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A bipartite state ρAB has a k-symmetric extension if there exists a (k + 1)-partite state ρAB1B2 ...Bk with
marginals ρABi = ρAB, ∀i. The k-symmetric extension is called bosonic if ρAB1B2 ...Bk is supported on the
symmetric subspace of B1B2 . . . Bk . Understanding the structure of symmetric and bosonic extension has various
applications in the theory of quantum entanglement, quantum key distribution, and the quantum marginal
problem. In particular, bosonic extension gives a tighter bound for the quantum marginal problem based on
separability. In general, it is known that a ρAB admitting symmetric extension may not have bosonic extension.
In this work, we show that, when the dimension of the subsystem B is 2 (i.e., a qubit), ρAB admits a k-symmetric
extension if and only if it has a k-bosonic extension. Our result has an immediate application to the quantum
marginal problem and indicates a special structure for qubit systems based on group representation theory.
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I. INTRODUCTION

Entanglement is one of the central mysteries of quantum
mechanics—two or more parties can be correlated in the
way that is much stronger than they can be in any classical
way [1]. Due to its striking features, entanglement plays a
key role in many quantum information processing tasks such
as teleportation and quantum key distribution [2]. However,
while entanglement has been investigated fairly extensively in
the research literature, identifying entangled state remains a
challenging task. Indeed, even for bipartite quantum systems,
there is no generic procedure that can tell us whether a given
bipartite state is entangled or not. Actually, the entanglement
detection problem has long been known to be NP hard in
general [3].

Consider a bipartite quantum system with Hilbert space
CdA ⊗ CdB ; here the subsystems are labeled A and B. A state
ρAB is separable if it can be written as the convex combination∑

i piρ
A,i ⊗ ρB,i for a probability distribution pi and states

ρA,i and ρB,i ; otherwise, it is entangled [4]. In practice, one
typically constructs detection criteria based on simple prop-
erties that are obeyed by all separable states; therefore, these
are necessary but not sufficient conditions for separability. A
most favored approach is the known partial transpose (PPT)
criterion [5,6]. Another commonly used method is through the
k-symmetric extension hierarchy.

A bipartite state ρAB is k-symmetric extendible if there
is a global quantum state ρAB1B2···Bk whose marginals on
A,Bi are equal to the given ρAB for i = 1, 2, . . . , k. It was
found that the set of all k-extendible states, denoted by �k , is
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convex, with a hierarchy structure �k ⊃ �k+1, and besides,
in the k → ∞ limit, �∞ converges exactly to the set of
separable states which is also convex [7]. In other words,
separable states are the only states that have k-copy symmetric
extensions for all k � 2. This leads to a separability criteria
which consists of a hierarchy of tests: one asks about whether
or not a given state belongs to the k-extendible set �k for
increasing k.

A bipartite state ρAB is k-bosonic extendible if the global
quantum state ρAB1B2···Bk with ρABi = ρAB is supported on the
symmetric subspace of B1B2 . . . Bk . Similarly, the set of all
k-bosonic extendible states, denoted by �̄k , is convex, with
a hierarchy structure �̄k ⊃ �̄k+1, and in the k → ∞ limit,
�̄∞ = �∞ converges also to the set of separable states. Obvi-
ously �̄k ⊆ �k; the k-bosonic extension is stronger than the
k-symmetric extension. Based on k-symmetric and bosonic
extension, effective numerical tests for separability have been
developed [8–10].

It is natural to ask whether �̄k is strictly contained in �k

for any finite k. It turns out that the answer depends on k and
the dimension of the system B. It is known that �̄2 = �2

for dA = dB = 2, and �̄2 ⊂ �2 for dA = dB = 3 [11]. An
example of ρAB with two-symmetric extension that has no
bosonic extension can be constructed from a pure three-qutrit
state ρAB1B2 that is supported on the antisymmetric subspace
of B1B2. This may indicate that �̄k ⊂ �k for dB > 2. In
this sense, the dB = 2 case is of particular interest, given
that �̄k = �k for k = 2 and ∞. One would naturally wonder
whether it is also the case for any other k. Our main result of
this work, as summarized below, shows it is indeed the case.

Main result. For dB = 2, ρAB admits a k-symmetric exten-
sion if and only if it has a k-bosonic extension, for any k. That
is, �̄k = �k for dB = 2.
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This result finds an immediate application to the quantum
marginal problem, also known as the consistency problem,
which asks for the conditions under which there exist an
N -particle density matrix ρN whose reduced density matri-
ces (quantum marginals) on the subsets of particles Si ⊂
{1, 2, . . . , N} are equal to the given density matrices ρSi

for
all i [12]. The related problem in fermionic (bosonic) systems
is the so-called N -representability problem, which inherits a
long history in quantum chemistry [13,14].

In this sense, the k-symmetric extension problem is a
special case of the quantum marginal problem, and the k-
bosonic extension problem is intimately related to the N -
representability problem [15]. Also it worth mentioning that
the quantum marginal problem and the N -representability
problem are in general very difficult. They were shown to be
the complete problems of the complexity class QMA, even
for the relatively simple case where the given marginals are
two-particle states [16–18]. In other words, even with the help
of a quantum computer, it is very unlikely that the quantum
marginal problems can be solved efficiently in the worst case.

An interesting necessary condition of the k-symmetric and
bosonic extension problem is derived in [19], based on the
separability of ρAB . It shows that if ρAB has k-symmetric
extension then the state ρ̃AB

k = (dBρA ⊗ IB + kρAB )/(d2
B +

k) is separable. This condition can be strengthened if
ρAB has k-bosonic extension, where the state ρ̃AB

k =
(ρA ⊗ IB + kρAB )/(dB + k) is separable.

Our main result hence has an immediate corollary as
summarized below. And it has shown that this result leads to
strong conditions for detecting the consistency of overlapping
marginals [19].

Corollary. For dB = 2, if ρAB has k-symmetric extension,
then the state ρ̃AB

k = (ρA ⊗ IB + kρAB )/(k + 2) is separable.
We organize our paper as follows: in Sec. II, we review

some background of the known results for the relationship
between �̄k and �k; in Sec. III, we use the dB = 2, k = 3
case as an example to demonstrate the proof idea of our main
result; in Sec. IV, we discuss the proof idea for the general
case; some further discussions are given in Sec. V; some
technical details of the proof are discussed in the Appendices.

II. BACKGROUND AND PREVIOUS RESULTS

Consider the following notations:

TrB2B3...Bk
[ρAB1···Bk ] = ρAB1 , (2.1a)

(1A ⊗ P ij )ρAB1···Bk (1A ⊗ P ij )† = ρAB1···Bk , (2.1b)

where the operator P ij ∈ Sk is an element in permutation
group Sk , which swaps the ith subsystem Bi and the j th sub-
system Bj . The global state ρAB1···Bk is called a k-symmetric
extension of ρAB1 .

Equation (2.1b) requires the global state ρAB1···Bk be in-
variant under any exchange of Bi and Bj , but it does not
require that ρAB1···Bk must support on a subspace with specific
permutation symmetry; e.g., for a two-symmetric extendible
state, its extension can be bosonic, which supports on the
symmetric subspace only, or fermionic, whose support only
resides on the antisymmetric subspace or, more generally, can
be a mixture of both.

The following has already been known.
Fact 1. Given any two-symmetric extendible state ρAB , if

dB = 2, then a bosonic extension always exists.1

The original proof can be found in [20]. For consistency
and readability, we include the proof here.

Proof. For k = 2, Eq. (2.1b) reduces to

(1A ⊗ P B1B2 )ρAB1B2 (1A ⊗ P B1B2 )† = ρAB1B2 , (2.2)

which means that ρAB1B2 commutes with (1A ⊗ PB1B2 ).
Therefore, they have common eigenvectors, say {|φj 〉}. Since

(1A ⊗ P B1B2 )
2 = 1, we have

1A ⊗ P B1B2 |φj 〉 = ±|φj 〉, ∀j. (2.3)

Thus, generically, ρAB1B2 can be decomposed as

ρAB1B2 =
∑

j

λ+
j |φ+

j 〉〈φ+
j | +

∑
l

λ−
l |φ−

l 〉〈φ−
l |, (2.4)

where 1A ⊗ P B1B2 |φ±
j 〉 = ±|φ±

j 〉. Owning to the fact that B1

and B2 are two qubits, |φ±
j 〉 can be further decomposed as

|φ+
j 〉 =

∑
k

|ψj,k〉A|ψ+
k 〉B1B2 , (2.5a)

|φ−
j 〉 = |ξj 〉A|ψ−〉B1B2 , (2.5b)

where |ψj,k〉A and |ξj 〉A are vectors of subsystem A,
while |ψ+

k 〉B1B2 and |ψ−〉B1B2 are the triplet and singlet
states, respectively.2 Replacing the singlet state |ψ−〉B1B2 ≡

1√
2
(|01〉 − |10〉) with |ψ+〉B1B2 ≡ 1√

2
(|01〉 + |10〉), we get a

new global state σAB1B2

σAB1B2 =
∑

j

λ+
j

∑
k,k′

|ψj,k〉A〈ψj ′,k′ |A|ψ+
k 〉B1B2〈ψ+

k′ |B1B2

+
∑

l

λ−
l |ξ−

l 〉A〈ξ−
l |A|ψ+〉B1B2〈ψ+|B1B2 . (2.6)

Obviously, σAB1B2 and ρAB1B2 have identical reduced density
matrix ρAB1 , and σAB1B2 supports on the bosonic subspace. �

The above proof can be roughly divided into two steps.
(1) Find the general form of global state after symmetric

extension, which probably is a convex combination of bosonic
extension and nonbosonic extension.

(2) Demonstrate that a bosonic extension, which preserves
the reduced density matrix untouched, could be yielded by
replacing the nonbosonic component with a bosonic one.

However, the above two-symmetric extension possesses
properties that are not true for general k.

(a) When considering two-symmetric extension states,
the permutation group contains only one nontrivial element
P B1B2 ; thus all permutations commute with global density
matrix and have the common set of eigenvectors. While for
general k, the permutation group itself is a non-Abelian group,
thus Eq. (2.3) will not always hold.

1This claim does not always work when the subsystem has higher
dimension.

2Here we do not require |ψj,k〉A and |ξj 〉A to be normalized for
simplicity in description.
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(b) The dimension of nonbosonic subspace in two-qubit is
one; hence we do not have to consider the off diagonal terms
for a nonbosonic component. Again, it is no longer true for
general k.

The above differences imply that the decomposition of
general k-symmetric extendible states after extension will be
more complicated than Eq. (2.6).

III. THREE-SYMMETRIC AND/OR BOSONIC EXTENSION

Before starting the proof for general k, we first take a look
at the k = 3 case.

Consider the Hilbert space T ≡ V (1) ⊗ V (2) ⊗ V (3) con-
stituted by three-qubit B1, B2, and B3, where each V (i)

represents a qubit. T is spanned by eight vectors:
{|000〉, |001〉, . . . , |111〉}. The bosonic subspace contains four
linear independent vectors:

|000〉, 1√
3

(|001〉 + |010〉 + |100〉),

1√
3

(|011〉 + |101〉 + |110〉), |111〉.

Since the cross term of bosonic subspace and nonbosonic
subspace is forbidden, we shall only consider the density
matrix that supports on nonbosonic subspace.

Notice that, permutation can only swap two or more sub-
systems, but keep the numbers of |0〉 and |1〉 constant. Thus
the nonbosonic subspace could be further divided into two
subspaces V (a) and V (b). V (a) has 2 |0〉 and 1 |1〉, while the
other has 1 |0〉 and 2 |1〉.

First let us consider a density matrix ρ̃AB1B2B3 that purely
supports on End(VA) ⊗ End(V (a) ). The dimension of this
subspace is two and one can find a basis

∣∣ψ (a)
1

〉 ≡ 1√
6

(2|001〉 − |010〉 − |100〉), (3.1a)

∣∣ψ (a)
2

〉 ≡ 1√
2

(|010〉 − |100〉). (3.1b)

It can be easily checked that, if Eq. (2.1b) was satisfied,

ρ̃AB1B2B3 = ρ̃A ⊗ ρ̃B1B2B3

= ρ̃A ⊗ (
1
2

∣∣ψ (a)
1

〉〈
ψ

(a)
1

∣∣ + 1
2

∣∣ψ (a)
2

〉〈
ψ

(a)
2

∣∣)
∝ ρ̃A ⊗ 1End(V (a) ), (3.2)

where 1End(V (a) ) is the identity operator in End(V (a) ).
It is straightforward to check that V (a) is an invariant space

under permutation group S3; thus the representation on V (a)

must be irreducible. Equation (2.1b) essentially requires that
each group element of S3 must commute with ρ̃B1B2B3 . By
Schur’s Lemma, it must be proportional to 1End(V (a) ).

Likewise, one can write down a density matrix that purely
supports on End(VA) ⊗ End(V (b) )

ρ̄AB1B2B3 = ρ̄A ⊗ (
1
2

∣∣ψ (b)
1

〉〈
ψ

(b)
1

∣∣ + 1
2

∣∣ψ (b)
2

〉〈
ψ

(b)
2

∣∣)
= ρ̄A ⊗ ρ̄B1B2B3 , (3.3)

where

∣∣ψ (b)
1

〉 ≡ 1√
6

(2|110〉 + |101〉 − |011〉), (3.4a)

∣∣ψ (b)
2

〉 ≡ 1√
2

(|101〉 − |011〉). (3.4b)

Examining the density matrix supporting purely on the
bosonic subspace, one could find that there might exist cross
terms like |ψ〉A〈ψ ′|A ⊗ |000〉B1B2B3〈111|B1B2B3 . Thus it is rea-
sonable to assume that cross terms mapping from V (a) to V (b)

would also exist and vice versa.
After calculation, one could verify that a Hermitian cross

term satisfying Eq. (2.1b) must be of the following form:

ρ̂AB1B2B3 = ρ̂A ⊗ ρ̂B1B2B3 + H.c., (3.5)

where

ρ̂B1B2B3 = 1
2

∣∣ψ (a)
1

〉〈
ψ

(b)
1

∣∣ + 1
2

∣∣ψ (a)
2

〉〈
ψ

(b)
2

∣∣. (3.6)

A general density matrix ρAB1B2B3 supporting on
End(VA) ⊗ End(V (a) ⊕ V (b) ) should be a linear combination
of ρ̃AB1B2B3 , ρ̄AB1B2B3 , and ρ̂AB1B2B3 ,3

ρAB1B2B3 = αρ̃AB1B2B3 + βρ̄AB1B2B3 + γ ρ̂AB1B2B3 . (3.7)

Define

σ̃ B1B2B3 ≡ |φ1〉B1B2B3〈φ1|B1B2B3 , (3.8a)

σ̄ B1B2B3 ≡ |φ2〉B1B2B3〈φ2|B1B2B3 , (3.8b)

σ̂ B1B2B3 ≡ |φ1〉B1B2B3〈φ2|B1B2B3 + H.c., (3.8c)

where

|φ1〉B1B2B3 ≡ 1√
3

(|001〉 + |010〉 + |100〉), (3.9a)

|φ2〉B1B2B3 ≡ 1√
3

(|110〉 + |101〉 + |011〉). (3.9b)

It is easy to check that a bosonic global state σAB1B2B3 , which
satisfies

Tr(AB1 )c σAB1B2B3 = Tr(AB1 )c ρAB1B2B3 = ρAB1 , (3.10)

can be obtained by a simple replacement,

ρ̃B1B2B3 ↔ σ̃ B1B2B3 , (3.11a)

ρ̄B1B2B3 ↔ σ̄ B1B2B3 , (3.11b)

ρ̂B1B2B3 ↔ σ̂ B1B2B3 , (3.11c)

and a coefficient modification γ ′ ↔ −γ .4 Clearly, as long as
ρAB1B2B3 is a density matrix, which means it has to be positive
definite, normalized, and Hermitian, σAB1B2B3 must also be a
proper density matrix.

3Of course, such coefficients have to satisfy some constraints to
ensure that ρAB1B2B3 is a legal density matrix.

4By multiplying a global phase on basis in V (b), we could always
absorb this minus sign or any other phase.
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Though the idea of proof for k = 3 is quite similar to
k = 2, discrepancies mentioned in Sec. II led to a more
complicated version.

Our proof for general k will also be divided into three steps.
(1) At first we write down a general matrix (not necessarily

a density matrix) after symmetric extension. This step could
be further divided into two steps. First, we shall write down
a general matrix in H ≡ End(VA) ⊗ End(⊗k

i=1VBi
). The key

point of this step is to find an orthogonal and complete basis
in H. Such a basis should be able to conveniently describe
the permutation symmetry. Secondly, we shall restrict such
general matrix form according to Eq. (2.1b). As one could
expect, not only does there exist the diagonal terms that
represent mapping inside irreducible subspaces, cross terms
that describe mapping between different irreducible subspaces
also arise, as long as the representation on both irreducible
subspaces are equivalent.

(2) Then, we shall verify that the former part will become
the diagonal terms after partial trace, while the latter one
contributes to the off-diagonal terms. Under our specific sit-
uation that B1 is a qubit, only one independent off-diagonal
term survives; thus cross terms can always be replaced with a
bosonic version by properly modifying coefficients. On the
other hand, the ratio between diagonal terms is always the
same, regardless of whether they are obtained from a bosonic
extension or not.

(3) The last piece is to demonstrate that the global matrix,
obtained by replacing nonbosonic entries with bosonic ones,
is positive semidefinite.

IV. CASE OF k EXTENSION

In this section we will prove the following main result.
Theorem 2. For any k-extendible state ρAB , if dB = 2, then

a k-bosonic extension always exists.
Consider a Hilbert space T = ⊗k

i=1 V (i) constituted
by k-qubit B1, B2, . . . , Bk , whose computational basis is
{�i1,i2,...,ik ≡ |i1, i2, . . . , ik〉}, where i1, i2, . . . , ik = 0, 1.

Each subsystem V (i) is invariant under SU(2) rotation,
and transforms according to the two-dimensional irreducible
representation D(2). Therefore, the Lie algebra su(2), which
describes the infinite small rotation of SU(2), has the follow-
ing matrix form on each V (i):

J (i)
z = 1

2

(
1 0
0 −1

)
, J

(i)
+ =

(
0 1
0 0

)
,

J
(i)
− =

(
0 0
1 0

)
,

where we have set

|1〉(i) =
(

1
0

)
, |0〉(i) =

(
0
1

)
.

T is also invariant under global SU(2) rotation, whose
corresponding su(2) algebra is given by Jz ≡ ∑

i J
(i)
z , J± ≡∑

i J
(i)
± . T transforms under representation ⊗kD(2), which is

not irreducible, but can be decomposed as a direct sum of a
series of irreducible representations⊗k

D(2) =
⊕

j

mjD
(2j+1), (4.1)

where mj is the multiplicity of irreducible representation
D(2j+1). This is equivalent to saying that T can be partitioned
as a direct sum of orthogonal subspaces:

T =
⊕

j

mjT (2j+1). (4.2)

In Appendix A, we manifest that such T (2j+1) has particu-
lar permutation symmetry described by Young diagram [λ].5

Since irreducible representation can be labeled by partition
[λ], we can rewrite Eq. (4.1) with new notation,⊗k

D[1] =
⊕
[λ]

C
[λ]
k D[λ], (4.3)

where C
[λ]
k is the multiplicity of SU(2) irreducible representa-

tion D[λ].
Two irreducible representation spaces T [λ]

μ and T [λ]
ν cor-

responding to the same Young diagram but different Young
tableaus are orthogonal to each other. It is also known that
there is no multiplicity in any weight subspace in a SU(2) rep-
resentation, as long as it is irreducible. Thus one can safely use
weight ω, the eigenvalue of Jz, to label different states inside
an irreducible subspace T [λ]

μ . Therefore, {|[λ], μ, ω〉} labels a
complete basis of T one by one, where [λ] tells inequivalent
SU(2) representations, while μ differentiate equivalent ones.
They together determine an orthogonal irreducible subspace
and ω labels every different vector inside.

On the other hand, {|[λ], μ, ω〉} can be interpreted in
another way: ω describes the weight and [λ] tells inequivalent
Sk representations; thus these two parameter differentiate
orthogonal invariant subspaces, while μ labels vectors inside.6

From now on we shall use |ω[λ]
μ 〉 short for |ω, [λ], μ〉.

Any matrix ρAB1B2···Bn ∈ End(VA) ⊗ End(T ) can be
expressed as

ρAB1B2···Bk =
∑

[λ],[λ′]

∑
μ,μ′

∑
ω,ω′

∑
α,α′

∣∣ψα
ω,[λ],μ

〉〈
ψα′

ω′,[λ′],μ′
∣∣

× ⊗ ∣∣ω[λ]
μ

〉〈
ω

′[λ′]
μ′

∣∣, (4.4)

where |ψα
ω,[λ],μ〉 is a non-normalized state in VA and α labels

different states in VA.
Inserting Eq. (4.4) into Eq. (2.1b), ∀π ∈ Sk we get a series

of constraints for ρAB1B2···Bk :

∀[λ], [λ′]ω,ω′ and μ,μ′,
∑
α,α′

∣∣ψα
ω,[λ],μ

〉〈
ψα′

ω′,[λ′],μ′
∣∣

×
∑
ν,ν ′

A(π )[λ]
μ,νA(π )[λ′]∗

ν ′,μ′
∣∣ω[λ]

ν

〉〈
ω

′[λ′]
ν ′

∣∣
=

∑
α,α′

∣∣ψα
ω,[λ],μ

〉〈
ψα′

ω′,[λ′],μ′
∣∣∣∣ω[λ]

μ

〉〈
ω

′[λ′]
μ′

∣∣, (4.5)

where A[λ] and A[λ′] are irreducible representations of permu-
tation group Sk .

5Here [λ] ≡ {λ1, λ2, . . . , λn} is a partition of integer k, where all λi

are integers satisfying λ1 � λ2 � · · · � λn � 0,
∑n

i=1 λi = k. Such
partition describes an n-row Young diagram.

6The validity of this explanation is verified in Appendix B.
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Define matrix

M (ω,ω′, [λ], [λ′])

≡
∑
μ,μ′

M (ω,ω′, [λ], [λ′])μμ′
∣∣ω[λ]

μ

〉〈
ω

′[λ′]
μ′

∣∣, (4.6)

where

M (ω,ω′, [λ], [λ′])μμ′ ≡
∑
α,α′

∣∣ψα
ω,[λ],μ

〉〈
ψα′

ω′,[λ′],μ′
∣∣. (4.7)

Thus ∀π ∈ Sk

A[λ](π )M (ω,ω′, [λ], [λ′])A[λ′](π )†

= M (ω,ω′, [λ], [λ′]). (4.8)

Schur’s lemma guarantees that (a) when [λ] �= [λ′], M = 0
and (b) when [λ] = [λ′], M is invertible.

Choose |ω[λ]
μ 〉 carefully such that the representations A[λ]

are identical, not just isomorphic, for different weights ω.
Hence all M (ω,ω′, [λ], [λ]) can be proportional to the cor-
responding identity matrix. Therefore, one could eliminate
plenty of cross terms and restrict ρAB1B2···Bk to

ρAB1B2···Bk =
∑
[λ]

∑
ω,ω′

(∑
α,α′

∣∣ψα
ω,[λ]

〉〈
ψα′

ω′,[λ]

∣∣)

× ⊗ 1

d [λ]

∑
μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣, (4.9)

where d [λ] is the dimension of Sk irreducible representation
corresponding to Young diagram [λ].

Determining RDM ρAB1 can be immediately reduced to
calculating every possible combination of [λ], ω, and ω′. For
given [λ], ω, and ω′, one could temporally ignore system A

and concentrate on group {B1, B2, . . . , Bk}. Then the task left
is to calculate

1

d [λ]
Tr(B1 )c

∑
μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣. (4.10)

If ω = ω′, it is equivalent to consider a mixed state within
a constant weight subspace. Hence

1

d [λ]
Tr(B1 )c

∑
μ

∣∣ω[λ]
μ

〉〈
ω[λ]

μ

∣∣ = t0|0〉〈0| + t1|1〉〈1|. (4.11)

According to [21],7

t0

t1
= k − 2ω

k + 2ω
. (4.12)

Since the ratio between diagonal terms is solely determined
by the number of subsystems k and weight ω, any nonbosonic
extensions can be directly replaced by a bosonic version in
same weight subspace

1

d [λ]

∑
μ

∣∣ω[λ]
μ

〉〈
ω[λ]

μ

∣∣ ↔ |ωS〉〈ωS |. (4.13)

If ω − ω′ = ±1, nonzero contribution of Eq. (4.10) would
be proportional to |1〉〈0| and |0〉〈1|, respectively. Different

7See details in Appendix C.

[λ] only affect the proportion coefficients. Choosing proper
coefficients for bosonic extension will exactly recover the
result of nonbosonic ones,8

1

d [λ]

∑
μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣ ↔ β
[λ]
ω,ω′ |ωS〉〈ω′S |, (4.14)

where

β
[λ]
ω,ω′ =

√(
λ1−λ2

2 − ω
)(

λ1−λ2
2 + ω + 1

)
(

k
2 − ω

)(
k
2 + ω + 1

) δω±1,ω′ .

Obviously, 0 < β
[λ]
ω,ω′ � 1.

If |ω − ω′| � 2, Eq. (4.10) would vanish. According to
Eq. (4.9), ρAB1B2···Bk has a series of bosonic version σAB1B2···Bk

(not all of them are proper density matrix)

σAB1B2···Bk ≡
∑
[λ]

∑
ω,ω′

(∑
α,α′

∣∣ψα
ω,[λ]

〉〈
ψα′

ω′,[λ]

∣∣)

× ⊗ p
[λ]
ω,ω′ |ωS〉〈ω′S |, (4.15)

where p
[λ]
ω,ω′ are coefficients

p
[λ]
ω,ω′ =

⎧⎪⎪⎨
⎪⎪⎩

1, ω = ω′,√
( λ1−λ2

2 −ω)( λ1−λ2
2 +ω+1)

( k
2 −ω)( k

2 +ω+1)
, ω ± 1 = ω′,

arbitraryvalue, others.

(4.16)

We can always find proper p
[λ]
ω,ω′ such that σAB1B2···Bk can

be decomposed as a convex combination of a series of pure
bosonic extensions.9 Hence σAB1B2···Bk is positive definite.

Therefore, we have finished the proof of Theorem 2.

V. DISCUSSION

We have shown that if a bipartite state ρAB has a k-
symmetric extension

(1A ⊗ π )ρAB1B2···Bk (1A ⊗ π )† = ρAB1B2···Bk , (5.1)

with ρABi = ρAB , it must also have a bosonic extension
σAB1B2···Bk satisfying

σAB1B2···Bk =
∑

α

pα|φα〉AB1B2···Bk 〈φα|AB1B2···Bk ,

(5.2a)

(1A ⊗ π )|φα〉AB1B2···Bk = |φα〉AB1B2···Bk , (5.2b)

where π ∈ Sk is an arbitrary permutation operator and pα is a
probability distribution as long as B1 is a qubit.

Notice that Eq. (4.9) was essentially saying that ρAB1B2···Bk

could be further decomposed into two major parts. The first
part contributed to the “diagonal terms,” whose ratio is iden-
tical as long as global state laid in same weight subspaces.
Hence this part did not contain information about permutation
symmetry. The second type contributed to the “off-diagonal

8See details in Appendix D.
9See Appendix E for details.
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terms.” They probably carried information about permutation
symmetry.

Since we have discussed the case for k-qubit extension,
it is natural to consider the k-qudit problem, i.e., dB > 2.
However, it turns out that the situation is much more com-
plicated, since there is now more than one pair of off-diagonal
terms after partial trace. In the qubit case, we can peel off
all the off-diagonal terms at one time for each given [λ]. Due
to the properties of β

[λ]
ω,ω′ , the residual “diagonal” matrix is

guaranteed to be positive definite. In the qudit case, we might
have to peel off the off-diagonal terms in several steps. After
peeling off all off-diagonal terms, the residual might not be
always positive definite.

Example 3. Consider a tripartite pure state on VA ⊗ VB1 ⊗
VB2 of the form

|ψ〉 = α(|012〉 − |021〉)

+β(|120〉 − |102〉) + γ (|201〉 − |210〉), (5.3)

where α, β, γ �= 0 are all different. Clearly, |ψ〉 is a fermionic
extension of ρAB1 ≡ TrB2 [|ψ〉〈ψ |]. The diagonal terms of
ρ̄AB1 are

ρ̄AB1 = αα∗(|01〉〈01| + |02〉〈02|)
+ββ∗(|12〉〈12| + |10〉〈10|)
+ γ γ ∗(|20〉〈20| + |21〉〈21|), (5.4)

while the off-diagonal ρ̃AB1 read

ρ̃AB1 = −αβ∗|01〉〈10| − αγ ∗|02〉〈20|
−βγ ∗|12〉〈21| + H.c. (5.5)

If ρAB1 had a bosonic extension σAB1B2 , then TrB2 σAB1B2

should produce exact off-diagonal terms as ρ̃AB1 .
−αβ∗|01〉〈10| can be obtained in three different ways:10

TrB2 [αβ∗|0〉〈1| ⊗ (|10〉 + |01〉)〈00|], (5.6a)

TrB2 [αβ∗|0〉〈1| ⊗ |11〉(〈10| + 〈01|)], (5.6b)

TrB2 [αβ∗|0〉〈1| ⊗ (|12〉 + |21〉)(〈02| + 〈20|)]. (5.6c)

However, in order to keep σAB1B2 positive definite, the first
two choices will have to introduce |00〉〈00| and |11〉〈11|,
respectively, which did not appear in diagonal terms, and
hence destroy the positive definiteness. Therefore, we have to
use Eq. (5.6c) to obtain −αβ∗|01〉〈10| in TrB2 σAB1B2 .

After replacing all terms in ρ̃AB1 with corresponding
bosonic extension, the off-diagonal terms in σAB1B2 are

σ̃ AB1B2 = −{αβ∗|0〉〈1| ⊗ (|12〉 + |21〉)(〈02| + 〈20|)
+αγ ∗|0〉〈2| ⊗ (|12〉 + |21〉)(〈01| + 〈10|)
+βγ ∗|1〉〈2| ⊗ (|20〉 + |02〉)(〈01| + 〈10|)
+ H.c.}. (5.7)

Because of the global minus sign, it is impossible to peel
off all three pairs of off-diagonal terms or any two of them
at one time. In other words, we have to peel them off pair by
pair. After matching the corresponding diagonal terms with

10Of course it can be a mixture of these three.

the off-diagonal pair, the “residual” diagonal matrix in TrB3

will be

(αα∗ − pp∗ − ss∗)(|01〉〈01| + |02〉〈02|)
+ (ββ∗ − qq∗ − uu∗)(|12〉〈12| + |10〉〈10|)
+ (γ γ ∗ − t t∗ − vv∗)(|20〉〈20| + |21〉〈21|), (5.8)

where

pq∗ = αβ∗, st∗ = αγ ∗, uv∗ = βγ ∗. (5.9)

It is easy to check that

αα∗ − pp∗ − ss∗ + ββ∗ − qq∗

−uu∗ + γ γ ∗ − t t∗ − vv∗ < 0. (5.10)

Therefore, there does not exist a bosonic extension for ρAB1 .
However, there may be some coincident situation, under

which the “residual” diagonal matrix is positive definite;
hence the symmetric extendibility of ρAB1 is equivalent to
its bosonic extendibility. We do not know whether such co-
incidences are purely accidental or there are some underlining
profound reasons. We leave this for future research.
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APPENDIX A: PERMUTATION SYMMETRY OF
IRREDUCIBLE SUBSPACE T (2 j+1)

We define P mn, an element in permutation group Sk , as

P mn�i1,...,im,...,in,...,ik = �i1,...,in,...,im,...,ik . (A1)

It is obvious that the permutation of the indices of subsys-
tems commutes with the tensor product of individual SU(2)
rotation, and hence the global SU(2) rotation. Therefore, any
subspace

T [λ]
μ ≡ Y [λ]

μ T (A2)

projected by a standard Young tableau11 Y [λ]
μ is also invariant

under the global SU(2) rotation. Here [λ] describes an n-row
Young diagram and μ differentiates standard Young tableaus
corresponding to the same [λ].

Since {�i1,i2,...,ik } is a complete basis of T , {Y [λ]
μ �i1,i2,...,ik }

must be a supercomplete basis of T [λ]
μ . From now on, to

describe the vector Y [λ]
μ �i1,i2,...,ik , we shall use a graphic way:

insert ij into the entry of Young diagram Y [λ] that is filled by
j in standard Young tableau Y [λ]

μ .

11Standard Young tableau is obtained by filling {1, 2, . . . , k} into
all entries in such a manner that each row and each column keeps in
increasing order.
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Example 4:

(A3)

Because each V (i) is a two-dimensional subsystem, and for
any given Young tableau, its corresponding Young operator
antisymmetrize each column, a Young diagram with three or
more rows would project into the empty space; thus from now
on we only consider a one- or two-row Young diagram.

Moreover, if two states belonging to a same invariant
subspace, say T [λ]

μ , are identical except interchanging entries
in a given column, their difference would only be a factor −1.

Example 5.

1 1
0

= −1× 0 1
1

.

Therefore, if a state fills two zeros or two ones in the same
column, such state must vanish.

It can be easily verified that the global SU(2) representa-
tion on T [λ]

μ is irreducible, by the following observation.
Observation 6. There is a single highest weight state |ωM〉

in each T [λ]
μ

|ωM = 1 1 1 . . .. . . 1
0 0 . . . 0

. (A4)

Proof. It can be easily verified that the effect of J+ acting
on any state in T is just simply lifting |0〉 to |1〉 or annihilating
|1〉, then summing all modified states together. Therefore,
J+|ωM〉 would vanish since each modified state will either be
annihilated directly or have two |1〉’s filling in a column. Thus
|ωM〉 is a highest weight state.

States with the same amount of |1〉 and |0〉 as |ωM〉 would
be either zero or can be obtained by simply interchanging
entries within one or more columns of |ωM〉, which would at
most contribute an additional factor −1.

States with more |1〉 than |ωM〉 vanish directly.
States that replace several |1〉 to |0〉 in the first row will

survive after the action of J+, and thus cannot be a highest
weight state.

Therefore, |ωM〉 indeed is the single highest weight state in
T [λ]

μ .

APPENDIX B: CONSTRUCT IRREDUCIBLE
SUBSPACE OF Sk

For any element π ∈ Sk , πT [λ]
μ will either leave T [λ]

μ

untouched or map it integrally to another T [λ]
ν

πT [λ]
μ = πY [λ]

μ T = Y [λ]
ν πT = T [λ]

ν . (B1)

Furthermore, any element π ∈ Sk cannot change the state
weight. Thus states with the same weight ω0, irreducible label
[λ̃], but different μ span an invariant subspace T [λ̃](ω0) under
permutation. The representation, say A, on T [λ̃](ω0) can be
decomposed as a direct sum of irreducible representations of
Sk , and so does T [λ̃](ω0) itself.

Any state in T [λ̃](ω0) is obtained by a projection opera-
tor corresponding to Young diagram [λ̃]. Hence in T [λ̃](ω0)
only appears an irreducible representation described by A[λ̃].
Furthermore, it can be quickly obtained that the multiplicity
of A[λ̃] must be one, as a quick corollary of the following
statement.

Observation 7. Suppose C
[λ]
k is the multiplicity of SU(2)

irreducible representation D[λ] appearing in Eq. (4.3); then
C

[λ]
k equals d [λ], the dimension of irreducible representation

A[λ] of permutation group Sk .
Proof. When k = 1, the statement is trivial.
Suppose the statement holds when k = m. For k = m + 1,

⊗m+1
D[1] =

( ⊕
λ1+λ2=m

C[λ]
m D[λ]

)⊗
D[1]

=
⊕

λ′
1+λ′

2=m+1

C
[λ′]
m+1D

[λ′], (B2)

and, according to the Littlewood-Richardson rule,

C
{λ′

1,λ
′
2}

m+1 = C
{λ′

1−1,λ2}
m + C

{λ′
1,λ

′
2−1}

m , (B3)

where C
{λ1,λ2}
m equals d [λ], the dimension of Sm irreducible

representation A{λ1,λ2}. d [λ] can be easily computed from its
Young diagram by a result known as the hook-length formula

d{λ1,λ2} = (λ1 + λ2)!(λ1 − λ2 + 1)

λ2!(λ1 + 1)!
. (B4)

By simple calculation, one can verify that

C
{λ′

1,λ
′
2}

m+1 = (λ′
1 + λ′

2)!(λ′
1 − λ′

2 + 1)

λ′
2!(λ′

1 + 1)!
= d{λ′

1,λ
′
2}, (B5)

and thus the proof is accomplished. �
This indicates that an irreducible subspace of permutation

group Sk in T can be uniquely determined by weight ω and
irreducible representation label [λ].

APPENDIX C: RATIO BETWEEN DIAGONAL TERMS

The combinatorial properties of the constant weight condi-
tion impose strong constraints on the reduced density matri-
ces [21]

∑
i

(k − 2ω − 2)ρB1Bi

01,01 =
∑

i

(k + 2ω)ρB1Bi

00,00, (C1a)

∑
i

(k + 2ω − 2)ρB1Bi

10,10 =
∑

i

(k − 2ω)ρB1Bi

11,11. (C1b)

Assume that

∑
i

ρ
B1Bi

00,00 = (k − 2ω − 2)t0, (C2a)

∑
i

ρ
B1Bi

10,10 = (k − 2ω)t1. (C2b)
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Then we can express the matrix elements using t0 and t1

ρ
B1
0,0 = 1

k − 1

∑
i

(
ρ

B1Bi

00,00 + ρ
B1Bi

01,01

) = 2t0, (C3a)

ρ
B1
1,1 = 1

k − 1

∑
i

(
ρ

B1Bi

10,10 + ρ
B1Bi

11,11

) = 2t1, (C3b)

∑
i

ρ
Bi

0,0 =
∑

i

ρ
B1Bi

00,00 +
∑

i

ρ
B1Bi

10,10

= (k − 2ω − 2)t0 + (k − 2ω)t1, (C3c)∑
i

ρ
Bi

1,1 =
∑

i

ρ
B1Bi

00,00 +
∑

i

ρ
B1Bi

01,01

= (k + 2ω)t0 + (k + 2ω − 2)t1. (C3d)

Compatibility of the k-symmetric extendible state requires
that

ρ
B1
0,0 : ρ

B1
1,1 = ρ

Bi

0,0 : ρ
Bi

1,1, (C4)

i.e.,

2t0

2t1
= (k − 2ω − 2)t0 + (k − 2ω)t1

(k + 2ω)t0 + (k + 2ω − 2)t1
,

which leads to

t0

t1
= k − 2ω

k + 2ω
. (C5)

Here we have dropped the solution t0 + t1 = 0.

APPENDIX D: ADJUSTING COEFFICIENT FROM
NONBOSONIC EXTENSION TO BOSONIC EXTENSION

Suppose there are two k-qubit pure states |ψ〉 and |φ〉,
which lie in different constant weight subspaces Vω and Vω+1,

|ψ〉 =
∑

i1,...,ik=0,1

ai1,...,ik |i1, . . . , ik〉, (D1a)

|φ〉 =
∑

j1,...,jk=0,1

bj1,...,jk
|j1, . . . , jk〉. (D1b)

Define ρ ≡ |ψ〉〈φ| and consider its one-particle partial trace
{ρ (m) ≡ Trmc ρ}. It is easy to verify that ρ (m) has only one
nonzero element

ρ (m) =
∑

i1, . . . , im−1, im+1 . . . , ik
j1, . . . , jm−1, jm+1 . . . , jk

ai1,...,ik bj1,...,jk
δim0δjm1

×δi1j1 . . . δim−1jm−1δim+1jm+1 . . . δikjk
|0〉〈1|. (D2)

J
(m)
+ acts on the mth particle, elevating |0〉 to |1〉 and

annihilating the |1〉; hence

Tr(J (m)
+ ρ) =

∑
i1, . . . , im−1, im+1 . . . , ik
j1, . . . , jm−1, jm+1 . . . , jk

ai1,...,ik bj1,...,jk
δim0δjm1

× δi1j1 · · · δim−1jm−1δim+1jm+1 · · · δikjk
. (D3)

Therefore, ρ (m) = Tr(J (m)
+ ρ)|0〉〈1|. Moreover,∑

m

ρ (m) = Tr(J+ρ)|0〉〈1|. (D4)

Now recalling the task in Eq. (4.10), one immediately
obtains

1

d [λ]
Tr(B1 )c

∑
μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣
= 1

kd [λ]

∑
i

Tr(Bi )c
∑

μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣

= 1

kd [λ]
Tr

(
J+

∑
μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣)∣∣0〉〈1|. (D5)

Since for each given μ, all possible {|ω[λ]
μ 〉} forms the same

irreducible SU(2) representation D[λ], corresponding to irre-
ducible representation j = 1

2 (λ1 − λ2). Within such represen-
tation, J+ elevates |ω〉 to |ω + 1〉, for every weight ω that is
not the highest weight,

1

d [λ]
Tr(B1 )c

∑
μ

∣∣ω[λ]
μ

〉〈
ω′[λ]

μ

∣∣ = α
[λ]
ω,ω′ |0〉〈1|, (D6)

where

α
[λ]
ω,ω′ = δω+1,ω′

k

√(
λ1 − λ2

2
− ω

)(
λ1 − λ2

2
+ ω + 1

)
.

APPENDIX E: DENSITY MATRIX GIVEN IN EQ. (4.15)
COULD BE POSITIVE DEFINITE

Notice that σAB1B2···Bk in Eq. (4.15) is a convex combina-
tion of different [λ] ingredients:

σAB1B2···Bk =
∑
[λ]

σ
AB1B2···Bk

[λ] , (E1)

where

σ
AB1B2···Bk

[λ] ≡
∑
ω,ω′

(∑
α,α′

∣∣ψα
ω,[λ]

〉〈
ψα′

ω′,[λ]

∣∣)

⊗ p
[λ]
ω,ω′ |ωS〉〈ω′S |. (E2)

Here p
[λ]
ω,ω′ is defined in Eq. (4.16). Therefore, it is sufficient

to verify that σ
AB1B2···Bk

[λ] can be a positive-definite matrix.
We give a construction as below:

σ
AB1B2···Bk

[λ] =
(∑

ω

ξ [λ]
ω |ωS〉

)(∑
ω′

ξ
∗[λ]
ω′ 〈ω′S |

)

+
∑

ω

(1 − |ξ [λ]
ω |2)|ωS〉〈ωS |, (E3)

where

ξ [λ]
ω ξ

∗[λ]
ω+1 = p

[λ]
ω,ω+1, (E4)∣∣ξ [λ]

ω

∣∣2 � 1. (E5)

012332-8



SYMMETRIC VERSUS BOSONIC EXTENSION FOR … PHYSICAL REVIEW A 99, 012332 (2019)

The first term of the right-hand side in Eq. (E3) contributes
all the off-diagonal terms of σ

AB1B2···Bk

[λ] and the second term
consists of purely diagonal terms. The remaining part is to
give an explicit example of {ξ [λ]

ω }.
Set ξ

[λ]
k
2 +1

= 1 and ξ
[λ]
k+1

2
= ξ

[λ]
k+1

2
=

√
p

[λ]
k−1

2 , k+1
2

for even and

odd k; the remaining ξ [λ]
ω can be obtained by iteration relation

Eq. (E4).

Equation (E5) is satisfied due to the fact that (a) the
maximum value of p

[λ]
ω,ω+1 is obtained at ωm = k

2 + 1 and
ωm = k±1

2 when k is even and odd, respectively, and (b)
p

[λ]
ω,ω+1 increases strictly when ω < ωm and decreases strictly

when ω > ωm.
It is straightforward to verify that σ

AB1B2···Bk

[λ] is positive
definite as long as its counterpart in the nonbosonic extension
is. Therefore, σAB1B2···Bk can always be positive definite.
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