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Regularized maximal fidelity of the generalized Pauli channels

Katarzyna Siudzińska
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We consider the asymptotic regularization of the maximal fidelity for the generalized Pauli channels, which
is a problem similar to the classical channel capacity. In particular, we find the exact formulas for the extremal
channel fidelities and the maximal output ∞-norm. For wide classes of channels, we show that these quantities
are weakly multiplicative. Finally, we find the regularized maximal fidelity for the channels satisfying the time-
local master equations.
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I. INTRODUCTION

The noisiness of a quantum channel is characterized by its
capacity, which determines the maximal amount of quantum
information that it can reliably transmit. Finding the channel
capacity is still an open problem, even in the simplest case of
the classical capacity

C(�) = lim
n→∞

1

n
χ (�⊗n), (1)

given in terms of the Holevo capacity χ [1,2] of the channel
�. This is the case because calculating the Holevo capacity
requires finding the maximal value of the entropic expression

χ (�) = max
{pk ,ρk}

[
S

(∑
k

pk�[ρk]

)
−

∑
k

pkS(�[ρk])

]
(2)

over ensembles of states ρk and their probabilities of occur-
rence pk . The problem of finding the classical capacity simpli-
fies significantly for unitarily covariant quantum channels, for
which C(�) = χ (�) as long as the minimal output entropy
Smin(�) is additive [3,4]. The additivity of Smin(�) was first
showed by King for unital qubit channels [5] and depolarizing
channels [6].

Recently, Ernst and Klesse [7] proposed a toy prob-
lem that is structurally similar to finding the classical ca-
pacity. Namely, their goal is to determine the asymptotic
regularization

f (∞)
max (�) = lim

n→∞
n
√

fmax(�⊗n) (3)

of the maximal channel fidelity fmax, which measures the
distortion of states under the action of the channel. It turns
out that there is a relation between f (∞)

max (�) and the maximal
output ∞-norm ν∞(�), which is a measure of the optimal
output purity. Moreover, if the maximal output ∞-norm is
weakly multiplicative, then f (∞)

max (�) = ν∞(�).
Our goal is to analyze the regularized maximal fidelity for

the generalized Pauli channels. For these channels, we find
the exact formulas for the extremal values of the channel
fidelity on pure input states and the maximal output ∞-norm.
We derive the formula for ν∞(�), which is reached on the

projectors onto the mutually unbiased bases vectors. This fact
was proven by Nathanson and Ruskai [8]. Next, we show
the weak multiplicativity of ν∞(�) for certain families of
channels. Finally, we find the regularized maximal fidelity for
a wide class of the generalized Pauli channels.

II. GENERALIZED PAULI CHANNELS

The generalized Pauli channels were first considered by
Nathanson and Ruskai [8] as the Pauli diagonal channels
constant on axes. Ohno and Petz [9] analyzed even more gen-
eral channels, of which the generalized Pauli channels are the
special case with the commutative subalgebras {I,U k

α | k =
1, . . . , d − 1}. Their applications range between the quantum
process tomography [10], optimal parameter estimation [11],
and geometrical quantum mechanics [12]. In the theory of
open quantum systems and non-Markovian dynamics, the
channels were analyzed in both the time-local [13,14] and
memory kernel approaches [15]. In the present paper, we
focus on their other properties, like state distortion and purity.

When constructing the generalized Pauli channels, one
considers the d-dimensional Hilbert space H with the max-
imal number N (d ) = d + 1 of mutually unbiased bases
{ψ (α)

0 , . . . , ψ
(α)
d−1} [16,17]. Let us recall that the bases are

mutually unbiased if their vectors satisfy the following
conditions:〈

ψ
(α)
k

∣∣ψ (α)
l

〉 = δkl ,
∣∣〈ψ (α)

k

∣∣ψ (β )
l

〉∣∣2 = 1

d
, α �= β. (4)

The generalized Pauli channels � : B(H) → B(H) are de-
fined by [8,13]

� = d p0 − 1

d − 1
1l + d

d − 1

d+1∑
α=1

pα
α, (5)

where pα denotes the probability distribution, 1l is the identity
channel,


α[X ] =
d−1∑
k=0

P(α)
k XP(α)

k , (6)
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KATARZYNA SIUDZIŃSKA PHYSICAL REVIEW A 99, 012340 (2019)

and P(α)
k := |ψ (α)

k 〉〈ψ (α)
k | is a rank-1 projector. For d = 2,

Eq. (5) reduces to the Pauli channel

� =
3∑

α=0

pασαρσα, (7)

where σ0 = I, σ1, σ2, σ3 are the Pauli matrices.
The generalized Pauli channels satisfy the eigenvalue

equations

�
[
U k

α

] = λαU k
α , k = 1, . . . , d − 1, (8)

and �[I] = I. In the above equation, the eigenvectors are
the unitary operators constructed from the projectors onto the
mutually unbiased bases vectors,

U k
α =

d−1∑
l=0

ωklP(α)
l , (9)

with ω = e2π i/d . The eigenvalues λα are (d − 1)-times degen-
erate, and they are related to the probability distribution via

λα = 1

d − 1
[d (p0 + pα ) − 1]. (10)

The inverse relation reads

p0 = 1

d2

[
1 + (d − 1)

d+1∑
α=1

λα

]
, (11)

pα = d − 1

d2

⎡⎣1 + dλα −
d+1∑
β=1

λβ

⎤⎦. (12)

The necessary and sufficient conditions for the generalized
Pauli channel to be a completely positive and trace-preserving
map are the generalized Fujiwara–Algoet conditions [8,18,19]

− 1

d − 1
�

d+1∑
β=1

λβ � 1 + d min
β

λβ. (13)

III. CHANNEL FIDELITY

The fidelity is a measure of distance between two quantum
states [19–21]. It helps us to determine how distinguished the
states are from one another. Uhlmann [22] defined the fidelity
between the density operators ρ and σ by

F (ρ, σ ) :=
(

Tr
√√

ρσ
√

ρ
)2

, (14)

where 0 � F (ρ, σ ) � 1 and F (ρ, σ ) = 1 if and only if ρ =
σ . On the basis of this simple formula, many other types
of fidelity were derived, like the entanglement fidelity [23],
average fidelity [24], or regularized maximum pure state
input-output fidelity [7]. One can also introduce the notion
of channel fidelity F (ρ,�[ρ]), which measures the fidelity
between the input ρ and output �[ρ] states [25]. One defines
the minimal and maximal channel fidelity on pure input
states [26] by

fmin(�) = min
P

F (P,�[P]) = min
P

Tr(P�[P]),

fmax(�) = max
P

F (P,�[P]) = max
P

Tr(P�[P]),
(15)

where P are rank-1 projectors. They measure how much a
given quantum channel can distort an initial state. The more
� resembles the identity channel 1l, the less ρ changes under
a single action of the channel. However, the maximal fidelity
fmax(�) = 1 does not imply � = 1l, as the maximal value is
also reached, e.g., for �[ρ] = P0Trρ with P0 being a fixed
rank-1 projector.

Because of its concavity, the minimal value of F (ρ,�[ρ])
for mixed inputs is reached at pure states, and therefore
fmin(�) is the minimal channel fidelity for mixed states.
There is no similar relation for the maximal channel fidelity,
as maxρ F (ρ,�[ρ]) = F (ρ∗,�[ρ∗]) = 1, where ρ∗ := I/d is
the state invariant under �.

Theorem 1. For the generalized Pauli channel � defined by
Eq. (5), the minimal and maximal channel fidelities on pure
input states are equal to

fmin(�) = 1

d
[1 + (d − 1)λmin], (16)

fmax(�) = 1

d
[1 + (d − 1)λmax], (17)

where λmax = maxα λα and λmin = minα λα .
Proof. To calculate the channel fidelity, we need to know

how � transforms pure initial states. Any rank-1 projector
P can be written in the unitary basis {I,U k

α } introduced in
Eq. (9). Namely,

P = 1

d

(
I +

d+1∑
α=1

d−1∑
k=1

xαkU
k
α

)
, (18)

where xαk are complex parameters. Now, we find that

�[P] = 1

d

[
I +

d+1∑
α=1

d−1∑
k=1

λαxαkU
k
α

]
, (19)

which allows us to obtain the channel fidelity for the general-
ized Pauli channels,

F (P,�[P]) = Tr(P�[P]) = 1

d

(
1 +

d+1∑
α=1

λα

d−1∑
k=1

|xαk|2
)

.

(20)

Recall that P is a rank-1 projector, and hence

TrP2 = 1

d

(
1 +

d+1∑
α=1

d−1∑
k=1

|xαk|2
)

= 1, (21)

where we used the fact that U k
α are traceless and mutually

orthogonal. The above condition is equivalent to

d+1∑
α=1

d−1∑
k=1

|xαk|2 = d − 1. (22)

Therefore, F (P,�[P]) reaches its minimal and maximal val-
ues if the only nonvanishing coefficients are xα∗k and xα#k ,
respectively, where λα∗ = λmin and λα# = λmax. The minimal
and maximal channel fidelities are reached at the projectors
onto the mutually unbiased bases vectors,

fmin(�) = F
(
P(α∗ )

k ,�
[
P(α∗ )

k

])
, (23)
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fmax(�) = F
(
P(α# )

k ,�
[
P(α# )

k

])
, (24)

where, from Eq. (9),

P(α)
k = 1

d

(
I +

d−1∑
l=1

ω−klU l
α

)
. (25)

�
Remark 1. The minimal and maximal channel fidelities

from Theorem 1 can be equivalently written in terms of the
probability distribution pα as

fmin(�) = p0 + min
α>0

pα, (26)

fmax(�) = p0 + max
α>0

pα. (27)

IV. MAXIMAL OUTPUT p-NORM

Quantum channels � transform input states ρ into output
states �[ρ]. While it is relatively easy to control the input, the
attainable output states depend on the channel’s properties. In
particular, it is not always possible to find such ρ for which
�[ρ] is pure. In these cases, one can ask how close the outputs
are to pure states. This is measured by optimal output purity
measures. One such measure is the maximal output p-norm
defined as follows:

νp(�) := max
P

‖�[P]‖p, (28)

where the Schlatten p-norm reads

‖�[P]‖p := (Tr�[P]p)1/p, 1 � p < ∞, (29)

‖�[P]‖∞ := max
Q

Tr(Q�[P]), (30)

and Q is a rank-1 projector. For product channels, it is known
that

νp(� ⊗ 
) � νp(�)νp(
). (31)

The maximal output p-norm is multiplicative if

νp(� ⊗ 
) = νp(�)νp(
) (32)

and weakly multiplicative if the above equality is satis-
fied only for 
 = �. Fukuda [27] proved that, if Eq. (32)
is satisfied for all 
 : Id1/d1 �−→ Id2/d2, then it holds for
any 
.

Nathanson and Ruskai [8] derived the exact formula for the
maximal output 2-norm of the generalized Pauli channel,

ν2(�) =
√

1

d

[
1 + (d − 1) max

α
λ2

α

]
. (33)

They also conjectured that the maximal output p-norm is
achieved on the projectors P(α)

k onto the mutually unbiased
bases vectors and proved it for two special cases: p = 2 and
p = ∞. Indeed, the maximal value of ‖�[P]‖2 is reached
at P(α0 )

k , where α0 numbers the eigenvalue whose module
is maximal. Finally, Nathanson and Ruskai [8] showed that
ν2(� ⊗ 
) is multiplicative for the generalized Pauli channels
� (with arbitrary 
). From the multiplicativity of ν2(�),
it follows that the maximal channel fidelity can be weakly
multiplicative.

Proposition 1. Assume that the generalized Pauli channel
has nonnegative eigenvalues λα � 0. Then, its maximal chan-
nel fidelity on pure input states is weakly multiplicative in the
sense that

fmax(� ⊗ �) = f 2
max(�). (34)

Proof. Note that every generalized Pauli channel � with
non-negative eigenvalues can be written as the composition

� = �′†�′ (35)

of the generalized Pauli channel �′ and its adjoint �′† defined
by Tr(X�′[Y ]) =: Tr(�′†[X ]Y ). This is possible under the
condition that the eigenvalues λ′

α = √
λα . Next, observe that

the maximal output 2-norm in Eq. (33) and the maximal
channel fidelity in Theorem 1 are related via

ν2
2 (�′) = fmax(�′†�′). (36)

Finally, from the multiplicativity of the maximal output 2-
norm, it follows that

fmax(�) = ν2
2 (�′) = ν2(�′ ⊗ �′) =

√
fmax(� ⊗ �). (37)

�
Remark 2. The maximal output 2-norm ν2(�) and the

maximal channel fidelity on pure input states fmax(�) are
attained at the same state P(α# )

k if and only if λα � 0, where
λα# = maxα λα .

Now, we derive the formula for the maximal output ∞-
norm.

Proposition 2. For the generalized Pauli channel �, the
maximal output ∞-norm is given by

ν∞(�) = max
P,Q

Tr(Q�[P])

= 1

d
max{1 + (d − 1)λmax, 1 − λmin}, (38)

where λmax = maxα λα and λmin = minα λα .
Proof. To calculate Tr(Q�[P]) for the generalized Pauli

channel �, let us parametrize the projectors P, Q by Eq. (18)
and

Q = 1

d

(
I +

d+1∑
α=1

d−1∑
k=1

yαkU
k
α

)
. (39)

Note that the condition 0 � TrPQ � 1 is equivalent to

−1 �
d+1∑
α=1

d−1∑
k=1

xαkyαk � d − 1. (40)

Moreover, from Eq. (19), it follows that

Tr(Q�[P]) = 1

d

[
1 +

d+1∑
α=1

d−1∑
k=1

λαxαkyαk

]
. (41)

The maximal value of the above quantity is reached when
xαk = yαk = 0 for α �= α∗.

(1) If λα∗ � 0, then the maximal value

max
P,Q

Tr(Q�[P]) = 1

d

[
1 + λα∗

d−1∑
k=1

xα∗kyα∗k

]
(42)
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of Eq. (41) is attained for the maximal bound of Eq. (40),

d−1∑
k=1

xα∗kyα∗k = d − 1, (43)

and λα∗ = λmax. In this case,

max
P,Q

Tr(Q�[P]) = 1

d
[1 + (d − 1)λmax]. (44)

From the results for 2-norms, we know that the above formula
corresponds to the choice

Q = P = P(α∗ )
k = 1

d

(
I +

d−1∑
l=1

ω−klU l
α∗

)
. (45)

(2) If λα∗ � 0, then the maximal value

max
P,Q

Tr(Q�[P]) = 1

d

[
1 − |λα∗ |

d−1∑
k=1

xα∗kyα∗k

]
(46)

of Eq. (41) is attained for the minimal bound of (40),

d−1∑
k=1

xα∗kyα∗k = −1, (47)

and λα∗ = λmin. In this case,

max
P,Q

Tr(Q�[P]) = 1
d [1 − λmin]. (48)

The projectors P and Q that maximize Eq. (41) are as follows:

P = P(α∗ )
k = 1

d

(
I +

d−1∑
l=1

ω−klU l
α∗

)
, (49)

Q = P(α∗ )
m = 1

d

(
I +

d−1∑
l=1

ω−mlU l
α∗

)
, (50)

where k �= m.
�

Let us compare our results with the analysis done for the
Pauli channels in Ref. [7]. For d = 2, Eq. (38) produces

ν∞(�) = max
P,Q

Tr(Q�[P]) = 1
2 max{1 + λmax, 1 − λmin}.

(51)

In terms of the probability distribution,

ν∞(�) = 1
2 (1 + λmax) = p0 + pmax, (52)

provided that λmax + λmin � 0. Now, Tr(Q�[P]) reaches the
maximal value for P = Q = P(α∗ )

0 or P = Q = P(α∗ )
1 , where

λmax = λα∗ . Note that

λmax + λmin = p0 − pmid � 0, (53)

where pmin � pmid � pmax and {pmin, pmid, pmax} =
{p1, p2, p3}. On the other hand,

ν∞(�) = 1
2 (1 − λmin) = pmid + pmax (54)

only when λmax + λmin � 0, i.e., p0 − pmid � 0. This time,
the maximum of Tr(Q�[P]) is reached for {P = P(α∗ )

0 , Q =
P(α∗ )

1 } or {P = P(α∗ )
1 , Q = P(α∗ )

0 }, where λmin = λα∗ . These
results coincide with the maximal output ∞-norms for the
Pauli channels found in Ref. [7].

V. ASYMPTOTIC REGULARIZATIONS
OF THE CHANNEL FIDELITY

After Ernst and Klesse [7], we introduce the nth regulariza-
tion of the maximal channel fidelity on pure input states and
the maximal output p-norm,

f (n)
max(�) = n

√
fmax(�⊗n), (55)

ν (n)
p (�) = n

√
νp(�⊗n). (56)

In particular, one talks about the asymptotic regularization if
n = ∞. The authors consider the asymptotic regularization of
the maximal channel fidelity as a toy model in the channel
capacity problem. They prove the following relation:

fmax(�) � ν∞(�) � ν (∞)
∞ (�) = f (∞)

max (�). (57)

From this formula and Proposition 1, there follow the corol-
laries below:

Corollary 1. If λα � 0, then f (n)
max(�) is weakly

multiplicative, and hence

f (n)
max(�) = fmax(�), n = 1, 2, . . . ,∞. (58)

In particular,

fmax(�) = ν∞(�) = ν (∞)
∞ (�) = f (∞)

max (�). (59)

Corollary 2. For λmax � − 1
d−1λmin, the maximal output

∞-norm and the maximal channel fidelity coincide, ν∞(�) =
fmax(�). If additionally λmin � 0, then ν∞(�) is weakly
multiplicative.

In the theory of open quantum systems, the evolution
is given by dynamical maps �(t )—that is, the families of
quantum channels parametrized by time t � 0. Assume that
�(t ) is the solution of the master equation

�̇(t ) = L(t )�(t ), �(0) = 1l, (60)

with the time-local generator L(t ). An important property of
such a dynamical map is that its eigenvalues are non-negative,
λα (t ) � 0. It is easy to check that λα (t ) satisfy the inequalities
in Corollaries 1 and 2. Therefore, the generalized Pauli chan-
nels being the solutions of Eq. (60) are good examples of the
quantum channels for which the maximal channel fidelity on
pure input states and the maximal output ∞-norm are weakly
multiplicative.

VI. CONCLUSIONS

We analyzed the channel fidelity for the generalized Pauli
channels, which is the measure of distortion between input
and output states. We found general analytical formulas for
the minimal and maximal channel fidelity on pure input states
and showed that the latter satisfies the weak multiplicativity
conjecture for some classes of the generalized Pauli channels.
Next, we focused our attention on the matter of purity of
the output states, which is measured by the maximal output
p-norm. For p = ∞, we derived the exact formula for the
maximal output norm, and we also showed that it can be
weakly multiplicative. Finally, we analyzed the regularized
maximal channel fidelity on pure inputs, which is technically
simpler than the channel capacity problem. It turns out that our
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results lead to interesting implications in the theory of open
quantum systems. Namely, if the generalized Pauli channel
is generated by the time-local generator, then its maximal
channel fidelity on pure states and maximal output ∞-norm
are both weakly multiplicative.

Many questions still remain unanswered. It would be in-
teresting to determine whether the extremal channel fidelities
and the maximal output ∞-norm are weakly multiplicative
for the whole spectrum of eigenvalues λα . Also, one might
wonder whether the channel fidelity for mixed states reaches
its maximal value on pure states, which is known to be the
case for its minimal value. The behavior of the regularized
channel fidelities for n < ∞ requires further studies. Other
open questions include the characterizations of the Holevo-

like quantity [28]

χ̃1/2(�) := min
σ

max
ρ

ln(F (σ,�[ρ])), (61)

as well as the minimum entanglement fidelity [29,30]

f ent
min(�) := min

P∈B(H2 )
F (P, (1l1 ⊗ �)[P]), (62)

where � is the generalized Pauli channel on B(H2), and 1l1 is
the identity channel on B(H1).
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