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Recovering noise-free quantum observables
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We introduce a technique for recovering noise-free observables in noisy quantum systems by combining the
results of many slightly different experiments. Our approach is applicable to a variety of quantum systems,
but we illustrate it with applications to quantum information and quantum sensing. The approach corresponds
to repeating the same quantum evolution many times with known variations on the underlying systems’ error
properties, e.g., the spontaneous emission and dephasing times T1 and T2. As opposed to standard quantum error
correction methods, which have an overhead in the number of qubits (many physical qubits must be added for
each logical qubit), our method has only an overhead in the number of evaluations, allowing the overhead to, in
principle, be hidden via parallelization. We show that the effective spontaneous emission T1 and dephasing T2

times can be increased using this method in both simulation and experiments on an actual quantum computer.
We also show how to correct more complicated entangled states and how Ramsey fringes relevant to quantum
sensing can be significantly extended in time.
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I. INTRODUCTION

Quantum information science is rapidly evolving due to
advances in quantum computing, communication, and sens-
ing. Quantum computing, for example, has the potential for
exponential speedup in areas such as prime number factoring
[1] and quantum chemistry [2], and quantum sensing has the
potential to be far more sensitive than classical sensing [3]. In
most cases, however, decoherence or information loss can im-
pede progress. Quantum error correction can extend the quan-
tum information lifetime by encoding a single logical qubit
into many physical qubits [4] but introduces space and time
overheads owing to additional physical qubits and gate oper-
ations. Furthermore, it is unclear how standard quantum error
correction could be used in complicated quantum sensors.

Here, we describe a technique for recovering observables
from a quantum evolution by repeating the evolution with
slightly different noise characteristics and combining those
results to obtain an estimate of the noise-free answer with-
out need of additional quantum hardware. Our approach
bears similarities with interesting work by Gambetta and co-
workers [5,6] as well as Li and Benjamin [7] and Endo et al.
[8], involving one global noise parameter (based on tunable
error properties of gates) and Richardson extrapolation. It
represents a multidimensional generalization not reliant on
Richardson extrapolation that can also use the underlying
error properties of quantum systems in cases where there is
not a tunable global noise source and is thus applicable to a
wider range of quantum systems. We have recently used such
a simple error model to develop a different error correction
scheme that requires the ability to significantly reduce error
on individual qubits via, e.g., quantum error correction [9].
Our approach here does not rely on quantum error correction,

*otten@anl.gov
†gray@anl.gov

but requires many slightly different runs to be completed;
these can be performed in time (repeating the evolution many
times in sequence) or in parallel (many separate systems
simultaneously undergo evolution). Our approach can be used
in quantum algorithms, quantum sensing, and general quan-
tum experiments where decoherence times are too short to
obtain high-quality signals. The only requirement is that the
evolution can be repeated with different, well-characterized
noise sources.

II. METHOD

Consider a quantum system with one or more subsystems
(e.g., qubits), each undergoing one or more noise processes.
Let the set of all noise rates be {γi}. This system repeatedly
undergoes a given evolution, e.g., a sequence of quantum gates
or interaction with a magnetic field with varying values of
noise rates. Combining all results, we construct a hypersurface
embedded in a space where one axis represents the mea-
surement results and the other axes represent the noise rate
parameters. The form of the hypersurface is obtained via the
Taylor expansion of the quantum system’s evolution operator
(see Appendix A) and yields an estimate of the noise-free
observable, as well as information about the effect of each
noise rate.

For example, consider a single qubit with only amplitude
damping noise. We repeatedly apply an evolution, each time
with differing damping rates. Let γ

[j ]
1 be the damping rate

for the j th repetition, and let 〈A〉[j ] be the corresponding
measured observable. For a third order in γ1 model, solving
(via, e.g., standard least squares)⎡
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FIG. 1. Example of a “hypersurface” fit to many experiments
with slightly different noise parameters γ1 and γ2. Black points are
measurements of an observable with different noise rates. The “×”
is the noise-free result. Blue (lower), orange (middle), and green
(upper) surfaces are first-, third-, and fourth-order fits, respectively.
Many observable measurements are outside the region displayed.

for (A0, A1, A11, A111) yields 〈A〉(γ1) ≈ A0 + A1γ1 +
A11γ

2
1 + A111γ

3
1 . Here the hypersurface is just a cubic curve

with intercept A0 being the desired noise-free value. The
formalism extends to higher orders and to many noise pa-
rameters, potentially from many qubits. For example, us-
ing a single qubit with a spontaneous emission rate, γ1

and pure dephasing rate, γ2, the j th row of our matrix is
[1 γ

[j ]
1 γ

[j ]
2 (γ [j ]

1 )2 γ
[j ]
1 γ

[j ]
2 (γ [j ]

2 )2] if truncated to second
order. Figure 1 displays hypersurfaces (now two-dimensional
surfaces) for a system with two noise parameters. The × is
the noise-free solution. As model order increases, the surfaces
better fit the data and extrapolate closer to the noise-free limit.

III. RESULTS

A. Relaxation time

We first demonstrate the method for a single qubit using
a simple relaxation time experiment. We excite the qubit
into the |1〉 state, wait some time, and then measure what
state it is in; repeating many times yields the probability of
remaining in (or fractional population of) the excited state.
Due to the amplitude damping noise, the population will
decay to zero with characteristic time T1 = 1/γ1. We first
show how to recover the population in simulation where we
select random γ1 values uniformly in a range representing
T1 times between 5 and 15 μs. All simulations are numerical
solutions of the Lindblad master equation [10,11] and utilize
the high-performance open quantum systems solver QuaC
[12]. The results are shown in Fig. 2(a) where we present
best, worst, and average evolutions over 450 repetitions and
recovered populations using Eq. (1) up to tenth order. The
procedure is applied at specific times with knowledge only
of the measured observables at that time. By recovering at
many different times t , we obtain the full evolution. Every
order shown is better than the best run and increasing order
increases recovery quality. For example, at 60 μs the average
population is 0.0045, i.e., the state is almost all decayed away.
First-order recovery gives a population of only 0.017. Tenth-
order recovery gives a population of 0.90, nearly the noise-

(a)

(b)

FIG. 2. Population recovery in a relaxation time experiment.
(a) Simulated data from 450 simulations with random T1 times.
(b) Experimental results on Rigetti’s eight-qubit quantum computer
[13]. Some 45 repetitions are made at each time with experimentally
determined T1 times. The inset shows the comparison between our
noise model run with the experimentally determined T1 times and
the experimental data.

free result. If T1(n) is the time the recovered evolution has
population 1/e at order n, we see T1(n) ≈ (n + 1)T1(n = 0).

We also perform the relaxation time experiment on
Rigetti’s eight-qubit chip, Agave [13,14], a superconducting
qubit quantum computer with a ring topology. Each of the
eight qubits has slightly different T1 and T ∗

2 times, all approxi-
mately 10 μs. Furthermore, these noise characteristics drift in
time [6,15]. These features provide the necessary variation in
noise parameters for our method. We first excite a single qubit
using a Pauli-X gate, wait some time, and measure the qubit
state. This is repeated for many different wait times. Each
experiment at a given wait time is averaged over 105 shots,
giving an average population. The T1 time and associated
decay rate γ1 is extracted by fitting an exponential to the data,
weighted by the standard error of the mean of each measure-
ment. This process is repeated for each qubit in the quantum
computer, a few minutes are allowed to pass, and then the full
cycle is repeated, starting from the first qubit. This generates
many different repetitions with varying noise parameters. The
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fitted γ1 parameters are used for the recovery. To obtain the
error bars for the experimental data, the least-squares fitting
procedure was replaced with a weighted least-squares fitting
procedure, taking into account the standard error of the mean
in the determination of the populations at each separate wait
time. This process does not, however, take into account the
error on the fitted γ1 values. In principle, this could also be
included by using total least-squares or orthogonal distance
regression [16], but this is a more involved procedure.

Just as in simulation, each wait time is recovered sepa-
rately. A total of 45 different single qubit repetitions are run
with results shown in Fig. 2(b). Both first- and second-order
recoveries result in a higher population than the average,
similar to the simulations. The recovery is limited by noise
sources not included in the model, such as readout noise.
Neither first- nor second-order recovery reaches unity; in-
stead, achieving ≈0.85, roughly the average readout fidelity
(0.84) of the qubits used in the experiment. The inset of
Fig. 2(b) also shows a comparison between our Lindblad
model for the qubit and the experimental data. We ran 45
different repetitions using experimentally determined T1 times
and shifted the data down by 0.18 to account for the limited
readout fidelity in the experimental runs. The model average
and experimental averages line up very well; the first-order
recovery of the model and experimental data only agree in
the short times. Since our recovery method can only recover
from noise sources that we experimentally determine, this
implies that there could be other important noise sources that
were not included in the recovery. These could include state
preparation and measurement errors, which were only roughly
included by a shift of the data. Other sources of error could
include cross talk [13] or 1/f noise [17], which is generally
non-Markovian in nature and would not have been included
in our simple noise model. The difference between the model
and the experimental data implies that the simple T1, T2 noise
model is not entirely sufficient for describing the noise of
these qubits. Our recovery method allows one to include more
noise sources as long as they are quantifiable and can help
identify which noise sources have weak or strong effects on
the resulting observable. In our experiments, different qubits
from the same device are used at different times, minimiz-
ing potential differences between each repetition. Combining
repetitions from disparate architectures, e.g., ion-trap and
superconducting qubits, would require nontrivial additions to
the model.

As higher orders are used in the recovery, the error bars
also get larger; arbitrary order cannot be used with a limited
number of measurements. Sampling error ultimately limits
the highest order that can be used in the recovery procedure.
This is studied in detail in Ref. [8] where it is shown that
higher orders in a single parameter fit move the mean but also
increase the variance. Rather than using a new repetition to
achieve a higher-order fit, that data could have been used to
reduce the size of the error bars in a lower-order fit.

With only one noise parameter the method is similar to
Richardson extrapolation, which is able to extrapolate to the
zero-noise limit in superconducting qubits [5,6]; in this case
the methods differ only in choice of points and fitting strategy,
but the source of the variation in noise differs greatly. The
Richardson extrapolation technique assumes a single global

(a)

(b)

FIG. 3. Population recovery in Ramsey interferometry with no
background magnetic field. (a) Simulated data from 450 simulations
with random T1 and T ∗

2 times. (b) Experimental results on Rigetti’s
eight-qubit quantum computer [13]; 12 repetitions are included at
each time with experimentally determined T1 and T ∗

2 times.

noise source, which has been implemented by scaling the
length of pulses while running the quantum algorithm on the
same set of qubits [6] or, otherwise, increasing the noise [7].
The hypersurface method allows for any number of noise
sources and is a multidimensional generalization utilizing
natural variations in qubit properties. To show this, we use
Ramsey interferometry with no background magnetic field, a
common technique for measuring T2 times [18]. This involves
applying a π/2 X rotation to |0〉, waiting some time, and
then applying another π/2 X rotation. Without noise and in
a rotating frame, the final state would be |1〉. As opposed to
the relaxation time experiment, both amplitude damping and
dephasing noise affect the result. Figure 3(a) shows simulated
results of this experiment with recovery up to eighth order.
Spontaneous emission T1 and pure dephasing T ∗

2 times are
independently, randomly chosen between 5 and 15 μs with
450 simulations being run. Without recovery, the excited-state
population associated with a given γ1 = 1/T1 and γ2 = 1/T ∗

2
exponentially decays with rate 1/T2 = γ1/2 + γ2. As with
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the relaxation time experiments, first-order recovery yields a
better evolution for most points compared with even the best
run of all the qubits. As ever higher orders are considered, a
unity excited-state population is recovered for longer periods
of time.

B. Dephasing time

We also carry out Ramsey experiments on Rigetti’s eight-
qubit Agave quantum computer. To obtain correct noise rates,
γ1 and γ2, for a given repetition we first characterize T1 using
the relaxation time experiment discussed above. We then per-
form a Ramsey interferometry experiment as previously de-
scribed. The results of this experiment are fit to an exponential
to obtain T2. This allows determination of the pure dephasing
rate via γ2 = 1/T2 − 1/(2T1). Each wait time in both the T1

and the T2 determinations is averaged over 105 shots. With
both rates determined, the hypersurface method Eq. (1) is used
to recover the excited-state population at each wait time using
12 repetitions [Fig. 3(b)]. The first-order correction clearly
recovers a fraction of the missing population and approaches
the readout fidelity limit at early times.

Characterization of the noise rates and a good understand-
ing of the noise sources are imperative for our method. For
example, because of how γ2 is determined, poor determi-
nations of T1 and T2 can sometimes lead to negative γ2;
such unphysical repetitions are excluded from the recovery
analysis. Furthermore, each observable measurement 〈A〉[j ] is
assumed to be measured at a set of determined noise rates
γ [j ]. In superconducting qubit systems, noise characteristics
fluctuate over timescales in the few-minute range [6]. The
total time to determine 〈A〉[j ] (which involves the average over
shots) must be significantly smaller than this timescale. In this
paper, determination of T1 and T2 took ≈1 s, which is less than
the timescale of the fluctuations. Given that the timescale of
the longest gate on the Rigetti Agave quantum computer [13]
is on the order of 100 ns (and including the time to reinitialize
the quantum computer after a measurement is made), the total
gate depth for more complicated algorithms will be limited
and T1 and T2 would need to be characterized before each
repetition to ensure that the hypersurface equations have the
correct noise sources. As qubit quality increases, we expect
the noise rates will become both much lower and much more
stable, allowing for longer circuits to be used in this method.
In both experiments on the Rigetti quantum computer, the
correct unity excited-state population could not be recovered.
Instead, the method recovered the readout fidelity limit.

The Ramsey experiments show the strength of this method,
compared to Richardson extrapolation with a global noise
parameter. These latter methods [5,7] make use of gate noise
tuning allowing them to be used very efficiently in gate-based
quantum computation. However, in quantum systems with no
gates (e.g., quantum sensors, quantum memories, and general
quantum experiments) or if increasing all noise sources (e.g.,
T1 and T ∗

2 ) at the same rate is not easy, our approach can still
be used. In a situation where measurement of a single pulse is
important as is the case for many sensing applications, being
able to use space by having more sensors participating in the
time-sensitive sensing can increase sensitivity dramatically. In
other situations, such as measuring a background field, being

able to use either space or time offers flexibility in design of
high-sensitivity devices.

By utilizing a single global noise source, Richardson ex-
trapolation requires only a few evaluations, even for thousands
of qubits. Furthermore, using gate noise, rather than the un-
derlying physical qubit noise, the methods of Refs. [5,7] can
be effectively applied to near-term noisy quantum computers
[6]. The hypersurface method, in contrast, requires more
evaluations as the number of quantum subsystems increases.
The resource scaling is defined by the truncation order of the
Taylor series. The number of unknowns is ≈ml , where m

is the number of noise sources and l is the truncation order
(see Appendix B for exact result). Even with this polynomial
scaling, the number of unknowns can still become large with
high-order l or a large number of noise sources m. In this case,
an underdetermined system where the number of repetitions is
smaller than the number of unknowns could be solved using
numerical techniques, such as regularization [19] where we
would introduce constraints on the fit based on our knowledge
of the physics of the error channels. Nonetheless, for systems
where scaling a global noise source is infeasible, the hyper-
surface method offers error mitigation with tunable resource
cost and effectiveness. The multiparameter Taylor expansion
shown in Appendix A gives some insight into the bound on the
remaining error in the observable after applying our method;
the remaining error, for truncation order l, is on the order of
the sum of all products of all error terms, γi such that there are
l + 1 different γi terms in each product. Reference [5] derives
a formal bound in the single parameter case; a multiparameter
generalization of this would provide a more stringent bound
for our method.

C. Ramsey fringes

As a final example, we simulate Ramsey interferome-
try with a background magnetic field, a common technique
used in quantum sensing of magnetic fields [3]. Both single
qubit and entangled arrays of qubits can be used as sensors
[20]. The system is first prepared in a superposition state,
such as 1√

2
(|0〉 + |1〉) for a single qubit and a GHZ state

1√
2
(|00 · · · 0〉 + |11 · · · 1〉) for an entangled array of qubits

[3]. Single qubit superposition states can be prepared with a
Hadamard gate; GHZ states can be prepared with a Hadamard
gate and a sequence of CNOT gates. The system then evolves
in the presence of a background magnetic field, causing it
to pick up a phase. The inverse entangling operation is then
applied, transferring the phase onto a single qubit, which is
then measured. The phase accumulated over the course of the
interaction depends on magnetic-field strength and interaction
time. If the interaction time is much longer than the coherence
time, the useful information decays away, and the Ramsey
fringes will not be visible. We simulate this experiment using
both a single qubit and three entangled qubits. For each qubit,
we select a random T ∗

2 times in the range of 0.5 to 1.5 μs,
consistent with parameters for nitrogen-vacancy centers [21].
The characteristic T1 time is long enough to be ignored. We
set the background magnetic field to 10 μT and use a total
of 350 samples for both single qubit and entangled qubit
simulations. Figure 4 shows the recovery of Ramsey fringes
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FIG. 4. Ramsey fringe recovery from using 350 simulations of
three entangled qubits with random T ∗

2 times.

from a three-qubit GHZ state; the single qubit case is plotted
in Appendix C. In the three-qubit case we now have three
noise parameters, one for each qubit. The higher-order recov-
ery involves many cross terms, and the resulting hypersurface
is three dimensional. Even in this maximally entangled state,
Ramsey fringes are still recovered long after most of the
individual fringes have decayed away.

IV. CONCLUSION

The hypersurface method can be used to recover from
any incoherent errors. In this paper, we have demonstrated
recovery from both amplitude damping and pure dephasing.
Our method could also be applied to any other incoherent
error which can be parametrized by a simple noise rate which
is zero (or small) for the noise-free case. This includes multi-
qubit noise and incoherent noise from application of quantum
gates. Determination of these more complex noise rates at
the time an algorithm is run is necessary; it is still an open
question how these might be measured efficiently. Coherent
errors, such as over-rotation during the application of a gate,
cannot be clearly translated into the hypersurface method as
they are not describable by a simple noise rate.

We presented a method to recover arbitrary quantum ob-
servables by repeatedly measuring the observables with dif-
fering noise rates and fitting a hypersurface to the repeti-
tions. Including more and more repetitions and increasing
hypersurface order, an increasingly good approximation of
noise-free observables of a general quantum system can be
recovered. For many quantum systems, T1 and T ∗

2 noise are
dominant noise sources, and there are many techniques for
characterizing them. Our method recovers a good approxima-
tion of the noise-free evolution in these cases. As shown in
this paper, this method has applications in quantum computing
and quantum sensing. Further study on ways to minimize the
number of repetitions needed for higher-order recovery of a
large number of coupled quantum systems is necessary to
control the overhead of the method.
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APPENDIX A: DERIVATION

The Lindblad master equation for a general density-matrix
ρ(t ) is defined as (throughout, h̄ = 1)

dρ

dt
= −i[H, ρ] + L(ρ), (A1)

where H is the Hamiltonian of the system, describing coher-
ent evolution, and L is the Lindblad superoperator, describing
incoherent evolution, such as noise processes. Both H and L

can, generally, be time dependent. “Vectorizing” the density
matrix [22] ρ allows us to write a general solution of the
Lindblad master equation as

ρ̃(t ) = exp(−iH̃ t + L̃t )ρ̃0, (A2)

where ρ̃ is the vectorized density matrix, ρ̃0 is the initial den-
sity matrix, H̃ is the vectorized Hamiltonian, and L̃ is the vec-
torized Lindblad superoperator. See Ref. [22] for more details
about the process of vectorization. Let Ũ (t ) = exp(−iH̃ t +
L̃t ), the superoperator propagator. We can decompose the
superoperator propagator in the solution, Eq. (A2), using the
Trotter decomposition [23],

Ũ (t ) = lim
n→∞

{[
exp

(
−iH̃

t

n

)
exp

(
L̃

t

n

)]n}
, (A3)

and take the Taylor expansion of the superoperator propagator
of the Lindblad,

Ũ (t ) = lim
n→∞

{[
exp

(
−iH̃

t

n

) ∞∑
m=0

(
L̃ t

n

)m

m!

]n}
. (A4)

We now write the Lindblad superoperator as a sum of many
different Lindblad superoperators, each with its own rate: L̃ =∑

j γj L̃j and plug this into Eq. (A4), giving

Ũ (t ) = lim
n→∞

⎧⎪⎨
⎪⎩

⎡
⎢⎣exp

(
−iH̃

t

n

) ∞∑
m=0

(∑
j γj L̃j

t
n

)m

m!

⎤
⎥⎦

n⎫⎪⎬
⎪⎭.

(A5)

Equation (A5) involves an infinite sum over m, a finite sum
over j , and is raised to an infinite power, n. Although this
equation has infinite terms, we can collect all terms that have
the same γ prefactors. For example, the collection of all terms
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with only γj will include all terms from the product that have
one first-order element from the Taylor series expansion of
L̃. Terms with γ 2

j will include products with two first-order
elements as well as products with one second-order element.

To provide a concrete example, we truncate the Trotterization
at third order, the Taylor expansion at first order, and include
two noise terms. Let U = exp (−iH̃ t

3 ) and Vj = L̃j
t
3 . With

our truncation, we rewrite Eq. (A5) as

Ũ (t ) ≈ [U (1 + γ1V1 + γ2V2)]3

≈ UUU + γ1(UV1UU + UUV1U + UUUV1) + γ2(UV2UU + UUV2U + UUUV2)

+ γ 2
1 (UV1UV1U + UUV1UV1 + UV1UUV1) + γ 2

2 (UV2UV2U + UUV2UV2 + UV2UUV2)

+ γ1γ2(UV1UV2U + UUV1UV2 + UV1UUV2 + UV2UV1U + UUV2UV1 + UV2UUV1).

(A6)

The generalization to higher-order Trotterizations is clear;
the expanded sum will have many more terms (due to each
term having a smaller time-step t

n
), but terms can be grouped

by their γj prefactors. For higher-order Taylor expansions,
terms can still be grouped by their γj prefactors. For example,
take the γ 2

1 term from Eq. (A6). With a second-order Taylor
expansion, the γ 2

1 terms now contain contributions from V 2
1 ,

[
γ 2

1 terms
] = UV1UV1U + UUV1UV1

+UV1UUV1 + UV 2
1 UU

+UUV 2
1 U + UUUV 2

1 . (A7)

Combining the generalizations to both higher-order Trotteri-
zation and higher-order Taylor expansion is relatively straight-
forward; the number of terms grows precipitously, but they
can always be gathered by their γj prefactors. Collecting all
the terms for both the infinite limits of Trotterization and the
Taylor expansion leads to

Ũ (t ) = lim
n→∞

{[
exp

(
−iH̃

t

n

)]n}

+
∑

j

γj [γj terms]

+
∑

j

∑
k

γjγk[γjγk terms] + · · · , (A8)

where we have used [γj terms] to represent the (infinite)
collection of terms all with γj as a prefactor. This represents
the general (exact) evolution operator for our system. Our
density matrix at time t can now be written

ρ̃(t ) = lim
n→∞

{[
exp

(
−iH̃

t

n

)]n}
ρ̃0

+
∑

j

γj [γj terms]ρ̃0

+
∑

j

∑
k

γjγk[γjγk terms]ρ̃0 + · · · . (A9)

The first term of this expansion represents the noise-free
result. Other terms represent the effects of noise on the evolu-
tion. Since this method directly corrects the density-matrix ρ,

it follows that it also corrects an arbitrary observable,

〈A〉 = A0 +
∑

j

γjAj +
∑

j

∑
k

γjγkAjk + · · · , (A10)

where A0 is the noise-free observable value and Aj is the
effect of noise rate j on the observable. We define the order of
the combined Trotterization and Taylor expansion by the num-
ber of γj terms included. The first-order terms, for example,
are those with a single γj prefactor and include all possible
ways that one (infinitesimal) error evolution can be included.
The second-order terms include all possible ways that two
(infinitesimal) error evolutions can be included, and so on. We
do not a priori know what the values of the effects of noise on
the observable (such as Aj ) for any order are; however, we can
characterize γj for a given experiment. By taking a sequence
of experiments, varying γj , we can reconstruct the unknown
evolution terms by fitting a hypersurface to the points. The
coefficients of the hypersurface represent the effects (or, for
the zeroth-order term, the lack of effects) of noise to a given
order on the density matrix (or an arbitrary observable). Equa-
tion (A10) generally has effects up the infinite order; to make
it tractable, we truncate at some given order. As more orders
are included, the fit becomes more accurate, and, therefore, a
better approximation of the noise-free result is obtained.

APPENDIX B: NUMBER OF TERMS IN EXPANSION

Naively, the number of terms in a given order l would be
ml , where m is the number of noise terms (which could be
the number of qubits or a small factor times the number of
qubits). Since γj is a scalar, all γj ’s will commute, allowing
us to fuse terms with the same set of γ . For instance, given
a second-order expansion with two noise terms, we would
generally have terms with prefactors γ1γ1, γ1γ2, γ2γ1, and
γ2γ2, but since γ1γ2 = γ2γ1, we can reduce the number of
fitted parameters by combining the L̃1L̃2 and L̃2L̃1 terms.
For a given order l and number of noise terms m, the number
of parameters n for that order is the number of multinomial
coefficients, which is given by the formula,

n =
(

l + m − 1

m − 1

)
. (B1)

For an expansion truncated at order l, the total number of
parameters for all orders is the sum of Eq. (B1) for each order
up to and including l. To provide an explicit example of the
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polynomial scaling, we will take the example of four qubits
with one noise term each (m = 4) and truncate at first order
(l = 1). In this case, we have to sum the terms from orders 0
and 1, giving n = (3

3

) + (4
3

) = 5 ≈ 41 unknowns. Following
Eq. (1) in the main text, and using the same number of
repetitions as unknowns, our hypersurface equations become

⎡
⎢⎢⎢⎢⎣

1 γ
[1]
1 γ

[1]
2 γ

[1]
3 γ

[1]
4

1 γ
[2]
1 γ

[2]
2 γ

[2]
3 γ

[2]
4

1 γ
[3]
1 γ

[3]
2 γ

[3]
3 γ

[3]
4

1 γ
[4]
1 γ

[4]
2 γ

[4]
3 γ

[4]
4

1 γ
[5]
1 γ

[5]
2 γ

[5]
3 γ

[5]
4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A0

A1

A2

A3

A4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

〈A〉[1]

〈A〉[2]

〈A〉[3]

〈A〉[4]

〈A〉[5]

⎤
⎥⎥⎥⎦. (B2)

As long as the set of noise parameters for each repetition
are different, any values can be chosen. One specific choice
is to have all of the noise parameters take some small value
γ L

i and to increase the noise parameter of each qubit indepen-
dently to some high value γ H

i . In this case, the hypersurface
equations become

⎡
⎢⎢⎢⎢⎣

1 γ L
1 γ L

2 γ L
3 γ L

4
1 γ H

1 γ L
2 γ L

3 γ L
4

1 γ L
1 γ H

2 γ L
3 γ L

4
1 γ L

1 γ L
2 γ H

3 γ L
4

1 γ L
1 γ L

2 γ L
3 γ H

4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A0

A1

A2

A3

A4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

〈A〉[1]

〈A〉[2]

〈A〉[3]

〈A〉[4]

〈A〉[5]

⎤
⎥⎥⎥⎦. (B3)

This case of independently changing each qubit’s noise prop-
erties one at a time represents an independent linear extrap-
olation along each dimension of the hyperspace. The hyper-
surface equations are much more flexible than this, however.
If all of the noise parameters changed between runs, the
solution would still be able to fit linear extrapolations along
each dimension from the simultaneously changed data. This
could be useful for solving the system in an underdetermined

FIG. 5. Single qubit Ramsey interferometry. Some 350 simula-
tions with random T ∗

2 times are used.

fashion where the number of repetitions is smaller than the
number of unknowns.

APPENDIX C: RECOVERY OF SINGLE
QUBIT RAMSEY FRINGES

Figure 5 shows the recovery of Ramsey fringes for a single
qubit. In this single qubit case, there is only one noise param-
eter γ2 as γ1 	 γ2, in contrast to the Ramsey interferometry
in the superconducting qubit system, where γ1 ≈ γ2. We set
the background magnetic field to 10 μT and combine the
results of 350 experiments. As the order of the recovery is
increased, more and more fringes are recovered; at tenth order,
the fringes extend are recovered even when the best single
qubit run has no clearly visible fringes. Without correction,
the fringes decay with the characteristic T2 time [18].
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