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Experimental quantum tomography assisted by multiply symmetric states in higher dimensions
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High-dimensional quantum information processing has become a mature field of research with several
different approaches being adopted for the encoding of D-dimensional quantum systems. Such progress has
fueled the search of reliable quantum tomographic methods aiming for the characterization of these systems,
most of these methods being specifically designed for a given scenario. Here, we report on a tomographic
method based on multiply symmetric states and on experimental investigations to study its performance in higher
dimensions. Unlike other methods, it is guaranteed to exist in any dimension and provides a significant reduction
in the number of measurement outcomes when compared to standard quantum tomography. Furthermore, in
the case of odd dimensions, the method requires the least possible number of measurement outcomes. In
our experiment we adopt the technique where high-dimensional quantum states are encoded using the linear
transverse momentum of single photons and are controlled by spatial light modulators. Our results show that
fidelities of 0.984 ± 0.009 with ensemble sizes of only 1.5 × 105 photons in dimension D = 15 can be obtained
in typical laboratory conditions, thus showing its practicability in higher dimensions.
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I. INTRODUCTION

The generation, manipulation, and measurement of high-
dimensional quantum systems (qudits) are important theo-
retical and experimental research subjects in quantum infor-
mation science. This is motivated, in part, because certain
fundamental features of quantum mechanics such as, for
instance, quantum contextuality [1–3], cannot be tested
with two-dimensional quantum systems. The use of high-
dimensional quantum systems also leads to improvements
in several entangled based quantum information protocols
since, in this case, some Bell inequalities exhibit increased
robustness against noise [4,5], and tolerate lower detection
efficiencies for closing the detection loophole [6]. Last, due
to the larger amount of information that can be encoded in
single qudits, the performance of several protocols in quantum
communications [7–12] and quantum computation [13–17]
is enhanced when they are employed. Typically, photonic
platforms are used as testbed experiments to study quantum
information processing in higher dimensions because differ-
ent degrees of freedom of single photons can be efficiently
used to encode the qudits. For instance, one can resort to the
orbital angular momentum [18–22], frequency [23–25], time
bin [26], path [27], and the transverse position or momentum
[28,29] encoding methods.

Quantum tomography (QT) is a collection of methods that
makes possible the estimation of unknown quantum states
[30]. Today, QT has become a standard tool for the quality
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assessment of the generation of quantum states [31,32], the
implementation of quantum processes [33–35], and the per-
formance of quantum devices [36,37]. Quantum tomographic
methods provide an estimate of the unknown state from the
outcomes of measurements carried out on an ensemble of
identically, independently prepared systems. Finite statistics
effects and unavoidable experimental errors require the post-
processing of the experimentally acquired data by means of
statistical inference methods such as, for instance, maximum
likelihood estimation [38–41] or Bayesian inference [42–50].
Traditionally, the total number of measurement outcomes is
considered as a resource. Thus, there is a search for QT meth-
ods relying on a smaller number of measurement outcomes
[51–56]. Standard quantum tomography for a single qudit is
based on the measurement of a D-dimensional representation
of the D2 − 1 generators of the SU(D) group, which leads to
a total number of measurement outcomes of 2D2 − D [57].
This number can be reduced to D2 + D with quantum tomog-
raphy based on mutually unbiased bases (MUBs) [58]. The
existence of MUBs has been proven when the dimension D is
an integer power of a prime number [59,60]. Otherwise, the
existence of mutually unbiased bases is still an open problem.
A further reduction can be achieved with quantum tomog-
raphy based on a symmetric informationally complete (SIC)
positive-operator valued measure (POVM), which consists of
D2 subnormalized projectors [61]. This is the smallest num-
ber of measurement outcomes to estimate unknown quantum
states. Numerical studies [62–64] have indicated the existence
of this class of measurements in all dimensions up to D =
1155 and exact analytical solutions are available in dimen-
sions D = 2–16, 19, 24, 28, 35, 48, 120, 124, and 323
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[62,65–68]. Unfortunately, a dimension-independent demon-
stration is still missing.

Here, we propose and experimentally test a new quantum
tomographic method, which is based on the measurement of
an informationally complete POVM formed by subnormalized
projectors onto multiply symmetric states [69]. These are
constructed by applying products of integer powers of unitary
transformations on a fixed fiducial quantum pure state. Unlike
SIC-POVMs and MUBs, our tomographic method can be
constructed in any finite dimension. Furthermore, in the case
of odd dimensions, the POVM has D2 subnormalized projec-
tors and thus it requires the smallest number of measurement
outcomes to estimate unknown quantum states. In the case
of even dimensions, the POVM has 3D2/2 measurement
operators, which is a significative reduction from the case
of standard tomography. A first estimate of the unknown
state can be obtained by linear inversion, which does not
introduce bias [70]. The numerical stability of this process
can be improved to a great extent by a suitable choice of
the fiducial state. This also contributes to speed up the rate
of convergence in the postprocessing of the experimentally
acquired data. Our experimental implementation is based on
the encoding of D-dimensional quantum states onto the linear
transverse momentum of single photons. These are created by
defining D different propagation paths available for the pho-
ton transmission at diffractive apertures addressed on spatial
light modulators (SLMs) [71]. A second set of SLMs allows
one to project the D-dimensional state onto any other fixed
D-dimensional state [72]. The use of SLMs for preparation
[71–75] and measurement of these so-called spatial qudits
has been extensively explored for quantum information tasks
such as quantum key distribution (QKD) [76], Bell-type non-
locality and noncontextuality tests [21,77–79], and quantum
tomography [53,72,80,81], among others [82–84]. We test
our tomographic method in dimensions 6 and 15 reaching
fidelities of 0.998 and 0.984 with ensemble sizes of only
6 × 104 and 1.5 × 105, respectively. Experiments performed
with similar optical setups have achieved lower fidelities of
0.96 for dimensions 6 and 7, 0.985 for dimension 8, and
0.887 for dimension 10 [53,72,85], while resorting to larger
ensembles of detected photons. Thus, our experimental results
demonstrate the practicability of our method in higher dimen-
sions and the good performance of our experimental setup.

This article is organized as follows: In Sec. II, we in-
troduce the theoretical background and formulate our tomo-
graphic method. In Sec. III, we introduce the experimental
setup and analyze the results provided by the experimental
realization of our method. In Sec. IV, we summarize, com-
ment on possible extensions to the multipartite case, and
conclude.

II. THEORY

In this section we briefly recall the general notion of
multiply symmetric states. Thereafter, we study a particular
family of multiply symmetric states and build the tomographic
method upon it. We solve explicitly the inversion problem and
provide a simple analytical expression relating the experimen-
tally acquired data, the measurement settings, and the estimate
of the unknown state.

A. Multiply symmetric states

In general, states |ψk1,k2,...,kM
〉 are said to be multiply sym-

metric if they can be written as [86]∣∣ψk1,k2,...,kM

〉 = U
k1
1 U

k2
2 . . . U

kM

M |ψ0,0,...,0〉, (1)

where kj = 0, . . . , Nj − 1, |ψ0,0,...,0〉 is the fiducial state of

the set, and Uj are unitary transformations that satisfy U
Nj

j =
I (for every j ), where I is the identity operator acting on the
Hilbert space of a single qudit. We will limit ourselves to the
case of M = 3. Thus, we define the constant matrices

X =
D−1∑
k=0

|k ⊕ 1〉〈k|, (2)

Z =
D−1∑
k=0

e2πik/D|k〉〈k|, (3)

V =
κ−1∑
k=0

|k〉〈k| − i

D−1∑
k=κ

|k〉〈k|, (4)

where D is the dimension of the Hilbert space and κ =
[[D/2]], [[x]] being the operation that rounds x to the closest
integer number. These matrices represent, respectively, the
shift operator (X ), the clock operator (Z), and an additional
phase-only transform (V) with diagonal entries vk = 〈k|V|k〉
that adopt values of 1 and −i. The symbol ⊕ in Eq. (2) denotes
addition mod(D). By using the operators X , Z , and V , we now
define a set of multiply symmetric states {|α�,m,j 〉} given by

|α�,m,j 〉 = V�XmZj |α0〉 =
D−1∑
k=0

akv
�
k⊕me2πijk/D|k ⊕ m〉, (5)

where � = 0, 1, 2, 3, m = 0, . . . , D − 1, and j = 0, . . . ,

D − 1. The fiducial state is a pure quantum state |α0〉 =∑D−1
k=0 ak|k〉, whose coefficients fulfill the normalization con-

dition
∑D−1

k=0 |ak|2 = 1.

B. Essential subsets of states

Let us now consider a physical system described by an
unknown D-dimensional quantum state ρ. In 2010, Paiva-
Sanchez and co-workers [69] studied quantum state tomog-
raphy assisted by a basis B0(α) of D equidistant states, which
they denoted as |αj 〉. These states are such that the inner
product between them is given by 〈αj |αj ′ 〉 = α (j > j ′),
where α is a fixed constant. Additional D − 1 bases Bs (α)
are constructed by applying X s on the elements of B0(α).
This amounts to a total of D2 measurements. Additionally,
they report a strange behavior that depends on the dimension
of the Hilbert space to which the state belongs. In summary,
odd dimensions require the aforementioned D2 measurements
only, whereas even dimensions require additional measure-
ments attainable by applying V on the elements of each Bs (α),
which leads to a total of 3D2/2 measurements.

The form of the equidistant states used in Ref. [69] for
this purpose resembles the one of Eq. (5). Nevertheless, an
analysis of the computations of Ref. [69] indicates that a
similar mathematical procedure allows us to accomplish such
a tomographic process regardless of the fiducial state used,
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TABLE I. Values of Ks depending on the values of s and dimen-
sion, where κ = [[D/2]].

Value of s Ks odd dimension Ks even dimension

0 � s � κ − 1 D 2D

κ � s � D − 1 D D

D � s � D − 1 + κ does not apply 2D

that is, states |αj 〉 do not need to be equidistant. Thus, we
resorted to multiply symmetric states for such a goal. If D is
an odd number, quantum state tomography can be performed
by measuring on projectors of the form |α0,m,j 〉〈α0,m,j |, with
� = 0 and for every m and j ranging from 0 to D − 1. For
even dimensions, we must also consider � = 1, with j =
0, . . . , D − 1 and m = 0, . . . , D/2 − 1 for these additional
measurements.

In this context, a simpler mathematical description can be
obtained by resorting to two subscripts only, regardless of the
dimension. Thus, we define

|αsj 〉 =V�s/D�X sZj |α0〉

=
D−1∑
k=0

akv
(s)
k⊕se

2πijk/D|k ⊕ s〉, (6)

where v
(s)
k = 〈k|V�s/D�|k〉, j = 0, . . . , D − 1, s = 0, . . . ,

smax − 1, and

smax =
{
D, if D is odd,
3D
2 , if D is even.

(7)

Thus, the set of states {|αsj 〉} in odd dimensions is still a com-
plete set of multiply symmetric states under transformations
X and Z , as seen from Eq. (5). For even dimensions, on
the other hand, this set encompasses a subset of the multiply
symmetric states under the action of X , Z , and V . Despite the
different behavior exhibited by states |αsj 〉 as defined here,
they allow one to construct POVMs. Indeed, we may define

�sj = 1

Ks

|αsj 〉〈αsj |,
smax−1∑

s=0

D−1∑
j=0

�sj = I, (8)

where the values of Ks are given in Table I. This POVM will
be useful for tomographic and postprocessing purposes.

C. Tomography using multiply symmetric states

Let us define the matrix P = ∑
s,j psj |s〉〈j |, where psj =

tr(ρ�sj ). Explicitly,

P =
smax−1∑

s=0

D−1∑
j=0

(
D−1∑
l,m=0

a∗
l am

Ks

e2πi(m−l)j/D

× v
(s)∗
l⊕s v

(s)
m⊕sρl⊕s,m⊕s

)
|s〉〈j |. (9)

This matrix contains the experimental probabilities that can be
found by taking the completeness relation of Eq. (8) into con-
sideration. So, if nsj is the number of registered counts when
�sj is measured, then every probability can be experimentally

estimated as psj = nsj /
∑

t,k ntk . Afterwards, a right-Fourier
transformed probability matrix P̃ can be defined as P · F ,
where F = 1√

D

∑D−1
l,m=0 e2πilm/D|l〉〈m|. Explicitly,

P̃ =
D−1∑
k=0

[
smax−1∑

s=0

√
D

Ks

|s〉

×
⎛⎝D−1∑

q=0

a∗
q
s⊕kaq
sv

(s)∗
q⊕kv

(s)
q 〈q|

⎞⎠|�ρk〉
⎤⎦〈k|, (10)

where |�ρm〉 denotes the mth diagonal of ρ, given by1

|�ρm〉 =
D−1∑
q=0

ρq⊕m,q |q〉. (11)

For convenience, we will define ancillary vectors

|�ξ sk〉 = (X s−k|α0〉) ◦ (X s |α0〉∗) ◦ (X−k|�vs〉) ◦ |�vs〉∗, (12)

where “◦” denotes the Hadamard product between matrices,
and

|�vs〉 =
D−1∑
r=0

v(s)
r |r〉 = diag(V�s/D�). (13)

Consequently, the right-transformed probability matrix can be
compactly written as

P̃ =
D−1∑
k=0

Gk|�ρk〉〈k|, (14)

where the matrix Gk is given by

Gk =
smax−1∑

s=0

√
D

Ks

|s〉〈�ξ sk|. (15)

Now, it is possible to construct the density operator ρ

by rearranging its components in a vector �ρ = vec(ρ) (see
Appendix A), which is computed according to

��ρ =
D−1∑
k=0

|k〉 ⊗ |�ρk〉, (16)

�ρ =SSWAPX · ��ρ, (17)

where ⊗ represents the Kronecker product between matrices,
��ρ is a D2-dimensional vector containing the diagonals of
ρ—given by |�ρk〉—stacked on top of each other, SSWAP is
a D2 × D2 matrix that acts as SSWAP(|j 〉 ⊗ |k〉) = |k〉 ⊗ |j 〉,
and

X =
(

D−1∑
m=0

Xm ⊗ |m〉〈m|
)

. (18)

1Throughout this article, the notation |�a〉 will refer to a purely
mathematical vector �a that does not represent any physical state.
However, Dirac notation is used for comfortability.
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Finally, after taking Eqs. (10), (12), (14), (15), and (17) into
account, the components of ρ can be isolated by computing

G =
D−1∑
m=0

|m〉〈m| ⊗ Gm, (19)

G� =
D−1∑
m=0

|m〉〈m| ⊗ G �
m , (20)

and

�ρ = SSWAP X G� vec(P̃ )

= (SSWAP X G�)
((
F ⊗ Ismax

)
vec(P )

)
, (21)

where x� denotes the Moore-Penrose pseudoinverse [87] ma-
trix of x, Ismax is a smax × smax identity matrix, and vec(P )
is the vectorization of matrix P (see Appendix A). We have
used Eq. (A3) in order to write vec(PF ) = (F ⊗ I) vec(P ),
F being a symmetric matrix. We have resorted to vectorized
versions of some matrices as these allow one to write efficient
numerical codes. The use of sparse matrices, as explained
in Sec. II D, may contribute substantially to the efficiency
of the computation of �ρ for quantum systems of very high
dimensions. Matrix pseudoinverse has been used instead of
the usual matrix inverse because G contains Dsmax rows and
D2 columns and, consequently, may not be square. Equation
(21), in summary, relates the components of the reconstructed
density matrix—stored in vector �ρ—with the experimental
measurements (P) and the measurement settings (G) in an
explicit way. The density operator ρ is obtained by just
rearranging the elements of �ρ in a square matrix, which can
be postprocessed if required. Large parentheses in Eq. (21)
indicate the recommended multiplication order with the goal
of optimizing the use of memory.

D. Comparison with general linear inversion

Let us consider an arbitrary M-outcome quantum mea-
surement described by POVM elements �μ, where μ =
1, . . . ,M . If �p is a vector containing the probabilities asso-
ciated with this measurement, it can be shown [see Eq. (A5)]
that �p = M �ρ, where

M =
⎛⎝ M∑

μ=1

|vec(�μ)〉〈μ|
⎞⎠†

. (22)

Thus, a simple way to obtain �ρ is by means of �ρ = M� �p. If
the set of measurements is not informationally complete, there
will be ambiguities in the state, i.e., there can exist several
solutions �ρ for the problem �p = M �ρ and, thus, we should
expect the performance of the reconstruction to be poor in
terms of fidelity, as it may depend highly on the algorithm
used to compute M�. The use of informationally complete
measurements eliminates these ambiguities.

Moreover, the computation of M� for the method studied
in this article might be unfeasible in very high dimensions
as it requires (i) being able to store in memory a highly
dense matrix M of size D2 × Dsmax, and (ii) the ability of
computing its pseudoinverse. For instance, matrix M for an
eight-qubit system (D = 256, smax = 384) requires 96 GB of

memory for the sole purpose of being stored using complex
double-precision floating-point numbers. Thus, the computa-
tion of M� for a multiqubit or multiqudit system might be
impractical in most current computers.

On the other hand, we may see from the previous sec-
tion that matrices SSWAP, X , G�, and (F ⊗ Ismax ) are very
sparse for high dimensions: their densities (ratio of nonzero
elements) are 1/D2, 1/D2, 1/D, and 1/smax, respectively.
Consequently, the aforementioned matrices for the eight-qubit
case require less than 1 GB of memory each when using sparse
matrices,2 making now the computations possible in many
computers.

Due to finite statistic effects and experimental error
sources, the estimates generated via linear inversion might
not be positive semidefinite matrices, and thus cannot be
accepted as physical states. To solve this problem, several
statistical inference techniques can be employed—in par-
ticular, the maximum likelihood estimation (MLE). This is
formulated as an optimization process on the space of the
physical states whose output is the state with the highest
probability of generating the experimentally acquired data.
MLE requires an initial guess. This is chosen in our case as
the matrix provided by linear inversion, which contributes to
speed up the convergence of MLE. Thus, both MLE and linear
inversion are employed to generate a physically acceptable
estimate. MLE is formulated as an optimization problem
on an exponentially scaling number of variables, and thus
its computational feasibility is constrained by the available
computing power. Recently, efficient techniques for solving
MLE in higher dimensional systems have been proposed [88].
Thereby, the slow convergence of MLE is postponed to even
higher dimensions, but not eliminated. In this scenario, linear
inversion becomes a viable alternative since it is less compu-
tationally demanding than MLE. Moreover, unlike estimates
obtained with the help of MLE, the linear inversion process
does not exhibit bias [70,89].

Other alternative approaches such as forced purity, quick
and dirty [90], or searching for the closest density operator
[91] are suitable to find physically acceptable states without
resorting to numerically demanding optimization problems.
All of them require an initial matrix to work on, which can
be obtained from �ρ by linear inversion.

E. Stability of the inversion

The stability of the inversion under variations of the experi-
mentally obtainable probabilities can be studied by inspecting
Eq. (21). The problem is either well or ill-conditioned de-
pending on the condition number C of the matrix involved in
the inversion. This, in turn, depends on the singular values of
such matrix [92]. As matrices SSWAP, X , and F ⊗ Ismax are
all unitary, they do not modify singular values and, hence,
matrix G suffices to analyze the robustness of the tomographic

2Numerical tests for the eight-qubit case show that (F ⊗ Ismax ) and
G� require 576.75 MB each, whereas SSWAP and X need only 1.5 MB
each.
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FIG. 1. Left panels: Condition number C(G(α)) as function of α—given that fiducial state |α0〉 is given by Eqs. (24) and (25)—for
dimensions 6 and 15. Red squares indicate the values of α that were used in the experiment reported in this article. Since C(G(α)) might
adopt very different values, these graphs were presented in logarithmic scale. Right panels: Fidelity of reconstructed states simulated by Monte
Carlo method.

procedure under experimental noise. Indeed,

C
(
SSWAP X G� (

F ⊗ Ismax

)) = C(G) = σmax(G)

σmin(G)
, (23)

where σmax(G) and σmin(G) stand for the maximal and min-
imal singular values of G, respectively. It can be concluded
from Eqs. (12), (19), and (23) that a study of C(G) as a
function of |α0〉 allows one to predict whether a given fiducial
state will be a good choice for quantum tomography. A small
condition number indicates that the fiducial state is a good
candidate for building the tomographic method.

As C(G) depends on D complex parameters, its optimiza-
tion over the Hilbert space does not seem to be computation-
ally easy. For the sake of simplicity, we will resort to the
notation used in Ref. [69] in order to analyze C(G) in terms of
a single complex parameter α. Thus, the fiducial state will be
given by

|α0(α)〉 =
D−1∑
k=0

√
λk (α)

D
|k〉, (24)

where

λk (α) =1 − |α| sin
(

kπ+(D−1) arg(α)
D

)
sin

(
kπ−arg(α)

D

) . (25)

The left panels of Fig. 1 show the decimal logarithm of
C(G) as a function of the absolute value and phase of α for
dimensions 6 and 15. As can be observed, C(G(α)) can adopt
values ranging from ∼101 to ∼105. The right panels show the
fidelity of the reconstruction via Monte Carlo simulations, in
which the simulated number of counts by measurement had
Poisson noise added. As many simulations were performed,
we implemented the “quick and dirty” method [90] for post-
processing the density operator in Fig. 1. Direct comparison of
left and right panels indicate that numerical instability (high
condition number) may introduce a significant inaccuracy in

the estimate of the density matrix. This further motivated us to
look for adequate fiducial states before making measurements.

In each of the left panels of Fig. 1, three red squares
highlight the values of α that were used for our experiment.
These values, also displayed in Table II, were chosen from
regions at the figures exhibiting small condition numbers. We
have dealt with the problem of numerical stability by choosing
fiducial states such that C(G) adopts small values. Instead of
resorting to a given parametrization, we could have generated
a large set of random fiducial states and computed the value
of C(G) for each one. If done so, condition numbers even
lower than the ones used here could be obtained. Nonetheless,
using the former procedure we were able to ensure the states
in a neighborhood with small condition numbers to have a
more robust reconstruction in the case of having noise due to
experimental imperfections.

III. EXPERIMENT

Our setup is depicted in Fig. 2. It consists of two main
blocks: the state preparation (SP) and projective tomographic
measurement (PM) stages. In SP, weak coherent states are
produced resorting to a 690-nm continuous-wave single-mode
laser heavily attenuated with calibrated optical filters (not
shown in Fig. 2 for the sake of simplicity) and modulated with

TABLE II. Values of α chosen for experimental purposes. Num-
bers in parentheses below each α indicate the condition number,
which is extracted from data of Fig. 1.

D α1 α2 α3

6 0.4e1.7πi 0.8e0.36πi 0.5e0.5πi

(7.796) (6.848) (8.946)
15 0.365eπi 0.54e0.4πi 0.98e1.42πi

(40.94) (27.32) (33.15)
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FIG. 2. Experimental setup. At the preparation state we generate
an arbitrary state of a single qudit that is encoded in a single
photon. A 690-nm continuous-wave laser, an AOM, and calibrated
attenuators (not shown in figure for sake of clarity), are employed
to generate weak coherent pulses. These illuminate spatial light
modulators SLM1 and SLM2, which with the help of polarizers (P)
and quarter-wave plates (QWP) are employed to modulate the in-
coming light in amplitude and phase, correspondingly. Electronically
addressable slit patterns at SLM1 and SLM2 control the state |�d〉 of
the photonic qudit. The measurement stage projects state |�d〉 onto a
predefined, arbitrary single-qudit state |αsj 〉. Spatial light modulators
SLM3 and SLM4, combined with a pointlike avalanche photodiode
(APD), implement the projection. In this way we are able to estimate
the probability |〈αsj |�d〉|2. A set of lenses is employed to transport
the images generated by the SLMs along the setup. Focal lengths are
as follows: L1 = 25 mm, L2 = 200 mm, L3 = L4 = L5 = L6 = L7
= L8 = 125 mm, and L9 = 100 mm.

an acousto-optic modulator (AOM) configured at a repetition
rate of 30 Hz. The mean photon number per pulse is set to μ =
0.9. Consequently, this source works as an approximation to a
nondeterministic single-photon source since pulses with a sin-
gle photon account for 62.3% of the generated non-null pulses
[93]. Contributions of multiphoton events to the recorded
statistics are strongly suppressed by using a detection window
much smaller than the optical pulse duration. Last, extra polar-
izing cubes with an overall extinction ratio greater than 10−7

are used to ensure a high quality of horizontal polarization of
the transmitted photons. In this way, we are able to attain a
high purity degree for the high-dimensional states generated
with the spatial light modulators [94].

SLMs are a central part of our setup. Each pixel of a SLM is
part of a twisted nematic liquid crystal display (LCD) whose
birefringence can be controlled by means of standard video
signals emitted by a field programable gate array (FPGA).
As a result of an adequate control of the photon polarization
before and after crossing the LCD, we can set the SLM to
work as an amplitude-only spatial light modulator (SLM1 and
SLM3) or as a phase-only modulator (SLM2 and SLM4) [95].
Arrays of D slits are displayed on SLM1, each having a width
of 96 μm and transmittance coefficients t�. The centers of
contiguous slits are separated by 192 μm. An imaging system
projects the image of SLM1 on SLM2, where phases φ� are
added to each slit. Thus, the state of the single photons trans-
mitted by these SLMs is |�〉 ∝ ∑D−1

�=0

√
t�e

iφ� |�〉—where |�〉
denotes the state of the photon transmitted by the �th slit of the
SLMs—and it represents a D-dimensional quantum system

encoded into the linear transverse momentum of the photons
[29,71,72].

To test our tomographic method we considered three dif-
ferent types of states for dimension D = 6 and D = 15. The
reason for choosing such dimensions are (i) to illustrate the
relevance of our method while considering even and odd di-
mensions, and (ii) the tomographic method based on mutually
unbiased bases cannot be used in these dimensions. To be
more specific, the prepared states were

∣∣�6
1

〉 = 1√
6

5∑
j=0

|j 〉, (26a)

∣∣�6
2

〉 = |0〉, (26b)∣∣�6
3

〉 = 1√
6

[(|0〉 + |2〉) + e−iπ/4|4〉

+ e−iπ/8(|1〉 + |3〉 + |5〉)], (26c)

for dimension 6, and

∣∣�15
1

〉 = 1√
15

14∑
j=0

|j 〉, (27a)

∣∣�15
2

〉 = |7〉, (27b)∣∣�15
3

〉 = 1√
15

[(|0〉 + |5〉 + |8〉 + |14〉)

+ e−iπ/10(|1〉 + |3〉 + |9〉 + |12〉)

+ e−iπ/9|2〉 + e−iπ/8(|6〉 + |11〉)

+ e−iπ/7(|4〉 + |10〉)

+ e−iπ/6(|7〉 + |13〉)] (27c)

for dimension 15.
The projective tomographic measurement stage contains

SLM3 and SLM4, used for postselecting the state to be de-
tected. For this purpose, a new set of transmittance coefficients
τ� and phases ζ� are used on SLM3 and SLM4, respectively.
Finally, detection is performed at the center of the focal plane
of a lens located after SLM4 using an avalanche single-photon
detector (APD) with a 10-μm-wide pinhole placed in front of
it. The probability of detecting a single photon is, thus, propor-
tional to |〈�|�〉|2 [72,76,96], where |�〉 ∝ ∑

�

√
τ�e

−iζ� |�〉.
In our case, |�〉 represents each of the states |αsj 〉 on which
the measurements are performed, so parameters τ� and ζ� are
adjusted accordingly. In order to show the possibility of using
different fiducial states, we used |α0(αk )〉 [see Eq. (24)] as the
fiducial state for reconstructing state |�D

k 〉, where the values
of αk are the ones shown in Table II.

Each projective measurement related to our tomographic
method was repeated ten times, which allowed us to obtain
its associated mean value of detection counts. We denote nsj,r

as the counts obtained from measuring �sj in the rth round
of measurements, where r = 1, . . . , 10. Average numbers of
counts n̄sj can then be obtained by

n̄sj = 1

10

10∑
r=1

nsj,r . (28)
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FIG. 3. Examples of the Monte Carlo simulations performed (upper panels) and their respective histograms (lower panels). Three horizontal
dot-dashed lines in the upper graphs represent the mean value (〈F 〉) of the simulations and the 〈F 〉 ± 5σ interval. The continuous line in each
histogram represents a fitted beta distribution. For each fitted function, the probability of having a value outside the ±5σ interval is ∼10−6.

Measurements were taken for times long enough to obtain
around 10 000 × D counted photons, as a total over all pro-
jections �sj , for each round. Once all the detection counts
were recorded and the average probabilities were computed,
we proceeded to the postmeasurement processing of the data.
Error margins for density matrices and its corresponding
figures of merit were determined through 10 000 Monte Carlo
simulations for each reconstructed state. Simulated count
numbers n

(μ)
sj are obtained by adding Poisson noise to the

originally averaged data, where μ denotes the number of the
Monte Carlo trial and ranges from 1 to 10 000. Only in
the first case there is no noise considered, i.e.,

n
(μ)
sj =

{
n̄sj , for μ = 1,

Poisson(n̄sj ), otherwise. (29)

Afterwards, simulated probability matrices P (μ) are com-
puted for each Monte Carlo trial according to

P (μ) =
∑smax−1

s=0

∑D−1
j=0 n

(μ)
sj |s〉〈j |∑smax−1

t=0

∑D−1
k=0 n

(μ)
tk

, (30)

where Eq. (8) was taken into account. Then, matrix P (μ) is
used in Eq. (21) in order to obtain a reconstructed density ma-
trix ρ (μ). As Eq. (21) cannot ensure its positiveness, maximum
likelihood estimation (MLE) was subsequently employed (see
Appendix B for details) in order to ensure matrix positiveness
[38,39,57]. The fidelity F (μ) between ρ (μ) and the state |�〉
we intended to prepare is computed as a figure of merit for
each state resulting from MLE, where

F (μ) = 〈�|ρ (μ)|�〉. (31)

The final result for the fidelity is expressed in terms of the
mean and standard deviation of the simulated results, that is,

F = 〈{F (μ)}〉 ± 5σ ({F (μ)}). (32)

Two examples of the Monte Carlo simulations are shown
in Fig. 3. We have chosen ±5σ as error margins since the
probability of obtaining a value outside it in a new round
of experiments is less than 10−6 in the case the values of
F (μ) distribute around their mean value following a normal
distribution. In the worst-case scenario, such probability is
less than 4%, according to the Bienaymé-Chebyshev inequal-
ity. The reconstructed density operators in dimension 6 are
depicted in Fig. 4, whereas Fig. 5 illustrates the results for
dimension 15. A summary of the results is shown in Table III.
As can be seen, high values of fidelities were obtained. More
specifically, for dimension 6 (15) an overall fidelity of 0.977
(0.957) has been recorded, while considering an ensemble
of only 6 × 104 (1.5 × 105) events of photodetection for
the state reconstruction procedure. In the literature there are
several experiments toward quantum tomography of a single
qudit: Reference [72] reported the experimental realization of
tomography using mutually unbiased bases and they obtained
fidelities of 0.96 ± 0.03 and 0.93 ± 0.03 for dimensions 7
and 8, respectively. Reference [53] reported 0.985 ± 0.015
for D = 8 using a method designed for reconstructing pure
states. The experiment of Ref. [85] using SIC-POVM obtained
fidelities of 0.960 ± 0.003 and 0.887 ± 0.003 for dimensions
6 and 10, respectively. Our experimental results compare fa-
vorably with these previous results, which validates the good
performance of the experimental setup employed to realize the
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FIG. 4. Reconstructed quantum states for D = 6. The insets show the theoretically expected results.
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FIG. 5. Reconstructed quantum states for D = 15. The insets show the theoretically expected results.
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TABLE III. Fidelities obtained for each of the reconstructed
states, with their respective 5σ uncertainty extracted from 10 000
Monte Carlo trials. MLE was used in each trial.

D |�D
1 〉 |�D

2 〉 |�D
3 〉

6 0.998 ± 0.001 0.977 ± 0.013 0.956 ± 0.010
15 0.965 ± 0.006 0.984 ± 0.009 0.922 ± 0.007

quantum tomography assisted by multiply symmetric states in
higher dimensions.

IV. CONCLUDING REMARKS

In summary, we have reported the experimental realization
of quantum state tomography assisted by multiply symmetric
states for dimensions D = 6 and D = 15. Unlike MUB and
SIC-POVM tomographic methods, this method is guaranteed
to exist in any dimension and provides a significant reduction
in the number of measurement outcomes when compared to
standard quantum tomography. Furthermore, in the case of
odd dimensions the method requires the least possible number
of measurement outcomes. As explained in Sec. II D, this
tomographic method is different from a general linear inver-
sion in the sense that (i) multiply symmetric states constitute
an informationally complete set of measurements, and (ii) it
was possible to rewrite the equations in such a way that the
inversion is represented now in terms of multiplying sparse
matrices and computing inverses of smaller matrices rather
than computing the inverse of a large matrix, which is more
practical for high dimensions. The POVM elements used for
this reconstruction method, as Eq. (6) shows, depend on a
given fiducial state |α0〉 that can be freely chosen. Never-
theless, this fiducial state is chosen in such a way that the
inversion algorithm remains numerically stable. Such stability
can be analyzed in terms of the condition number of matrix G
of Eq. (19).

Further improvements can be obtained by studying the
condition number. We have reduced the complexity of this
problem by studying fiducial states defined by two parameters,
which led to condition numbers of the order of 10. However,
Monte Carlo simulations with randomly generated fiducial
states have shown that smaller condition numbers are possible.
Other continuation of the current work concerns the case of
multipartite systems. For instance, the state of a two-qudit
system can be estimated with a minimal number of D4

measurement outcomes. This can be achieved for D odd by
conditional local estimations employing quantum tomography
assisted by multiply symmetric states.

Recently, QT has been studied from the point of view of the
achievable estimation accuracy. Here, the figure of merit is
the Gill-Massar lower bound Ī = (D2 − 1)(D + 1)/4N for
the infidelity, where N is the size of the ensemble of iden-
tically, independently prepared copies of the unknown state
to be estimated. This is the highest estimation accuracy for
mixed states that can be achieved by means of local measure-
ments, that is, measurements that are carried out on individual
members of the ensemble. It has been demonstrated that two-
stage quantum tomography for a single qudit approaches Ī

[97]. In the first stage of this adaptive tomographic method
a small ensemble is employed to obtain a first estimate via
standard quantum tomography. This estimate’s eigenstates are
employed to represent the D2 − 1 generators of SU(D), which
are subsequently measured in a second stage of standard quan-
tum tomography. For D = 2 two-stage quantum tomography
saturates the Gill-Massar lower bound [98,99]. However, for
D > 2 this is not the case. Furthermore, numerical evidence
suggests that the estimation accuracy behaves as ĪD. It is
possible to improve the accuracy by modifying two-stage
quantum tomography. Instead of projecting onto the eigen-
states of the D2 − 1 Gell-Mann generators, it is possible to
gather enough information to estimate an unknown state by
projecting onto 2D + 1 (2D − 1) bases for D odd (even).
The adaptive version of this method leads to an estimation
accuracy that behaves as 2Ī [100], independently of the di-
mension. Here arises the question whether an adaptive version
of quantum tomography assisted by multiply symmetric states
would lead to an estimation accuracy better than 2Ī with
the added benefit of a reduced number of total measurement
outcomes.
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APPENDIX A: MATRIX VECTORIZATION

Let us consider a general M × N matrix A =∑
kl Akl|k〉〈l| written in the computational basis. Its

vectorization vec(A) is obtained from a linear operation
such that

vec : CM×N → CN ⊗ CM

A �→ vec(A) =
∑
kl

Akl|l〉 ⊗ |k〉, (A1)

where vectors {|j 〉}nj=1 correspond to the computational basis.
Vector vec(A) contains the columns of A stacked one on top
of another. Hence, we can also write a matrix vectorization as

vec(A) =
N∑

j=1

|j 〉 ⊗ A|j 〉. (A2)

Additional properties of vectorization are

vec(AB ) = (I ⊗ A)vec(B ) = (Bᵀ ⊗ I)vec(A), (A3)

tr(A†B ) = 〈vec(A)|vec(B )〉. (A4)

Faster computations of probabilities can be performed by
resorting to matrix vectorization. Indeed, if we need to com-
pute a vector given by p = ∑

μ tr(�μρ)|μ〉, where �μ are
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Hermitian operators, then

p =
∑

μ

tr(�μρ)|μ〉

(A4)=
∑

μ

〈vec(�μ)|vec(ρ)〉|μ〉

=
(∑

μ

|μ〉〈vec(�μ)|
)

|vec(ρ)〉

=�̂
†|vec(ρ)〉, (A5)

where �̂ is a matrix whose μth column is the vectorization
of �μ. Equation (A5) is very useful when probabilities must
be computed a large number of times from a constant set of
probability operators.

APPENDIX B: EFFICIENT COMPUTATION OF MLE
BASED ON POISSON DISTRIBUTION

We define N th
j (�) = ηj tr(�j�) + dj as the theoretically

expected number of counts for the j th detector subject to
detection efficiency ηj and a mean number of dark counts
given by dj . The matrix � is a positive operator represent-
ing an unnormalized density matrix whose trace serves as a
mean ensemble size. Additionally, n and N th will be vectors
containing the experimental and theoretical number of counts,
respectively. Vector N th(�) can be efficiently written, with the
aid of Eq. (A5), as

N th(�) = η ◦ (�̂
†��) + d, (B1)

where

η =
∑
j∈M

ηj |j 〉, d =
∑
j∈M

dj |j 〉, (B2)

�� = |vec(�)〉, �̂ =
∑
j∈M

|vec(�j )〉〈j |. (B3)

In the case of composite systems, computation of �̂
†�� can be

performed very efficiently by following the methods used in
Ref. [88].

As the number of photons provided by the source cannot
be ensured to be equal for each measurement, we may resort
to Poisson statistics, where the number of observed events
will be given by nj and the expected mean number of events
is N th

j (�). Thus, the joint probability of having n1 counts in
detector 1 and n2 counts in detector 2 and so and so, given
that the ensemble state is �, can be expressed as

LP(�) =
∏
j∈M

e−N th
j (�)[N th

j (�)
]nj

nj !
, (B4)

where M is the set of measurements labels. Instead of work-
ing with LP(�), it is highly recommended to make use of the
negative log likelihood, LP(�) = − lnLP(�), since maximiza-
tion of LP(�) is equivalent to minimization of LP(�) [101].
Negative log likelihood is, thus, given by

LP(�) =
∑
j∈M

[
N th

j (�) − nj ln
(
N th

j (�)
) + ln �(nj + 1)

]
= uᵀN th(�) − nᵀ ln(N th(�)) + uᵀ ln(�(n + 1)),

(B5)

where u is a column vector whose entries are all equal to 1 and
the logarithm of a vector is used as [ln(a)]j = ln([a]j ). By
using Eqs. (B1)–(B3), the negative log likelihoods of Eq. (B5)
can be efficiently computed. It is noteworthy that LP(�) is
a convex function defined over the convex set of positive
operators. Consequently, the tools of convex optimization
(particularly, we used CVX [102,103]) can be used to find
its minima, LP(�opt). The estimated density operator ρopt

is obtained by normalizing �opt after the optimization has
finished.
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