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Scattering quantum random walks on square grids and randomly generated mazes

Daniel Koch
Air Force Research Laboratory, Information Directorate, Rome, New York 13441-4514, USA

(Received 22 October 2018; published 18 January 2019)

The scattering-quantum-random-walk scheme has found success as a basis for search algorithms on highly
symmetric graph structures. In this paper we examine its effectiveness at locating a specially marked vertex on
square grid graphs, consisting of N2 nodes. We simulate these quantum systems using classical computational
methods and find that the probability distributions that arise are very favorable for a hybrid quantum-classical
algorithm. We then examine how this hybrid algorithm handles varying types of randomness in both location
of the special vertex and later random obstacles placed throughout the geometry, showing that the algorithm is
resilient to both cases.
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I. INTRODUCTION

A. Quantum random walks

Quantum random walks are quantum versions of classical
random walks, but because of interference, their behavior can
be very different [1,2] (for reviews, see [3,4]). They have
proven useful in a number of algorithmic applications, one of
which is searches on graphs [5–16]. Initially the searches were
for distinguished vertices, that is, vertices whose behavior is
different than that of the other normal vertices [5–10]. This
has since been generalized to searches with nonuniform un-
marked edges [11], extra edges [12,13], connections between
graphs [14], and even a general subgraph [15,16]. With the re-
cent experimental realization of discrete-time walks [17–24],
it is hopeful that these and other quantum-walk applications
may some day soon be tested experimentally.

In more recent studies, it has been show that it is possible to
use scattering quantum random walks (SQRWs), a particular
type of quantum-random-walk scheme, to create probability
distributions that can aid in finding a marked vertex [25,26].
In both cases, quantum speedups were found as a result of
the SQRW causing nearly all of the probability in the systems
to be concentrated along the path of states leading to the
marked vertex. This paper is an extension to the study of
SQRWs, showcasing a geometry that one can obtain a speedup
on. Specifically, we extend the study of previous discrete
quantum random walks on square lattices [27,28], now using
the SQRW scheme rather than coin quantum random walks.

The predominant search algorithm studied in this paper is
a hybrid quantum-classical approach, which takes inspiration
from other recently successful hybrid algorithms such as the
variational quantum eigensolver [29,30] and quantum approx-
imate optimization [31,32] algorithms. The goal is to use the
quantum system as an aid to a classical search, whereby the
results of the SQRW yield a location in the geometry that is
probabilistically very near the specially marked vertex.

Finally, we show the extent to which the SQRW scheme is
still viable in scenarios with randomness in both the location
of the special vertex and the geometry of the system itself.
In all search algorithms the location of the marked vertex

is always unknown, but here we study a more difficult case
where this randomness directly affects the optimal way to
prepare the quantum system, unlike [25,26]. We also show
how the SQRW scheme fares under conditions where the
searching geometry has unknown barriers placed throughout.
These studies of randomness are motivated by more realistic
search problems, where classical algorithms shine due to their
adaptability, but it is unclear whether or not quantum systems
are viable.

B. Computation-based results

Because the main focus of this paper is on the viability
of a quantum search algorithm faced with different elements
of randomness, there is no single graph geometry on which
to conduct a full analytical study. Consequently, many of
the results in this paper are generated using classical code,
favoring to simulate the unitary steps done by an ideal quan-
tum computer in order to study the resulting behaviors of the
quantum system.

The major advantage to studying these quantum systems
through classical simulations is that we are not limited by
what kinds of geometries we can study through solely analyt-
ical means. In particular, in Sec. VI we simulate thousands of
geometries, each of which contains up to thousands of random
obstacles, making analytical results near impossible. All of the
PYTHON code used to generate the results of this paper can be
found in [33].

C. Layout

The layout of this paper is as follows. In Sec. II we cover all
of the mathematical structure for scattering quantum random
walks. In Sec. III we discuss the main geometry of this
paper, the N × N grid, and proceed to outline the searching
algorithms that are best suited to utilize the kind of probability
distributions generated. Section IV is an in-depth study of the
quantum systems representing these N × N grids. In partic-
ular, we study how the randomness of the special vertex’s
location affects the quantum systems and consequently how
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FIG. 1. An N × N square grid, represented by a graph with
nodes and edges.

to adapt a hybrid search algorithm around it. In Sec. V we
briefly study two independent problems: an N × N grid with
multiple special vertices and the three-dimensional version of
the grid, the N × N × N lattice. In Sec. VI we return to the
N × N grid, placing random obstacles throughout the geome-
try and studying how they affect probability distributions and
consequently searching speeds. Section VII is a concluding
summary of all the results in this paper with an emphasis on
geometries where SQRW-based algorithms may be viable.

II. SCATTER QUANTUM RANDOM WALK

A. Formalism

A scattering quantum random walk is a formalism by
which we can represent any graph geometry G, consisting of
vertices and connections (also referred to as nodes and edges),
as a quantum system (see Fig. 1 below). In a classical random
walk, as well as a coin-operated quantum random walk [11],
the particle is located on the vertices of the system and can
travel throughout the geometry via connecting edges. For a
SQRW, the edges of the graph represent the possible locations
of the particle, while the vertices act as local unitary operators
that propagate the walk.

Given a graph G, consisting of E edges, we can repre-
sent this geometry as a Hilbert space H consisting of 2E

orthogonal states, two states per edge in the graph. The two
states for a given edge are distinguished by their direction. In
particular, given two nodes A and B, there is a state |A,B〉
which represents the particle scattering into node B, coming
from node A, and vice versa for state |B,A〉. The direction of
a state determines which local unitary operator (node) acts on
it, mapping incoming states to outgoing states as

UA|j,A〉 = −r|A, j 〉 + t

n∑

i=1,i �=j

|A, i〉, (1)

where n is the total number of connections stemming from
node A. The constants r and t are the reflection and transmis-
sion coefficients, given by

t = 2

n
r = n − 2

n
. (2)

The unitary operation described in Eq. (1) resembles that of a
scattering process, which is where this quantum-random-walk

scheme gets its name from. The state |j,A〉 is scattering into
node A and its amplitude gets partially reflected back into the
state |A, j 〉 and partially transmitted into the remaining |A, i〉
outgoing states. The sum of all the local unitary operators at
each vertex gives U , which is the unitary operator that drives
the quantum system one time step. Thus, the SQRW process
is a discrete-time quantum random walk, whereby one step is
defined as the action of U on the entire system H.

For all of the systems studied in this paper, the initial state
of the quantum system is always an equal superposition of
states, representing having no a priori knowledge about the
location of the special vertex, labeled F . To drive the quantum
system towards favorable probability distributions, we let
the unitary operator representing the location of F , UF , act
with opposite phase. Specifically, this local unitary operator
follows the same structure as Eq. (1), but with +r and −t

coefficients. This single local unitary operator is responsible
for generating interference, which propagates throughout the
system. After performing a desired number of unitary steps,
we make a projective measurement on the system which will
yield a state representing some edge.

B. Constructing a grid

The main focus of this paper will be to study the geometry
of a two-dimensional (2D) (and briefly later the 3D case) N ×
N square grid, consisting of N2 nodes, as shown in Fig. 1.

Equations (1) and (2) describe how to construct the lo-
cal unitary operator for a node of n connections. However,
constructing these local unitary operators physically is an
entirely separate challenge than simply writing them down.
Specifically, as n gets larger, the coefficients r and t become
increasingly more awkward to try and implement. As an ex-
ample, a node with 26 connections requires a unitary operator
that can split and distribute 1

13 of an amplitude for all 26
incoming states.

A major motivation for the geometry studied in this paper
is one that requires as few different local unitary operators as
possible and is easily scalable. The N × N grids presented
here only require node connections of n = 2, 3, and 4, which
are given by the matrices in Fig. 2. Because each location is
a local unitary operator, one can construct an N × N grid of
arbitrary size with only three core building blocks.

III. SEARCHING ALGORITHMS ON N × N GRIDS

It is important to clarify exactly the type of problem we are
classically representing with the use of quantum systems. In
this paper we primarily focus on the case where the exact final
location is unknown, but we have complete knowledge of the
graph (knowledge that we are searching on an N × N grid).
Later, we relax the second condition, accounting for random
obstacles. In all cases, we study the effectiveness of searching
for a single node F whose location is unknown.

A. Classical search

Classically, the most effective search algorithms for a
discrete graph structure, consisting of nodes and edges, are
based upon either depth-first or breadth-first searches. The two
searching techniques rely on the same underlying principles
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FIG. 2. Shown on the right are the three types of connections
that are necessary to make up the N × N grid graph geometry. On
the left are matrices representing the local unitary operators for the
central nodes A.

and only differ in how they prioritize moving through the
graph. Specifically, the two searches move through the graph
one node at a time, keeping a running list of all nodes visited
and unvisited, eventually searching through the entire graph
exhaustively.

For the N × N graph, our goal is to outperform the classi-
cal search in finding a specially marked vertex, which we will
refer to as F . Classically, regardless of where we start in the
grid and which type of search algorithm we choose, searching
for F results in the same average speed of N2/2. This is
because both algorithms simply move through the N2 space
of nodes one at a time, equivalent to a blind search through a
list of entries, for which the average number of checks is half
the total number of entries.

B. Quantum search

In order to compare quantum vs classical algorithms, we
would first like to know how the quantum system behaves
on the same geometry. In particular, following the structure
outlined in Sec. II, we will represent an N × N geometry as
a Hilbert space of orthogonal states and apply a scattering-
quantum-random-walk scheme. The hope is then to find an
ideal moment where a significant portion of the probability in
the system becomes concentrated in a favorable way. Favor-
able, for example, could be that nearly all of the probability in
the system is concentrated on a single desired state [10–12] or
perhaps the states making up some sort of path leading to F

[25,26].
If we let only F act as a special node, meaning that it

reflects and transmits with the opposite phase to all other
nodes in the system, we do indeed find a moment where we
achieve high probability concentrations around F . Figure 3
below shows an example of such a moment, for the case
of N = 100, where F is located at the node [40,50]. In the

FIG. 3. Probability distribution P (x, y ) for the case N = 100,
F = [40, 50], after 140 unitary steps of the quantum system.

figure, each bar represents the total probability for measuring
a given node location. This total probability is the sum of the
individual probabilities from the two to four incoming states
(one for each edge).

Figure 3 shows the nearest 30 × 30 nodes surrounding
F , rather than the full 100 × 100. As the plot suggests, the
probability does indeed continue to decrease all the way out
to the edges. For this particular example, over 50% of the
total probability in the system is concentrated within a six-
node radius surrounding F , with nearly 30% of this being
accumulated on F and the four surrounding nodes alone.

Figure 3 is a good representation of many of the prob-
ability distributions that we will encounter throughout this
paper. In general, for any location F in an N × N grid, a
SQRW will produce a moment similar to the figure, where
a significant portion of the probability in the system is con-
centrated radially around F . However, making full use of
what these quantum systems have to offer is a little tricky.
As a natural first approach, we can try to imitate a Grover
search, whereby the solver relies on finding F directly from a
quantum measurement. Such a procedure has a simple average
solving speed

Savg = Us

PF

, (3)

where PF denotes the probability of measuring node F , Us

denotes the unitary steps to prepare the system, and Savg is the
average number of solving steps. Using the data from Fig. 3,
PF ≈ 0.125 and Us = 140, thus the solving speed proposed
in Eq. (3) tells us that we can expect to find F in roughly 1100
steps. While this is indeed a speedup over the classical average
of 5000, it is not the fastest we can do. In the next section we
will see that solely relying on the quantum system to find F is
a waste of the system’s full potential.

C. Stable hybrid search

To motivate why a purely quantum search is not ideal,
we must note the rate at which the probability distribution
depicted in Fig. 3 is radially decaying around F , shown below
in Fig. 4. For our discrete geometries, a radius is defined as
the number of connections away from F . Thus, F itself is of
radius 0, the four nodes surrounding F are of radius 1, and
so on.
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FIG. 4. Plot of probabilities as a function of radius, using the data
from Fig. 3: the total probability accumulated on all nodes up to a
given radius, also referred to as P (r ) (blue), and the total probability
accumulated on all nodes of a given radius (orange).

Figure 4 shows that the increases in probability are steadily
decreasing as we move outward from F . For a purely quantum
search, the data suggest that a measurement resulting in F

directly is unlikely (probability of radius equal to 0). However,
a measurement result being close to F is very favorable.
However, since a purely quantum search does not benefit from
anything other than measuring F directly, measuring states
close to F go to waste.

Now suppose we make a measurement and do not find F ,
but can move about the grid to check nearby nodes. For this
case, we can interpret the reverse of P (r ) in Fig. 4 as follows:
If we start a search for F from the measured node, we have
a probability P (r ) that we will find F within r nodes away.
Therefore, if we let a classical algorithm perform a breadth-
first search starting from the location of the measurement,
we can expect the algorithm to find F with the same radial
probability P (r ). Figure 5 illustrates the general strategy for
this hybrid algorithm approach.

The algorithm’s strategy is to prepare an advantageous
probability distribution P (x, y) for the quantum system
[Fig. 5 (left)], make a measurement, and then perform a
classical search using the measured node (star) as our starting
location. Thus, the total solving speed of this approach will
be the combination of unitary plus classical steps. Given the
probability distribution generated from the quantum system,
we can calculate the average number of steps for the resulting

FIG. 5. Shown on the left is the probability distribution P (x, y )
for the case N = 5, F = [4, 2]. On the right is an example of a
classical breadth-first search, following a measurement (red star).

FIG. 6. The orange dashed line shows the average solving speed
for a classical breadth-first search following a quantum measurement
(4), as a function of unitary steps on the quantum system. The blue
solid line shows the resulting average hybrid speed (unitary plus
classical steps).

classical search as

Savg =
N∑

x=1

N∑

y=1

P (x, y)S(x, y, F ), (4)

where P (x, y) denotes the probability of measure node [x, y]
and S(x, y, F ) denotes the number of classical steps to reach
F , from [x, y], using a breadth-first search.

Equation (4) holds true for the classical case as well, where
P (x, y) = 1

N2 . Thus, the only difference between a purely
classical search and a hybrid one is P (x, y). So in order
to get a speedup, we are essentially investing extra steps in
the quantum system, in order to save steps classically with a
favorable P (x, y). To illustrate the impact of using the SQRW
scheme to produce P (x, y) distributions that result in faster
classical searches, Fig. 6 shows Eq. (4) as a function of unitary
steps of the system, for the case N = 100, F = [40, 50].

Figure 6 shows that by using the quantum system to
prepare a desirable P (x, y), one can significantly reduce the
average number of steps expected from the resulting classical
search. For the example in the figure, investing ∼200 unitary
steps in the quantum system results in saving over 2500
classically on average. Together, the fastest hybrid speed is
a combination of 190 unitary steps plus an average of 480
classical steps, for a combined hybrid average speed of 670.
This is roughly 40% faster than the purely quantum search
speed and over 7 times faster than the classical.

Equation (4) is a summation over all the nodes in the
system, meaning that it represents the case where we let
the classical algorithm search exhaustively until it finds F .
However, as shown in Fig. 4, the majority of the weight
in this average comes from the nodes clustered around F .
Searching further and further away from the starting node has
diminishing returns. Thus, as we will see in the next section,
at a certain point it actually becomes advantageous to stop
the classical search and start over again with a new quantum
system and measurement.

However, the hybrid algorithm in this section has a note-
worthy property, despite not being the fastest algorithm stud-
ied in this paper. Namely, a speedup is achievable with only
one preparation of the quantum system. If one considers the
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technological state of current quantum computers (including
errors and loss), it may be unrealistic to favor more “quantum
demanding” approaches that require quantum systems we can
repeatedly create, perform unitary steps on, and measure. In
addition, because this approach uses an exhaustive classical
search, the hybrid search has a finite maximum of N2 + Us

steps. For this reason, we will will refer to this style of hybrid
search, with an exhaustive classical search component, as a
stable hybrid search.

D. Optimal hybrid search

The stable hybrid and the purely quantum approaches
studied thus far essentially represent the same technique,
differing only in how much one searches radially around the
location of the measurement. The stable search represents
the maximum case, while the quantum search represents the
minimum (radius of 0).

In this final algorithm, we will try to strike a balance
between these two approaches. Specifically, after making a
quantum measurement, we proceed with a classical search for
F within a finite radius. If we do not find F within this radius,
we prepare a new quantum system and repeat the process. The
average speed at which we can expect to find F , for a given
searching radius r , is as follows.

Let us define the quantities

Psuccess = P (rmax), (5)

Pfail = 1 − Psuccess, (6)

where rmax is the maximum radius for the classical search,
Smax is the average maximum number of classical steps per
search, SF is the average number of steps, and P (r ) is the total
probability accumulated within r nodes of F (see Fig. 4). In
order to calculate the average hybrid speed for a given radius,
we must factor in the possibility of failures, which result in
“wasted” steps. When the classical search does not yield F ,
the search suffers an average of Smax + Us wasted steps. For
the trial that succeeds in finding F , we have SF + Us total
steps, where SF is equivalent to Eq. (4), but only consisting of
nodes within the searching radius,

SF =
∑

x

∑

y

P (x, y)S(x, y, F )

Psuccess
, [x, y] ⊂ rmax. (7)

All together, the average hybrid speed has the form

Psuccess

∞∑

k=1

(Pfail )
k−1[S(k)], (8)

where S(k) is the number of total steps after exactly k

quantum measurements. Specifically, if we find F on the kth
attempt, following k − 1 failures, then the total number of
steps will be

S(k) = (Us + Smax)(k − 1) + Us + SF . (9)

Equation (8) has the mathematical form
∞∑

k=1

(p)k−1[A(k − 1) + B], (10)

FIG. 7. The circles show the fastest hybrid speeds as a function
of searching radii r , the triangle is the purely quantum search, the
diamond is the stable hybrid search, and the star is the optimal
searching radius.

which converges to

Ap − Bp + B

(1 − p)2
, |p| < 1, (11)

where A = Us + Smax, B = Us + SF , and p = Pfail. Plugging
in these values, we get the following equation for the average
hybrid search speed, for a given radius:

Pfail (Smax − SF ) + [Us + SF ]

(Psuccess)2
. (12)

Equation (12) shows the balance of choosing an optimal
searching radius. For a small r , the step counts from Smax

and SF are minimized, but the resulting small Psuccess term in
the denominator becomes problematic. Conversely, going to
larger searching radii has diminishing returns on Psuccess (see
Fig. 4), and the Smax and SF terms drive the step count up.
Thus, the radius corresponding to the fastest hybrid speed will
be the one that minimizes Eq. (12). This is shown in Fig. 7, for
the case N = 100, F = [40, 50]. Also note that for Pfail = 0,
Eq. (12) simply becomes the stable hybrid approach studied
earlier.

As expected, the fastest hybrid searching speed comes
from some intermediate value of r between r = 0 (the purely
quantum search) and the maximum (the stable hybrid search).
For this particular case, r = 6 turns out to be the best case,
incorporating a total probability of 61%, requiring only 167
unitary steps, and achieving an average solving speed of 343.
This is almost twice as fast as the stable search and nearly four
times faster than the quantum search. In general, the fastest
hybrid speed is always some intermediate radius, dependent
on both the grid size N and the location of F .

E. Grid size trends

The example used in this section for N = 100 was for a
single F and one close to the center of the grid to showcase
good results. In the next section we will see that solving
speeds are heavily dependent on F ’s location. However, be-
fore moving on, it is worth noting how these solving speeds
depend on the size of the grid. To show this, Fig. 8 shows the
fastest stable and optimal hybrid speeds as a function of N ,
for F located at the node closest to [N/4, N/4].
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FIG. 8. (a) Fastest average searching speeds as a function of grid
size N . The solid line, plotted for reference, is a quadratic speedup
over the classical search:

√
N 2/2, (b) Same as (a), plotted in a log-log

space.

The trends in Fig. 8 are pretty straightforward, showing
that these hybrid searches provide some degree of powerlike
speedup, certainly slower than a quadratic though. The choice
for F = [N/4, N/4] is motivated by a result shown in the next
section. Specifically, it represents a good average location that
results in speeds close to what one might expect when doing
a blind search.

While Fig. 8(a) suggests that the two hybrid approaches
continually deviate away from the quadratic limit as a function
of grid size, Fig. 8(b) tells us something slightly different.
Even within the relatively small sample size of up to N = 100,
the log-log plot in Fig. 8 shows some evidence that the hybrid
approaches may scale better as N increases, a result similar
to one found in [26], whereby the solving potential for the
quantum approach trended towards the quadratic limit as the
problem size increased.

IV. BLIND HYBRID SEARCH

For an exactly known system, like the examples in Sec. III,
one can always opt to measure at the most advantageous time.
For example, if you know that you have a 100 × 100 grid and
F is located at [40,50], then all of the claims about speeds
from the preceding section hold true. However, for systems
with only partial information, such as an N × N grid with
an unknown F , we cannot prepare the system for a single
optimal moment. Instead, we must take into consideration all
of the possible F locations and how they impact our decision
of when to measure the quantum system.

A. Dependence on F

When designing an algorithm around quantum systems,
which naturally have their own degree of randomness, ad-
ditional restrictions on information can be problematic. For

FIG. 9. Total probability accumulated within a six-node radius of
F , for various F locations, as a function of unitary steps. The circles
show the moment of the highest total probability.

example, a Grover search has a very well known peak for N

list entries, but how does one prepare a system if the number
of entries is unknown?

For these N × N grids, we would ideally like the system to
behave exactly the same way regardless of where F is located.
Then we could always prepare any N × N system the same
way and be guaranteed optimal results. Unfortunately, this is
not the case. To illustrate this point, Figs. 9 and 10 show that
different locations of F have different probability trends and
peak moments.

Figures 9 and 10 show that depending on F ’s location in
the grid, the resulting P (x, y) probability distributions can
vary quite drastically in shape and peak. As a result, F ’s
location directly affects the ideal number of unitary steps to
prepare the quantum system as well as the optimal searching
radius. Consider the example shown in Fig. 10 and the differ-
ence between two neighboring nodes.

Since we cannot look for a single moment to optimize for,
we must instead factor in all of the possible locations for F

and pick a moment that gives us the best average. That is to
say, supposing F could be anywhere in the grid, what is the
number of unitary steps that we should prepare our quantum
system for in order to give ourselves the best P (x, y) for
finding a node closest to F ? In addition, if we wish to use an

FIG. 10. Plots of optimal hybrid speeds as a function of unitary
steps, for F locations [5,40] (solid line) and [5,41] (dashed line).
Next to each plot is the optimal searching radius, as well as the
corresponding fastest speeds (stars).
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FIG. 11. Scatter plot of fastest hybrid speeds vs unitary steps, for
the 1275 unique F locations for the case N = 100. Circles show the
scatter plot of the fastest stable hybrid speeds and triangles the scatter
plot for the fastest optimal hybrid speeds.

optimal hybrid search algorithm, we must also factor in how
F ’s location affects the best search radius r .

B. Optimal measurement for a single F location

In order to see if there is a single combination of unitary
steps and optimal search radius that we can use for any given
N × N , we need to study all possible F locations. In this
section and the next, we will study the case for N = 100 and
use it to judge the viability for a blind search.

Although there are N2 nodes in a system, the number of
unique nodes is roughly 1

8 of this number. Specifically, if we
characterize a node by its distances to the four walls of the
grid, there are up to eight nodes with the same characterization
(nodes on the diagonals have four symmetric locations, while
all other nodes have eight).

For example, for N = 100, the nodes located at [0,1], [1,0],
[99,0], [100,1], etc., are all equidistant from the four walls.
For the quantum system, these locations will all produce the
exact same P (x, y) distributions, as they are all geometrically
symmetric to each other. Thus, for a complete analysis of
an N × N grid, we need only study all of the unique nodes,
which can be thought of as a single octant of the total grid.

For an N × N system, the number of unique nodes is

1
8N (N + 2) for N even,

1
8 (N + 1)(N + 3) for N odd.

(13)

For the case of N = 100, we have 1275 unique nodes. Using
these 1275 locations, we let a classical computer calculate the
fastest stable and optimal hybrid speeds, which are plotted in
Fig. 11.

We find that the stable hybrid search speeds (circles) vary
significantly in both fastest speeds and corresponding unitary
steps. The data points seen in archlike shapes in the upper
right corner of the figure correspond to nodes closer to the
boundaries, while nodes closer to the center of the grid can
be seen by the tight vertical cluster of data points with unitary
step counts ranging from 180 to 220.

By comparison, the optimal hybrid search speeds (trian-
gles) appear to have a much more consistent spread in speeds,
but an equally large variance in unitary step values. However,
this is because Fig. 11 shows the fastest hybrid search speeds

FIG. 12. Histogram of the optimal searching radius r corre-
sponding to the fastest hybrid search speeds plotted in Fig. 11. For
N = 100, the mode is r = 5, while the mean is closest to r = 6.

corresponding to the optimal search radius for each F , which
vary as well. Figure 12 shows a count of optimal search radii.

Even though the optimal hybrid search speeds are more
consistent, Fig. 12 reveals that the corresponding optimal
search radii are not. If we recall the plots from Fig. 10,
where the location of F caused two neighboring nodes to have
significantly different peak moments and optimal searching
radii, we can see this effect over the whole grid. Specifically,
nodes closer to the center of the grid tend to favor searching
radii of 4–6, while nodes closer to the boundaries favor 8–9.
This split is partly due to the fact that F locations closer to
the boundaries need larger searching radii in order to move
through the same number of nodes as more centralized F

locations.

C. Blind optimal measurement

Based on the results from Figs. 11 and 12, we would now
like to ask whether or not a viable hybrid search can be
conducted from a single unitary step count and search radius.
If we average the data points from these figures properly
(using the 1275 unique nodes to represent the total 10 000),
we find that for the stable hybrid search we need 232 unitary
steps and for the optimal hybrid search we want 199 unitary
steps with a search radius of 6. Using these values, we again
let a computer calculate the average solving speeds, following
Eqs. (5)–(12). The results are shown in Fig. 13.

Beginning with Fig. 13(a), the stable hybrid approach,
we see a much larger range of speeds, but generally much
more clustered around a single value. Conversely, the optimal
hybrid approach leads to a much more even distribution over
a smaller range. If we average the values in these plots, we
get our final answers, that the blind stable hybrid search gives
an average search speed of approximately 1560 total steps,
while the blind optimal hybrid search, of search radius 6, has
an average speed of approximately 475. Comparing to the
classical average of 1002/2, we find that both approaches are
a speedup, with the optimal cases being several times faster.

To highlight why the optimal searching radius of 6 is so
resilient to the randomness of F ’s location, we need only look
at the P (r = 6) probabilities. Figure 14 shows a count of how
much of the probability in the system is accumulated for the
blind optimal searches from Fig. 13.
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FIG. 13. (a) Histogram of fastest stable hybrid speeds. (b) His-
togram of fastest optimal hybrid speeds.

As shown by the distribution, no matter where F lies
in the system, the blind optimal hybrid search will sweep
through enough nodes to have a good probability of finding F .
Figure 14 shows that the average chance of finding F within
any given trial is about 40%–45%, which is certainly viable
enough to use as a basis for the quantum component of a
hybrid algorithm.

This concludes our study of the case of N = 100. However,
as a final remark, it is worth noting that N = 100 is nothing
special. Based on Fig. 8, there is no reason to suspect that
the techniques and resulting success studied in this section
would not scale to larger sizes and even smaller sizes down
to a certain threshold. Here N = 100 is large enough to see
the potential for a quantum speedup, and based on studies of
different geometries like [25,26], one should expect similar
powerlike scaling results for larger N × N grids.

V. ASIDE: GEOMETRIES OF INTEREST

In this section we would like to present some results
based on problems that are closely related to the N × N grid
searches studied up to this point. The following sections are
stand alone results, but contribute to the overall discussion in
Conclusion of this paper.

FIG. 14. Histogram of the total probability accumulated within
a six-node radius of each F , for all the unique nodes in the blind
optimal search (Fig. 13).

FIG. 15. Probability distribution P (x, y ) for the case N = 20,
with two specially marked vertices at locations [6,20] and [12,20].
The probability in the system is concentrated around the two loca-
tions, similar to if either location were the only special vertex in the
system.

A. Two specially marked nodes

Let us consider the problem of pathfinding, say, between
two nodes A and B. For these discrete grids, where each
node can have up to four connections, finding the shortest
path from point A to B follows the rules of taxicab geometry.
Classically, if there are no obstacles within the grid, there are
many equally short paths from A to B, with the exception
being when they share the same x or y coordinate.

For the quantum system, having a starting and final node
means we now have two specially marked vertices that trans-
mit and reflect with opposite phase. We have seen that letting
a single node be special results in radially concentrated prob-
ability distributions, so let us now see what happens with two.
Figure 15 below shows the case for N = 20, S = [6, 20], and
F = [12, 20], displaying a plot of P (x, y) for the entire grid.

Unfortunately, the probability in the system is concentrated
around S and F , but shows no sign of the path between
the nodes. While this result is interesting, implying that the
SQRW scheme may be useful in locating multiple special
nodes, it does not help us in terms of a path-finding search.
Nevertheless, we present this result to illustrate what other
possible types of problems may be solvable.

B. The N × N × N lattice

Besides just 2D graphs, it is worthwhile to study how the
SQRW scheme performs on higher-dimensional geometries.
As the natural choice from a grid, we will present some
results generated on cubic lattices, as shown in Fig. 16. The
quantum systems representing these cubes follow all of the
same structure as outlined in Sec. II, only now we have up to
six connections on a single node.

Our problem is still to find a specially marked vertex F

whose location is unknown. Classically, now we have N3

nodes to search through, resulting in an average search speed
of N3/2. Here we will not go through the same rigorous study
of these geometries as with the 2D grids, but rather just a few
quick observations and trends.

Similar to Fig. 4, the effect of the SQRW on N × N × N

lattices results in radially decaying probability distributions.
Because there are more nodes per radius for the 3D case, the
total accumulated probabilities are naturally higher. Thus, to
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FIG. 16. An N × N × N cubic lattice, represented by a graph
with nodes and edges.

compare the grid and cube geometries properly, we will go
directly to their hybrid searching speeds.

In order to isolate how the 3D geometry impacts searching
speeds, we want to compare geometries with roughly the
same number of total nodes in the system. This way, both
geometries will have comparable classical searching speeds.
Figure 17 shows two tables with various lattice and corre-
sponding closest grid sizes, along with their resulting stable
hybrid speeds.

Since the systems in Figs. 17 have nearly the same number
of total nodes, we can attribute the faster solving speeds to the
geometry of the lattice. Unsurprisingly, with the same number
of nodes, we find that the system with more symmetry results
in a higher concentration of probability around F , which leads
to faster hybrid speeds. If we extrapolate the results from the
blind search in Sec. IV to 3D lattices, there is good evidence
to suggest similar success.

VI. WALLS AND MAZES

We now return to the study of N × N grids here. Based
on the results presented in Secs. III and IV, grids are prime
candidates for using a hybrid search algorithm. In this section
we will test the viability of SQRWs as a means for searching
on geometries with random obstacles.

The goal is to study mazelike geometries on N × N grids
by adding walls randomly throughout the space and seeing

FIG. 17. Comparison of grid and lattice geometries with similar
total nodes. The results indicate that for two geometries containing
the same number of total nodes, assembling the nodes in a cubic
lattice yields better searching results than a square grid.

FIG. 18. An N × N square grid with walls separating neighbor-
ing sites.

how it affects probability distributions. We will study up to
the case with the maximum number of walls placeable in an
N × N grid, where there is exactly one path from any node
[x, y] to any other node [x ′, y ′]: the perfect square maze. We
have already seen that letting two nodes act as special vertices
does not reveal any sort of path, thus we will continue to only
have a single F in the system.

A. The N × N grid with walls

Let us first define what we mean by adding walls to the
geometry of the system. A wall will represent a boundary
between two neighboring nodes [x, y] and [x ′, y ′]. Figure 18
shows an example of a 4 × 4 grid with two walls touching
the node [2,3], removing its connection from nodes [1,3] and
[2,4]. As a result, the states representing those edges are no
longer a part of the quantum system, and correspondingly
the classical search algorithm can no longer directly travel
between those nodes.

We will first test to see how these walls affect the prob-
ability distributions P (x, y) and correspondingly our hy-
brid search speeds. Ultimately, we want to know how re-
silient these quantum systems are to random obstacles placed
throughout the grid. These obstacles could represent physical
boundaries in a geometry we are searching on or perhaps un-
intended boundaries created in a nonperfect quantum system,
where errors in qubits cause local unitary operators to behave
improperly.

We will study the case of N = 40, F = [10, 15], adding
in walls to the geometry in regular increments. For each
increment of walls added into the system, we want to study
as many randomly generated permutations as we can and
see on average how they affect solving speeds. The results
generated in this section reflect 500 randomized geometries
per wall increment. The only condition we have for placing
walls is that they never section off any nodes from the rest
of the system. This way, there always exists at least one path
connecting any two nodes and no probability in the system is
ever trapped.

Figures 19 and 20 below show scatter plots of the fastest
stable and optimal hybrid speeds vs unitary steps, for select
amounts of walls in the geometry. Each data point comes from
a different randomly generated maze geometry, used for both
hybrid searches.

012330-9



DANIEL KOCH PHYSICAL REVIEW A 99, 012330 (2019)

FIG. 19. Scatter plot of the fastest stable hybrid speeds vs uni-
tary steps, for randomly generated geometries containing walls (see
Fig. 18), for the case N = 40, F = [10, 15].

As shown by the distinguishable clusters of points, adding
random walls into the system does indeed cause variations in
fastest solving speeds and unitary steps. In general, we find
that for both algorithms, adding walls into the system seems to
almost always drives the optimal number of unitary steps up,
as compared to the case with zero walls (black star). However,
sometimes the presence of walls in the system actually results
in faster average searching speeds (shown in Fig. 19 by points
lower than the black star).

For a reference, the maximum number of walls that can
be placed into an N = 40 grid is 1521 (becoming a perfect
square maze). By averaging the data points collected from all
the randomized geometries, Fig. 21 shows a comparison of the
stable and optimal search algorithms as a function of walls
in the system. For lower wall counts, the optimal search is
still significantly faster and has much less variation in speeds.
However, by 1400 walls in the system, we find that the optimal
hybrid offers almost no advantage.

Although the optimal hybrid search achieves similar suc-
cess over the stable search for low wall counts, Fig. 21 show
that its viability starts to rapidly evaporate as the wall counts
approach the maximum. Note at the bottom right corner
of Fig. 20 that the variation in optimal searching radii is

FIG. 20. Scatter plot of the fastest optimal hybrid speeds vs
unitary steps, for the same randomly generated geometries as studied
in Fig. 19. While typically faster than the stable searches, the data
points tend to have higher degrees of variance in unitary steps.

FIG. 21. Data points plot the average solving speeds as a func-
tion of walls in the grid geometry, for N = 40, F = [10, 15], includ-
ing the data from Figs. 19 and 20. The error bars on each data point
represent one standard deviation. Shown below is the failure rate for
each wall count, whereby neither the stable nor the optimal hybrid
searches obtained a speedup. Note that only nonfailure data points
were used for the calculations of averages and standard deviations in
the above plot.

becoming so large that it is causing the standard deviation to
be nearly the same as the average. This variation in optimal
searching radii kills any chance of success for a blind optimal
hybrid algorithm.

Below the plot in Fig. 21 is the failure percentage. This
is the percentage of geometries that were studied where
neither the stable or optimal hybrid searches could produce a
speedup. The numbers in each box correspond to wall counts
in increments of 100, meant to line up with the x axis. For the
averages and standard deviations plotted above, data points
that were not a speedup were removed from the data set. Thus,
the plot in Fig. 21 is based on successful searches, meant
to showcase what a solver might expect for the successful
attempt.

As it turns out, 1400 walls is very near the limit to where an
optimal searching radius is still possible, although practically
unviable. Beyond 1400, it is accurate to say that the optimal
hybrid search becomes the stable hybrid search, where the
optimal searching radius is simply the maximum. The optimal

FIG. 22. Graph representing a perfect square maze as nodes and
edges.
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FIG. 23. Percentage of geometries studied where a speedup over
the classical average N2/2 was unobtainable.

optimal hybrid approach becomes essentially unadvantageous
well before this limit however, around the 1100–1200 wall
count for N = 40, which corresponds to around 75% of the
maximum.

While the data from Fig. 21 seems to rule out any hope
at a full maze solving algorithm (as we will see in the next
section), it is still noteworthy as to how resilient the SQRW
approach is at lower wall counts. In fact, even up to around
50% of the maximum, 600–800 walls, both the stable and
optimal hybrid approaches are still very viable. Thus, Fig. 21
is actually quite reassuring that there is still potential for the
SQRW technique on geometries with randomness, which we
will comment on in the Conclusion.

B. Perfect square mazes

To conclude our study on grid geometries with randomly
generated walls, we will study the limit to these geometries:
perfect square mazes. A perfect square maze is categorized
such that there exists exactly one path between any two
nodes in the system. An example of such a maze geometry
is depicted in Fig. 22.

As noted before, for N = 40, the optimal hybrid approach
loses all viability around 1400 walls, which corresponds to
around 92% of the maximum. For completeness, Fig. 23
shows the failure rate of the stable hybrid approach as the
number of walls in the system approaches the limit.

As expected, the viability of the stable hybrid search
completely deteriorates as the wall count approaches the
maximum. In fact, for these higher wall counts, we found
that the most common number of unitary steps to produce
the fastest stable hybrid speeds was 0, which means that the
fastest search is actually just a regular classical search, with
no help from the quantum system. Now, to illustrate why the
SQRW technique is failing to produce any sort of speedup,
Fig. 24 shows some examples of probability distributions
generated on perfect square mazes.

FIG. 24. Probability distribution P (x, y ) for grid geometries
representing perfect square mazes. Given enough unitary steps, the
probability distribution in the system can hint at the location of F

and nearby paths leading away from F .

At first glance, these probability distributions seem to show
some signs for a successful hybrid search. States closer to
F have clearly higher probabilities, and even some paths
are revealed in certain areas. In fact, these kinds of P (x, y)
distributions do result in faster classical searches. That is to
say, if we were given the P (x, y) distributions in Fig. 24
and used a measurement to determine the starting point for
a classical search as per Eq. (4), we would get a speedup.

However, the number of unitary steps needed to reach
probability distributions like those in Fig. 24 eliminate any
hope of a successful hybrid algorithm. As it turns out, per-
forming a SQRW on a perfect square maze geometry typically
needs more than N2/2 unitary steps before a viable P (x, y)
is reached. Thus, in the amount of time it takes the quantum
system to reach a desirable point, a classical search will have
on average already found F . As a whole, the system never
reaches a point where the cost in unitary steps is worth the
tradeoff for a desirable P (x, y).

VII. CONCLUSION

The results of this paper have showcased the effectiveness
of the scattering-quantum-random-walk scheme as a search
algorithm on N × N geometries. For open grids (no obsta-
cles), it was shown that the quantum systems representing
these geometries produce desirable probability distributions
P (x, y), which when used in combination with classical
searches, produce hybrid search algorithms which are faster
than purely classical searches. In addition, it was shown that
these hybrid searches are still viable even when F ’s location
is random and that a single set of governing rules can be
used for blind hybrid search algorithms. This result is perhaps
the most important, as it shows that using a SQRW as a
searching algorithm is not limited to rigid geometries with
strict restrictions on the locations where F may be located.

When random obstacles are introduced into these grid
geometries as walls that remove connections between nodes, it
was shown that a hybrid searching technique is still viable up
to a certain number of walls. However, as the number of walls
in the geometry approached the limit of the perfect square
maze, all viability for a hybrid search algorithm broke down.
Nevertheless, the success of these hybrid searches at low wall
counts is promising, suggesting that geometries with minimal
obstacles may be viable for a blind hybrid search algorithm as
well.

Understanding SQRW resilience

In order to understand the true viability of using these
SQRWs in quantum algorithms and the results from Secs. III–
VI, we must take great care in noting their strengths and
limitations. Specifically, recall how the effect of the SQRW
spreads throughout the geometry, traveling out radially one
node per unitary step. The speed of this spreading effect is
what drives the success of the SQRW and is a critical feature
that determines the viability of certain geometries: relative
distance from F to all nodes.

Regardless of exact shape, the speed at which the effect of
the SQRW can reach all of the states in the system largely
determines whether or not a useful probability distribution is
obtainable. This principle is reinforced by the results found in
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this paper as follows: (i) Nodes closer to the center of grids
produce faster speeds. (ii) Lattice geometries produce faster
speeds when compared to grids of similar total nodes. (iii) As
obstacles are placed throughout a grid geometry, restricting
the ways for the SQRW’s effect to spread, average speeds slow
down as a result.

At its core, the scattering-quantum-random-walk scheme
is simply a means of representing a geometry as a quantum
system and manipulating probabilities. Whether the purpose
for implementing a SQRW is a search algorithm or perhaps a
smaller component to a larger quantum algorithm, it is hopeful

that these and other quantum random walks may find use in
algorithms on near-term quantum computers.
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