA L is generated by the operators
{−iHk|k = 0, . . . , p}, i.e., the skew-Hermitian counterparts
of Hk . Importantly, a necessary and sufficient condition for
complete controllability is that L is isomorphic to u(n) or
su(n) [32], the Lie algebras of skew-Hermitian, or traceless
skew-Hermitian, n × n matrices [33]. This last result (the
Lie-algebraic rank condition) is an existence theorem guar-
anteeing that any unitary operation on the Hilbert space of the
system is reachable by an appropriate choice of control fields.
An altogether separate question pertains to finding their actual
time dependence that allows one to realize a desired unitary
operation, taking into account various practical constraints
such as the one on the total duration of the control.

B. Local control and its application to qubit arrays

The central control-related question in the context of in-
teracting quantum systems is whether a given system can be
partially—in the sense of allowing the realization of specific
unitaries—or, perhaps, fully controlled by solely acting on
its subsystem. This is the principal idea behind the local-
control approach. Namely, even if controls act only on a small
subsystem, their effect may be rendered global by the presence
of interactions. Needless to say, the choice of the relevant
subsystem depends on the type of interaction in the physical
system under consideration.

To formalize these last considerations, assume that a com-
posite system S = C ∪ C̄ is described by a Hamiltonian HS +∑

j f C
j (t )HC

j , where HS is the coupling (drift) part (acting
on the whole S), and HC

j are local operators (acting on C
only); f C

j (t ) are time-dependent control fields. Assuming, for

simplicity, that H j
C’s are generators of the local Lie algebra
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FIG. 1. Pictorial illustration of two different approaches to quan-
tum control in qubit arrays: the conventional approach (top), and
that of local control—of interest for nearest-neighbor Heisenberg
interactions—where a single qubit in the array is acted upon by
control fields (bottom). The circles represent qubits, while the arrows
indicate the action of controls. The line connecting adjacent qubits in
the lower part of the figure underscores the more prominent role that
interactions play in the local-control case.

L(C) of skew-Hermitian operators acting on C, the system
S is completely controllable if and only if iHS , iHC

j are the
generators of its corresponding Lie algebra L(S), i.e.,

〈iHS,L(C)〉 = L(S), (3)

where 〈A, B〉 is the algebraic closure of the operator sets A
and B [33]. Thus, an arbitrary unitary on S can be enacted via
a control on its subsystem C if and only if all elements of L(S)
can be obtained as linear combinations of iHS , iHC

j , and their
repeated commutators.

In addition to its conceptual importance, the local-control
approach lends itself to applications in qubit arrays [34],
systems that provide a natural setting for UQC. In accordance
with the above Lie-algebraic criteria (cf. Sec. II A), com-
plete controllability of a N-qubit array on its 2N -dimensional
Hilbert space requires that its attendant DLA be isomorphic
with u(2N ) or su(2N ). Conventional control in an array en-
tails control fields acting on each qubit to enable single-
qubit operations (for illustration, see the upper portion of
Fig. 1). Combined with a drift Hamiltonian, i.e., two-qubit
interactions, this allows in principle the realization of arbitrary
(multiqubit) gates. By contrast, in the local-control approach
such fields act only on a small subset of actuator qubits, which
in the extreme case can be reduced to a single qubit (the
lower part of Fig. 1). The choice of actuators should ideally
be one that guarantees complete controllability, as the latter is
equivalent to UQC [32].

Apart from its simpler implementation, local control is
advantageous because reducing the number of controls alle-
viates the debilitating effects of noise and decoherence (see
Sec. VI). While not being the most critical issue in relatively
small qubit arrays that are currently being deployed, this
will become important already in the near future with the
anticipated realization of systems with a few hundred qubits
[3] en route to large-scale UQC.

C. Controllability of spin-1/2 chains (qubit arrays) with
Heisenberg-type interactions

The problem of identifying the minimal resources for
controllability in interacting spin-1/2 systems, i.e., the small-
est subsystem that—when acted upon by external control
fields—renders the whole system completely controllable,
was studied extensively [12,13]. Those studies mostly re-
lied upon standard (two-body) interacting spin-1/2 models
(Ising, XY , Heisenberg) as their drift Hamiltonians [H0 in
Eq. (1)], with the role of controls [Hj in Eq. (1)] played by
local operators representing individual spins. Because these
ingredients coincide with those typically found in qubit ar-
rays, the above studies have far-reaching implications for the
latter.

The most important controllability-related result for our
present purposes, derived using a graph-infection criterion,
is that the existence of two mutually noncommuting local
controls acting on one end spin of a nearest-neighbor XXZ-
Heisenberg spin-1/2 chain ensures complete controllability
of the chain [13]. The underlying XXZ drift Hamiltonian
reads

HXXZ = J
N−1∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)
, (4)

where J is the exchange constant and � the anisotropy param-
eter, while the control Hamiltonian

Hc(t ) = hx(t )Sx
1 + hy(t )Sy

1 (5)

corresponds to a Zeeman-type control field h(t ) ≡
[ hx(t ), hy(t ), 0 ] with nonzero x and y components.

The problem of controllability in spin-1/2 chains (qubit
arrays) with Heisenberg-type interactions has recently been
revisited based on a method that makes use of the Hilbert-
space decomposition into a tensor product of minimal in-
variant subspaces [13]. In this manner, it was demonstrated
that the last result holds even for the fully anisotropic XY Z
coupling case, i.e., for the drift Hamiltonian

HXY Z =
N−1∑
i=1

(
JxSx

i Sx
i+1 + JySy

i Sy
i+1 + JzS

z
i Sz

i+1

)
. (6)

Moreover, it was shown that the two noncommuting controls
need not be applied to one of the end qubits. Finally, the result
holds even if the two controls are applied to different—rather
than the same—qubits. Needless to say, the described general
controllability result applies in the special case of the isotropic
Hamiltonian

HXXX = J
N−1∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1

)
, (7)

which is of most relevance for applications in qubit arrays.
The last Hamiltonian is the � = 1 case of Eq. (4), and
Jx = Jy = Jz = J case of Eq. (6). It will be our working drift
Hamiltonian in the following.

For any of the Hamiltonians in Eqs. (4)–(7) and an arbi-
trary fixed qubit-array size N , complete controllability can be
demonstrated by showing that the DLA Lxy of the system,
generated by the set of skew-Hermitian traceless operators
{iHd , iSx

1, iSy
1} (where Hd = HXXZ , HXY Z , or HXXX ), has the
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dimension n2 − 1, with n ≡ 2N being the dimension of the
Hilbert space of the system. This implies that Lxy is isomor-
phic with su(n) [33].

As already mentioned in Sec. II B, complete controllability
amounts to UQC, i.e., it guarantees that an arbitrary gate can
be enacted through an appropriate (gate-specific) choice of
control fields. It should be stressed that in Heisenberg-coupled
qubit arrays a smaller degree of control than that required
for UQC can be sufficient for nontrivial computational tasks.
Namely, a single local control (e.g., an x-only Zeeman-type
control on one qubit) is sufficient for controllability of a qubit
array on all of its invariant subspaces [13]. The largest among
those subspaces has the dimension that is exponential in the
number of qubits, thus being a useful quantum-computing
resource. This reduced degree of control also allows for the
realization of nontrivial gates, such as the SWAP1/2 (the square
root of a SWAP gate)—a natural entangling two-qubit gate for
exchange-coupled qubits [14].

For completeness, it is worth mentioning that—by con-
trast to those of Heisenberg-type—other drift Hamiltonians
of interest in realistic qubit arrays do not lead to complete
controllability under the same (local-control) circumstances.
For a XX -type Hamiltonian [� = 0 case in Eq. (4)], this is
intimately related to the fact that the XX interaction is not
algebraically propagating [13]. In the case of Ising coupling
controls on each qubit are even required for complete control-
lability, which amounts to the conventional-control scenario
(recall Sec. II B).

III. SYSTEM AND TARGET GATES

A. Total Hamiltonian and basic assumptions

In what follows, we consider a qubit array with nearest-
neighbor Heisenberg coupling, subject to a local control of the
first qubit in the array. We express all frequencies and control-
field amplitudes in units of the coupling strength J (recall that
h̄ = 1). Consequently, all the relevant times are expressed in
units of J−1.

We take as our point of departure the Hamiltonian H (t ) =
Hd + Hc(t ), with the drift part given by the isotropic-
Heisenberg Hamiltonian of Eq. (7) and the control part by the
Zeeman-type Hamiltonian of Eq. (5),

Hd = J

4

N−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1), (8)

Hc(t ) = 1

2
[hx(t )X1 + hy(t )Y1], (9)

both, for convenience, rewritten in terms of Pauli matrices
[recall that Si = 1

2 (Xi,Yi, Zi ) for qubit i]. We will also consider
the effects of a static global magnetic field in the z direction,
a situation captured by the drift Hamiltonian,

Hd,m = J

4

N−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) − �

2

N∑
i=1

Zi, (10)

where � quantifies the magnetic-field strength.
Realistic control fields—e.g., magnetic fields realized us-

ing micromagnets [35]—are never perfectly localized. Thus,
our original assumption about the control being confined to a

single qubit in an array is, strictly speaking, an idealization. A
more realistic scenario entails a field that also affects neigh-
boring qubits due to field leakage, a situation that requires a
slight generalization of the Hamiltonian in Eq. (9). Assuming
an exponential field decay away from the first qubit, the
relevant control Hamiltonian adopts the form [13]

HL
c (t ) = 1

2

N∑
j=1

e−μL( j−1)2
[hx(t )Xj + hy(t )Yj], (11)

where the parameter μL measures the extent of control-field
leakage.

It is worth pointing out that the field-leakage effect does not
invalidate the rationale for using the local-control approach.
Namely, in Ref. [13] it was demonstrated that the subspace-
controllability results are robust with respect to leakage, in
that the invariant-subspace structure and controllability of the
system remain unchanged. By extension these results imply
that the conclusions about complete controllability remain
valid in the presence of such leakage.

It is pertinent to stress that—as most gate-optimization
treatments—the present work corresponds to the closed-
system scenario, i.e., to the unitary dynamics of the system
within the open-loop coherent control framework. In other
words, the unavoidable debilitating effects of decoherence due
to an interaction of qubits with the environment (open-system
scenario) are not explicitly taken into account. The most
general analysis of the gate-optimization problem would,
however, require one to incorporate an interaction of qubits
with a multimode bosonic bath, as briefly discussed in Sec. VI.

B. Physical realizations

Qubit arrays with nearest-neighbor isotropic Heisenberg
exchange interactions can be realized using different physical
platforms. While this type of interaction is a natural physical
ingredient in the case of spin qubits [5], it is worthwhile to
elaborate on how it can even be realized with superconducting
(SC) systems, in which the most commonly occurring cou-
pling between qubits is of XX type [36]. [Note that in the
condensed-matter physics terminology the latter is referred to
as XY coupling.] SC systems, in fact, allow one to realize a
more general class of Hamiltonians than the one in Eq. (7)—
namely, those of the XXZ Heisenberg type [cf. Eq. (4)]. Here
we describe two approaches to achieve that.

One approach is based on the observation that one-
dimensional arrays of capacitively coupled SC islands can
effectively be described as XXZ spin-1/2 chains [37]. Gen-
erally speaking, the XX part of their effective Hamiltonian
features nearest-neighbor two-body interactions, while its Z
part also comprises contributions beyond nearest neighbors.
Yet, through an appropriate choice of the junction capaci-
tances, as well as the capacitances of SC islands to the back
gate of the structure, the Z part can effectively be reduced
to nearest-neighbor interactions. The Josephson energy EJ of
the junctions that couple different islands plays the role of
the exchange coupling constant J and can be varied using a
magnetic field provided that those junctions have the form of
a dc-SQUID. The XXZ anisotropy parameter � corresponds
here to the ratio EC/EJ , where EC is the charging energy. Thus,
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its different values can be realized by varying this ratio (in par-
ticular, � = 1 is the isotropic-Heisenberg-interaction case).
One SC island in the array should be a qubit playing the role of
an actuator, while the control fields hx and hy are determined
by the Josephson energy of this qubit (an additional constant
hz field would correspond to the gate voltage).

Another approach for realizing XXZ spin-1/2 chains with
SC qubits was quite recently laid out in Ref. [8]. This scheme
makes use of a complex SC circuit based on an array of qubits
mutually connected through coupler circuits. The latter either
contain a Josephson junction (or a dc-SQUID) in parallel
with an inductor, or—for every other such coupler—these two
elements connected in parallel with an additional capacitor.
While several other types of SC qubits (transmon, X-mon,
fluxonium, etc.) could in principle be utilized in this envi-
sioned system, it turns out that the most realistic parameters
are obtained for capacitively-shunted flux qubits [36].

In state-of-the-art solid-state QC setups in the microwave
regime (based on SC- or spin qubits) [38,39], precisely
shaped control pulses are obtained using arbitrary waveform
generators (AWGs), currently available with subnanosecond
time resolution. To be more precise, in the conventional
approach for control-pulse synthesis AWGs only generate a
baseband signal and a desired pulse is then obtained through
an upconversion to microwave frequencies by mixing with
a carrier. However, the continuously improving sampling
rates of AWGs—currently approaching 100 gigasamples per
second—now allow direct digital synthesis of microwave
pulses [40], thus obviating the need for separate microwave
generators. Thus, these high-bandwidth AWGs both allow
more advanced pulse shaping and reduce the number of
hardware components in QC setups.

C. Control objectives (target gates)

Our objective is to realize Toffoli and Fredkin gates in an
array with N = 3 qubits with the first qubit playing the role of
actuator. The same qubit will also be the control qubit in the
Fredkin-gate realizations, while in the context of the Toffoli
gate it will also be one of the control qubits. At the same time,
the third qubit will play the role of the target qubit for both
gates.

A Toffoli (controlled-controlled-NOT) gate enacts a Pauli-X
(flip) operation on the third (target) qubit if the first two
(control) qubits are both set (i.e., both are in the |1〉 state),
doing nothing otherwise [15]. It represents a generalization
of controlled-NOT (CNOT), an entangling two-qubit gate. Ar-
guably the most important application of the Toffoli gate is in
the measurement-free QEC [26], where it effectively replaces
the measurement and correction steps of the standard QEC.

A Fredkin (controlled-SWAP) gate enacts a SWAP operation
between the second and third qubits, if the first (ancilla)
qubit is set, otherwise leaving their states unchanged [15].
In other words, it enacts an entangling operation between
those two qubits by performing a superposition of the identity
and SWAP gates. While this operation is conditioned on the
state of the ancilla qubit, thus giving rise to tripartite en-
tanglement, its closest two-qubit counterpart is exponential-
SWAP (eSWAP)—an unconditional entangling operation given
by exp(iθcSWAP) ≡ cos θc14×4 + i sin θc SWAP.

Toffoli and Fredkin gates are self-inverse operations
(Ugate = U −1

gate), i.e., two consecutive applications of these
gates amount to the identity operation (U 2

gate = 1). This fact
has profound consequences for the shape of the optimal
control-pulse sequences (see Sec. V A).

IV. METHODOLOGY

A. Control scheme and its justification

Our goal is to find the time dependence of control fields
hx(t ) and hy(t ) for high-fidelity realizations of the desired
three-qubit gates in a system with N = 3 qubits. For the
sake of simplicity, we will attempt to synthesize the corre-
sponding optimal-field waveforms starting from piecewise-
constant (hereafter abbreviated as PWC) control fields applied
in alternation in the x and y directions with the respective
amplitudes hx,n and hy,n (n = 1, . . . , Nf /2). In the following,
we describe our envisioned control scheme, which represents
one special realization of the control Hamiltonian in Eq. (9).

At t = 0 a pulse is applied in the x direction with the
constant amplitude hx,1 during the time interval 0 � t < T .
The corresponding Hamiltonian of the system during this
interval is given by Hx,1 ≡ Hd + (hx,1/2)X1. Then a y pulse
with the amplitude hy,1 is applied during the interval T � t <

2T , whereby the system dynamics are governed by the Hamil-
tonian Hy,1 ≡ Hd + (hy,1/2)Y1. This sequence of alternating x
and y pulses is continued until Nf pulses have been carried out
by the time t f ≡ Nf T . The resulting time-evolution operator
of the system is obtained by concatenating operators Uy,n ≡
exp(−iHx,nT ) and Ux,n ≡ exp(−iHy,nT ) for n = 1, . . . , Nf /2:

U (t = t f ) = Uy,Nf /2 Ux,Nf /2 . . .Uy,1Ux,1. (12)

Our chosen local-control scheme is based on a successive
switching between x- and y-control Hamiltonians (Hx,n and
Hy,n, respectively). It represents a slight generalization of a
well-known switching scheme that was proven by Lloyd to
be sufficient for UQC [41]. Namely, if A and B are Her-
mitian matrices of dimension d � 2 and L the Lie algebra
they generate through commutation, then for any L ∈ L the
unitary matrix U = eiL can be expressed in the form U =
e−iBt2k e−iAt2k−1 . . . e−iBt2 e−iAt1 with finite k. This last result,
which was put on a rigorous mathematical footing in Ref.
[42], can be viewed as a consequence of an even more general
result pertaining to uniform finite generation of connected
compact Lie groups [such as U (n) or SU (n)] [32]. That result
asserts that for a connected Lie group eL corresponding to
a Lie algebra L, every element U ∈ eL can be expressed
through a finite number of factors of the type e−iArtr , where
Ar is one of the generators of L and tr > 0.

The crucial implication of the above mathematical results
for the system at hand is that an arbitrary unitary operation
acting on its Hilbert space—including our target conditional
three-qubit gates—can be obtained with a finite sequence of
operators exp(−iHx,ntx,n) and exp(−iHy,nty,n). For the sake of
simplicity, our elected control schemes assumes that all time
slices have equal length, i.e., that tx,n = ty,n = T for each n.

B. Numerical optimization of target-gate fidelities

The problem at hand represents a unitary gate synthesis up
to a global phase in a closed quantum system. Therefore, we
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will make use of the standard figure of merit for this subclass
of problems in quantum operator control—the (normalized)
phase invariant distance to the target unitary (here a three-
qubit quantum gate) Ugate at the final time t = t f —i.e., the
trace fidelity

F (t = t f ) = 2−N |Tr[U †(t = t f )Ugate]|. (13)

Needless to say, in accordance with the comments made at the
end of Sec. III A, the last expression and all the results to be
presented below correspond to the intrinsic fidelity (fidelity in
the absence of decoherence).

For each target gate, we maximize its fidelity—equivalent
to minimizing the gate error 1 − F (t = t f )—over the con-
trol amplitudes hx,n, hy,n (n = 1, . . . , Nf /2) for varying total
number (Nf ) and duration (T ) of pulses (time slices). Finding
the global maximum of F constitutes a nontrivial numerical-
optimization problem. We perform this complex task using
the multistart-based clustering algorithm which entails the
following steps [30]. One starts from a large sample of random
points in the space of candidate solutions (set of control
amplitudes). One then selects a smaller number of them that
yield the largest fidelities and performs local searches for
maxima around each of these points: the one with the highest
value of the fidelity is then adopted as the sought-after global
maximum. The validity of this approach is corroborated by
the stability of the final result for the global maximum upon
varying the initial number of random points.

Local searches for the maxima of the target-gate fidelity
[Eq. (13)] are performed using a second-order concurrent-
update method of the quasi-Newton type [29]. The latter
requires one to start from an initial guess for the values of
the relevant variables (here control-field amplitudes) and an
initial Hessian approximation (here taken to be the identity).
The control amplitudes are then iteratively updated according
to the Newton update rule, while the approximate Hessian
is constructed from the past gradient history according to
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [29].
After each iteration the objective function [here F (t = t f )]
increases, with termination when the desired accuracy is
reached. This procedure guarantees convergence to a local
maximum of the objective function.

C. Spectral filtering of optimal PWC control fields

While being a conventional starting point in gate opti-
mizations, PWC control fields—which have infinite spectral
bandwidths—represent a mathematical idealization. In real-
istic implementations of quantum control, achievable fields
have nonzero Fourier components only in a finite frequency
range. Thus, to make contact with experiments it is necessary
to perform spectral filtering of optimal PWC control fields.
In particular, low-pass filters are inherent to all present-day
AWGs.

Constraints on the frequency spectra of the control fields
h j (t ) ( j = x, y) are imposed through filter functions. The
filtered fields h f

j (t ) are obtained by first operating with a
filter function f (ω) on the Fourier transforms F[hj](ω) of the
optimal fields, and then switching back to the time domain via

inverse transform,

h f
j (t ) = F−1[ f (ω)F[hj](ω)] ( j = x, y). (14)

In particular, we will make use of an ideal low-pass filter
which removes the Fourier components at frequencies outside
the interval [−ω0, ω0], i.e., f (ω) = θ (ω + ω0) − θ (ω − ω0).
Using the general expression in Eq. (14), in this special case
we obtain [14]

h f
x (t ) = 1

π

Nt /2∑
n=1

hx,n[a2n−1(t ) − a2n−2(t )],

(15)

h f
y (t ) = 1

π

Nt /2∑
n=1

hy,n[a2n(t ) − a2n−1(t )],

where am(t ) ≡ Si[ω0(mT − t )] and Si(x) ≡ ∫ x
0 (sin t/t )dt .

The time-evolution operator corresponding to the filtered
fields—from which the attendant gate fidelities are easily
obtained using the expression in Eq. (13)—can be computed
using an unconditionally stable numerical method based on a
product-formula approximation [14].

Therefore, experimentally feasible (finite-bandwidth) con-
trol fields are here obtained through post-processing, i.e.,
low-pass filtering, of their optimized PWC counterparts. In
connection with our use of this approach, the following two
remarks are in order here.

While PWC control fields successively applied in the
x and y directions represent our point of departure in the
present work (cf. Sec. IV A), the filtered fields h f

x (t ) and
h f

y (t ) generically both have nonzero values throughout the
interval [0, t f ]. Thus, our inherently simple control scheme
does not bear a significant loss of generality compared to
the more general control protocol in which the initial PWC
control fields simultaneously have nonzero components in
both relevant spatial directions.

For completeness, it is worthwhile to note that an alter-
native approach to obtaining finite-bandwidth control fields
would entail imposing a spectral-bandwidth constraint from
the outset, i.e., incorporating it a priori in the numerical search
for optimal control fields. Such an approach has quite re-
cently been demonstrated by Lucarelli [43]. That approach—
computationally much more demanding than the one utilized
here—relies on the use of Slepian sequences, finite-length
sequences that represent the space of band-limited signals and
serve as the basis functions for PWC control fields.

V. RESULTS AND DISCUSSION

In what follows, we present our findings, starting from the
results obtained for the Toffoli- and Fredkin gate fidelities
in the idealized situation where PWC control fields act on
a single actuator qubit. We then discuss a more realistic
setting that entails filtered control fields or their leakage
away from the actuator. Finally, we also discuss the effect
that the presence of a static global magnetic field has on
the gate fidelities and gate times. To illustrate the efficiency
of our approach, we also provide comparisons of the Tof-
foli and Fredkin gate times with the gate times correspond-
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ing to their respective two-qubit counterparts—CNOT and
eSWAP.

As our target intrinsic gate fidelity for PWC control fields
we adopt 1 − 10−4 (i.e., 99.99%), which was once widely
accepted as the threshold for fault-tolerant QC [44,45]. It is
worth mentioning, however, that QC schemes with signifi-
cantly lower thresholds—with gate errors as high as 10−2—
have been proposed more recently [46]. Bearing this is
mind, we adopt 10−2 and 10−3 as our target gate errors—
corresponding to the target intrinsic gate fidelities of 99% and
99.9%, respectively—in the more realistic setting described
above.

A. Optimal PWC and filtered control fields

Our optimization of the gate fidelities shows two central
features. First, for a fixed total time t f the gate fidelities
depend significantly on the total number Nf of pulses; they
increase upon increasing Nf (or, equivalently, decreasing the
duration T of a single pulse). Secondly, each gate has its own
characteristic shortest gate time required to reach a fidelity
close to unity, below which such fidelities are unreachable
regardless of Nf .

In particular, we find that the shortest Toffoli-gate time
required to reach an intrinsic fidelity F = 1 − 10−4 within our
approach is approximately t f = 28 J−1. The corresponding
optimal x and y PWC control fields, corresponding to Nf = 70
pulses, are depicted in Fig. 2. The shortest times required to
realize the same gate with somewhat larger gate errors of 10−3

and 10−2 are approximately 25 J−1 and 21 J−1, respectively.
It is instructive to compare the obtained Toffoli-gate

times with those of CNOT, its two-qubit counterpart. For
instance, the shortest times needed to realize CNOT on
the second- and third qubit in the same system with the
respective fidelities of 1 − 10−4 and 1 − 10−3 (i.e., the
gate errors of 10−4 and 10−3) we find to be approximately
25.1 J−1 and 17.3 J−1. Therefeore, the shortest Toffoli-gate
time within our single-shot approach compares much
more favorably to that of CNOT than is the case within
the standard decomposition-based approach, where the
optimal CNOT-gate cost of a Toffoli gate is 6 [47]. In
previous studies of single-shot gate realization, favorable

FIG. 2. Optimal piecewise-constant control fields realizing a
Toffoli gate with the fidelity F = 1 − 10−4, corresponding to Nf =
70 and t f = 28.0 J−1.

FIG. 3. Optimal piecewise-constant control fields realizing a
Fredkin gate with the fidelity F = 1 − 10−4, corresponding to Nf =
70 and t f = 31.0 J−1.

comparisons of Toffoli- and CNOT gate times were found
only in some special cases [18]. Thus, the results obtained
here can be attributed to the versatility of the Heisenberg-
exchange interaction and our adopted local-control
scenario.

As regards the Fredkin gate, the shortest time required
to realize it with an intrinsic fidelity F = 1 − 10−4 is ap-
proximately t f = 31 J−1, while the respective times needed
to realize this gate with the errors of 10−3 and 10−2 are
approximately 28 J−1 and 24 J−1. The optimal pulse sequence
corresponding to F = 1 − 10−4, with the total of Nf = 70
pulses, is depicted in Fig. 3 and has the interesting property
of being palindromic in nature.

It is worth pointing out that palindromic pulse sequences
are a common occurrence for self-inverse gates (cf. Sec. III C)
and result from specific properties of underlying Hamiltonians
under the time-reversal transformation (t → −t , Si → −Si).
Because the Toffoli gate is a self-inverse operation too, a
palindromic optimal pulse sequence could have, in princi-
ple, also been expected for this gate. Yet, our numerical-
optimization procedure apparently yields another pulse se-
quence that corresponds to a higher fidelity.

By analogy to the previously made comparison between
the Toffoli and CNOT-gate times, it is judicious to compare
the obtained Fredkin-gate times with those corresponding to
the closely related two-qubit gate—eSWAP (recall Sec. III C).
Our numerical computation shows that the shortest times
required to realize the eSWAP gates corresponding to θc =
π/6, π/4, and π/3 with an intrinsic fidelity of 1 − 10−2 are
all aproximately equal to 21 J−1. For the eSWAP-gate times
needed to reach an intrinsic fidelity of 1 − 10−3 we obtain
24 J−1 for θc = π/6 and π/4, while for θc = π/3 we get
22 J−1. Finally, those that correspond to F = 1 − 10−4 are
approximately 28 J−1 for θc = π/6, 29 J−1 for θc = π/4,
and 34 J−1 for θc = π/3. Thus the obtained Fredkin-gate
times are just slightly longer than those characteristic of
eSWAP, which is another sign of the effectiveness of our
approach.

The quantitative effect of spectral low-pass filtering of
the obtained optimal PWC control fields on the Toffoli-
and Fredkin-gate fidelities is illustrated in Figs. 4 and 5,
respectively, where the gate error corresponding to the low-
pass filtered control fields is shown. What can be inferred
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VLADIMIR M. STOJANOVIĆ PHYSICAL REVIEW A 99, 012345 (2019)

8 10 12 14 16 18 20
ω0 / J

-3

-2.5

-2

-1.5

-1

lo
g 10

(1
 - 

F f)
F = 1 - 10-4

tf / J
-1 = 28.0

FIG. 4. Logarithm of the gate error 1 − Ff that corresponds
to the low-pass filtered control fields resulting from the optimal
piecewise-constant control-pulse sequence realizing the Toffoli gate
(cf. Fig. 2). ω0 is the cutoff frequency.

from these plots is that fidelities as high as 1 − 10−3 can be
preserved for the cutoff frequencies ω0 � 16 J (Toffoli gate)
and ω0 � 23 J (Fredkin gate).

It is worthwhile to stress that for a typical range of mag-
nitudes of exchange-coupling constants in spin- and SC-qubit
systems (J/2π h̄ ∼ 20–50 MHz), the obtained cutoff frequen-
cies are well within the range achievable with state-of-the-art
AWGs [20]. Thus, low-pass filtering (recall Sec. IV C)—
which turns infinite-bandwidth optimal PWC control fields
into realistic finite-bandwidth ones—does not present an ob-
stacle to achieving high gate fidelities within our present
approach.

B. Effects of control-field leakage

The effect of control-field leakage—as quantified by the
parameter μL—on the fidelities of the Toffoli and Fredkin
gates is illustrated in Figs. 6 and 7, respectively. These results
make it possible to draw conclusions about the permissible
extent of leakage that allows the preservation of high gate
fidelities. For the Toffoli gate, our calculations show that to
retain fidelities above 1 − 10−2 (1 − 10−3) for the control-
pulse sequences optimized for the leakage-free case one needs
μL � 5 (μL � 5.5), implying that the magnitude of stray
fields on the nearest neighbor of the actuator qubit does not
exceed 0.7% (0.4%) of the original field. Similarly, in the case
of the Fredkin gate for preserving such fidelities one needs
μL � 4 (μL � 4.5). The corresponding magnitude of stray

5 10 15 20 25
ω0  / J
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-1.5
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(1
 - 

F f)

F = 1 - 10-4

tf / J
-1 = 31.0

FIG. 5. Logarithm of the gate error 1 − Ff that corresponds
to the low-pass filtered control fields resulting from the optimal
piecewise-constant control-pulse sequence realizing the Fredkin gate
(cf. Fig. 3). ω0 is the cutoff frequency.
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F = 1 - 10-4

tf / J
-1 = 28.0

FIG. 6. Toffoli-gate fidelity in the presence of control-field leak-
age away from the actuator qubit, characterized by the parameter
μL. The results correspond to the piecewise-constant control fields
optimized for the leakage-free case (Fig. 2).

fields on the qubit adjacent to the actuator does not exceed
1.8% (1.1%) of the original field.

The obtained results for the critical extent of leakage that
allows high-fidelity realization of the chosen gates should,
however, not be taken as a sign that the proposed single-shot
approach is highly sensitive to the leakage effects. Namely,
the curves in Figs. 6 and 7 show the obtained results for the
gate fidelities in the presence of leakage, but those results
correspond to the control-pulse sequences optimized for the
leakage-free case, where the relevant control Hamiltonian is
the one given by Eq. (9). Therefore, they should merely be
viewed as benchmark curves, to be used for extracting the
actual (system- and gate-specific) value of the leakage param-
eter μL = μ∗

L. This can be done by comparing the relevant
benchmark curve with the fidelity obtained by experimentally
running the relevant optimal pulse sequence.

The in situ leakage-parameter retrieval of the kind de-
scribed above should be viewed as the first step in any realistic
application of the single-shot approach in the local-control
setting. Its second step should entail finding another pulse
sequence, this time optimized in the presence of leakage,
i.e., assuming that the system dynamics are governed by the
control Hamiltonian given by Eq. (11), with the previously
extracted value μL = μ∗

L of the leakage parameter. This opti-
mization can be carried out using the same approach as in the
absence of leakage (cf. Sec. IV B). As our explicit numerical
calculations demonstrate, very high fidelities are achievable
even for those values of μL whose corresponding fidelities

2 3 4 5 6 7
μL

0.8

0.85

0.9

0.95

1

F L

F = 1 - 10-4

tf / J
-1 = 31.0

FIG. 7. Fredkin-gate fidelity in the presence of control-field leak-
age away from the actuator qubit, characterized by the parameter
μL. The results correspond to the piecewise-constant control fields
optimized for the leakage-free case (Fig. 3).
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in the two benchmark curves significantly deviate from unity.
Interestingly, the corresponding gate times are similar to, and
in some cases even shorter, than their counterparts in the
leakage-free case.

For instance, in the case of the Toffoli-gate realization with
μ∗

L = 3.25, where the corresponding fidelity in the benchmark
curve (Fig. 6) is rather low, more precisely slightly below
0.8, our calculation shows that the fidelity of 1 − 10−3 can
be obtained within approximately 23 J−1. This is actually a
shorter gate time than that required for the same fidelity in
the leakage-free case (25 J−1). Similarly, in the Fredkin-gate
realization with μ∗

L = 3.5, where the relevant fidelity in the
curve of Fig. 7 is around 0.98, a fidelity as high as 1 − 10−4

can be obtained with the gate time of approximately 28 J−1,
significantly shorter than 31 J−1 in the absence of leakage.
These results clearly indicate that our proposed two-step pro-
cedure constitutes an efficient scheme for achieving high gate
fidelities even in the presence of a substantial control-field
leakage away from the actuator qubit. While it was already
stated that the presence of leakage does not invalidate the
theoretical (Lie-algebraic) basis for the local-control approach
(recall the discussion in Sec. III A), our numerical findings
strongly suggest that it also does not diminish the potential
practical effectiveness of this approach.

C. Effects of a global magnetic field

In addition to the results obtained in the case of the
isotropic-Heisenberg drift Hamiltonian Hd of Eq. (8), it is
of interest to also analyze the effect that the presence of
a residual global magnetic field has on the gate fidelities
and the corresponding gate times. This situation is described
by the extended drift Hamiltonian Hd,m of Eq. (10), where
the strength of a static Zeeman-type magnetic field in the z
direction is parameterized by �. The numerical procedure
utilized to optimize the gate fidelities over control-field am-
plitudes is exactly the same as in the field-free case (cf.
Sec. IV B).

The approximate Toffoli- and Fredkin-gate times corre-
sponding to the target intrinsic fidelities of 1 − 10−2 and
1 − 10−3, obtained for a wide range of values for �/J , are
summarized in Table I. For both three-qubit gates under con-
sideration and both stated target values of the corresponding
fidelities, the obtained gate times show an apparent non-
monotonic behavior with increasing �/J and do not deviate
significantly from their counterparts found in the absence
of the external field. Interestingly, for the target fidelity of
1 − 10−2, the shortest Toffoli and Fredkin gate times are quite
similar and obtained for the same values of �/J (�/J =
0.3, 0.6, 1.0). This is no longer the case for the higher target
fidelity of 1 − 10−3, where the shortest obtained times for the
Toffoli and Fredkin gates correspond to different (nonzero)
field strengths.

D. Comparison to other approaches for realizing
conditional gates

It is instructive to compare the present approach to realiz-
ing the Toffoli and Fredkin gates in Heisenberg-coupled qubit
arrays to some recent related works.

TABLE I. Approximate Toffoli and Fredkin gate times in the
presence of a global magnetic field quantified by �.

Toffoli-gate time [J−1] Fredkin-gate time [J−1]

�/J F = 1 − 10−2 F = 1 − 10−3 F = 1 − 10−2 F = 1 − 10−3

0 21 25 24 28
0.1 21 29 24 33
0.2 21 27 25 34
0.3 18 25 20 29
0.4 22 25 26 29
0.5 21 26 24 25
0.6 19 27 19 30
0.7 19 28 20 29
0.8 22 28 24 36
0.9 21 22 23 36
1.0 19 30 19 31
1.1 20 25 20 30
1.5 18 27 23 29

An efficient scheme has recently been proposed for re-
alizing these conditional three-qubit gates in a SC circuit
that comprises two qubits and one qutrit (a three-level gen-
eralization of a qubit) and effectively represents an XXZ
Heisenberg chain [48]. That scheme is, in fact, more general
and apart from those two gates can implement in principle any
controlled-controlled unitary operation. The latter are exem-
plified by the double-controlled holonomic single-qubit gate,
based on the idea of holonomic quantum computation [49]—a
general framework for building universal sets of robust gates
using non-Abelian geometric phases. While holonomic gates
were originally envisioned to be adiabatic, the scheme in
Ref. [48] implements them in a nonadiabatic fashion [50].

One obvious common denominator of the present work,
based on the optimal-control theory, and the scheme proposed
in Ref. [48] is their increased robustness to noise compared to
the conventional control protocols. While here this robustness
stems from the reduced number of actuator qubits (local
control), in the latter scheme it originates from the geomet-
ric character of holonomic gates. In particular, nonadiabatic
implementations [51,52] of holonomic gates generally lead to
shortened gate times and thereby alleviate the loss of coher-
ence (due to exposure to open-system effects) that typically
hampers their adiabatic counterparts. The same effect that can
also be achieved using an approach that became known as the
shortcut to adiabaticity [53–55].

Generally speaking, it is conceivable that the approaches
based on optimal-control theory and shortcuts to adiabaticity
can even be combined into a unified framework. This boils
down to the fundamental open question as to whether it is pos-
sible to connect the Lewis-Riesenfeld invariants [53]—used
for shortcuts to adiabaticity—with the Pontryagin maximum
principle [56] that forms the basis of optimal-control theory.
If such a connection proves to be viable, this would allow one
to combine the advantages of both approaches.

VI. OUTLOOK: OPEN-SYSTEM EFFECTS

As hinted in Sec. III A an all-encompassing approach to the
gate-optimization problem at hand necessitates the inclusion
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of open-system effects, i.e., the unavoidable decoherence-
induced noise. Here we provide a general assessment of this
problem and briefly explain one possible approach for its
quantitative treatment.

Regardless of the specific character of the qubit array
and its environment (Markovian or non-Markovian), optimal-
control-based gate synthesis with the inclusion of open-
system effects is, generally speaking, computationally very
expensive. This stems from the need to simulate quantum
dynamics in a high-dimensional Hilbert space [57,58]. For
instance, in Ref. [58] such a study was carried out for
small qubit systems with Heisenberg-type exchange coupling,
which interact with either Markovian or non-Markovian envi-
ronments. This study concluded that control fields optimized
in the absence of the environment (closed system) remain
the optimal ones in the Markovian case provided that the
decoherence is sufficiently uniform and weak to be viewed
as a perturbation of the unitary evolution. On the other hand,
such pre-optimized fields were found to perform poorly in the
non-Markovian case, thus underscoring the importance of an
accurate characterization of the system-environment coupling
for high-fidelity gate realizations.

While a full-fledged gate optimization in the open-system
scenario is a rather difficult problem, a somewhat simpler task
is to quantify how a gate-specific pulse sequence optimized
for a closed system performs in the presence of decoherence-
induced noise. This naturally entails the notion of the average
state fidelity, which for a generic N-qubit system is defined
as

F̄ = 2−N
∑

k

√∣∣〈ψk| ρfin
k |ψk〉

∣∣. (16)

Here |ψk〉 (k = 1, . . . , 2N ) are the (normalized) computational
basis states of the system, while ρfin

k is the density matrix
at the end of a nonunitary evolution (i.e., at t = tg, where
tg is the time required for a high-fidelity realization of the
concrete gate) that starts with the system in the pure state |ψk〉.
In other words, ρfin

k ≡ ρ(t = tg), where ρ(t ) is the density
matrix of the system which satisfies the initial condition ρ(t =
0) = |ψk〉〈ψk|. In the framework of the quantum operation
formalism [15], this density matrix can be written in the form
of a sum over Kraus matrices of the system [59].

The Kraus matrices of a qubit array are given by the
tensor products of those representing individual qubits. To
construct these single-qubit matrices one ought to adopt a
specific model for the decoherence-induced noise. In one of
the widely used models [60], a qubit is represented by the
lowest two number states of a linear harmonic oscillator and
the environment as a collection of multimode oscillators. A
qubit is subject to two noise processes, namely the amplitude
and phase damping, each characterized by its own damping
rate—the respective inverses of the amplitude-relaxation (T1)
and dephasing (T2) times. The latter, usually similar in mag-
nitude, are often assumed to be approximately the same and
represented by the unique coherence time T .

On quite general grounds, assuming that the decoherence-
induced errors are mutually independent, the average state
fidelity can be expected to be approximately given by F̄ ≈
F exp(−tg/T ), where F is the intrinsic fidelity. In cases where

the achievable gate times are much shorter than the coherence
time (tg � T ), the last expression simplifies to F̄ ≈ F [1 −
(tg/T )]. Unsurprisingly, such linear dependence of F̄ on tg/T
was predicted, for example, in a theoretical proposal for an
avoided-crossing-based Toffoli and Fredkin gates in a system
of three coupled SC transmon qubits [21].

As far as the system at hand is concerned, the characteristic
times that we obtained for high-fidelity realizations of Toffoli
and Fredkin gates are at most around 30 J−1. For typical
magnitudes of exchange-coupling constants in state-of-the-art
SC- and spin-qubit systems (cf. Sec. V A) this amounts to the
approximate gate times tg ∼ 90–240 ns. On the other hand,
typical coherence times in both of these classes of solid-state
QC platforms are nowadays of the order of several tens-of-
microseconds. Therefore, the condition tg � T is fulfilled in
physical systems of relevance for the present investigation.
In accordance with the reasoning mentioned above, this last
conclusion also implies that one can expect to extract the
linear dependence of F̄ on tg/T in future studies that will take
into account the open-system effects.

VII. SUMMARY AND CONCLUSIONS

To summarize, we investigated the feasibility of single-shot
realizations of the Toffoli and Fredkin gates in qubit arrays
with Heisenberg-type coupling between adjacent qubits. In
doing so, we fully exploited the local controllability of this
system, i.e., the fact that it is rendered completely controllable
via a Zeeman-like control of a single actuator qubit. This
control setting does not only reduce the burden of finding
the optimal control fields—by lowering their number—but is
also desirable because it alleviates the debilitating effects of
decoherence. The present study incorporated two important
practical issues of relevance for gate realizations: a finite-
frequency range of realistic control fields and their leakage
away from the actuator. It was demonstrated that none of
these two ingredients presents an obstacle to realizing the
Toffoli- and Fredkin gates with high fidelities required for
fault-tolerant quantum computing.

The synthesis of complex multiqubit gates from single- and
two-qubit building blocks proved to be quite cumbersome.
For example, four-qubit Toffoli gate employed in a recent
implementation of Grover’s search algorithm with trapped-ion
qubits [61] required as many as 11 two-qubit gates and 22
single-qubit gates. This fuels the need for alternative gate-
synthesis approaches that avoid the use of such decomposi-
tions [62]. The present work constitutes an attempt in this
direction, specifically devoted to systems with Heisenberg-
type exchange interaction between adjacent qubits. In par-
ticular, our findings regarding the efficient single-shot real-
ization of the three-qubit Toffoli gate may facilitate future
applications of this gate in measurement-free quantum error
correction in this type of systems [64,65] Likewise, the pro-
posed single-shot Fredkin gate may prove beneficial in the
context of recently investigated universal quantum compu-
tation utilizing continuous-variable bosonic cavity modes in
three-dimensional circuit-QED architecture, where the central
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physical mechanism behind entangling such modes is an
engineered exchange interaction [28].

In conclusion, fast and accurate realizations of quantum
gates remain one of the crucial ingredients toward attaining
the overarching goal of universal quantum computation [3].
The present work, which can be generalized to more com-
plex (e.g., higher-dimensional) qubit networks [63], seems
to indicate that the use of the single-shot approach could
significantly alleviate the burden on control-generating hard-
ware in future experimental realizations of multiqubit gates. It

will hopefully foster further experimental applications of this
methodology.

ACKNOWLEDGMENTS

The author acknowledges useful discussions during pre-
vious collaborations on related topics with R. Heule, D.
Burgarth, C. Bruder, and T. Tanamoto. This work was partially
supported by the Serbian Ministry of Science, Project No.
171027.

[1] See, e.g., C. Monroe and J. Kim, Science 339, 1164 (2013); M.
H. Devoret and R. J. Schoelkopf, ibid. 339, 1169 (2013); D. D.
Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R.
Petta, ibid. 339, 1174 (2013).

[2] R. Barends et al., Nature (London) 508, 500 (2014); T. F.
Watson et al., ibid. 555, 633 (2018).

[3] J. Preskill, Quantum 2, 79 (2018).
[4] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[5] For a review, see C. Kloeffel and D. Loss, Annu. Rev. Condens.

Matter Phys. 4, 51 (2013); R. Hanson, L. P. Kouwenhoven, J. R.
Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys.
79, 1217 (2007).

[6] D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta,
Phys. Rev. Appl. 6, 054013 (2016).

[7] M. Veldhorst et al., Nature (London) 526, 410 (2015).
[8] S. E. Rassmussen, K. S. Christensen, and N. T. Zinner,

arXiv:1808.09881.
[9] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B.

Whaley, Nature (London) 408, 339 (2000).
[10] J. Levy, Phys. Rev. Lett. 89, 147902 (2002).
[11] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys. Rev.

Lett. 85, 1758 (2000).
[12] S. G. Schirmer, I. C. H. Pullen, and P. J. Pemberton-Ross, Phys.

Rev. A 78, 062339 (2008).
[13] X. Wang, D. Burgarth, and S. G. Schirmer, Phys. Rev. A 94,

052319 (2016).
[14] R. Heule, C. Bruder, D. Burgarth, and V. M. Stojanović, Phys.
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