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Optimal usage of quantum random access memory in quantum machine learning
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By considering an unreliable oracle in a query-based model of quantum learning, we present a tradeoff relation
between the oracle’s reliability and the reusability of the quantum state of the input data. The tradeoff relation
manifests as the fundamental upper bound on the reusability. This limitation on the reusability would increase
the quantum access to the input data, i.e., the usage of quantum random access memory (qRAM), repeating the
preparation of a superposition of large (or big) input data on the query failure. However, it is found that a learner
can obtain a correct answer even from an unreliable oracle without any additional usage of qRAM; i.e., the
complexity of the qRAM query does not increase even with an unreliable oracle. This is enabled by repeatedly
cycling the quantum state of the input data to the upper bound on the reusability.
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I. INTRODUCTION

Quantum machine learning (QML) is a rapidly growing
research field. A primary issue in QML is to prove a quan-
tum learning speedup over the classical counterparts [1–3].
A recent proposal of the quantum support vector machine
(QSVM) [4], providing an exponential speedup in a classi-
fication, can be considered as a paradigmatic achievement.
Currently, the QSVM (and other variant QML proposals
[4–8]) provides a standardized approach to achieve the quan-
tum speedup—to use the quantum state provided that a set of
input data is superposed so that useful quantum algorithms,
e.g., so-called HHL (named after the inventors, Harrow, Has-
sidim, and Lloyd [9]), can be utilized as the kernel.

However, unclear aspects still exist in QML. In particu-
lar, whether the quantum advantage remains significant even
when the cost to access a large size of input data is consid-
ered needs to be clarified, i.e., whether classical input data
can be transformed to a quantum superposition [10,11]. In
theory, at least, quantum random access memory (qRAM) can
accomplish the aforementioned task [12,13], even though its
realization is far from trivial [14]. Subsequently, a question
arises as to whether it is possible to reduce the qRAM query
by reusing the quantum state of the input data that has been
initialized once. The reuse of quantum data is limited because
the information extraction causes the state disturbance (or
equivalently, based on the no-cloning theorem [15]), contrary
to the classical machine learning that has no limitation in
reusing the data [16]. However, an original state can be
retrieved using weak measurements with nonzero probability
[17,18]. Hence, it is important to explore whether the reuse
or recycle of the quantum state of the input data is possible,
the quantum limit on the reusability, and whether it offers any
advantage in QML.
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The oracle’s reliability also affects the learning perfor-
mance significantly [19]. The effects by the unreliable oracle
with a missed answer or an evasive answer (e.g., “I do not
know”) have been studied and shown to be tolerable in query-
based models of classical learning [20,21]. In particular, the
learner can be polynomially dominated by a failure query rate
of less than 1/2 [20,21]. Such results were also drawn in QML
[3,19]. Furthermore, it was claimed that some quantum ad-
vantages are achievable with noisy oracles [22,23]. However,
the effects of the oracle’s reliability on the complexity of the
qRAM query have not been studied in QML, even though
recent speedups of QML hinge crucially on the low qRAM
queries.

Herein, by casting a query-based model of quantum learn-
ing with an unreliable oracle, we explore the fundamental
limit on the reusability of the quantum state of the input
data quantitatively. In particular, we present a tradeoff relation
between the oracle’s reliability and the reusability of the quan-
tum state of the input data. The tradeoff relation indicates that
the more reliable is the oracle, the lower is the reusability. It
also manifests the fundamental upper bound on the reusability
for given oracle reliability. Such a limited reusability would
impose the additional usage of qRAM, thus repeating the
quantum access to the input data with query failure. However,
it is found that the learner can, in principle, arrive at the correct
answer with a single run of qRAM [24], repeatedly cycling
the quantum state of the input data to the upper bound of the
reusability. This result implies that, if the traveling cost of
the input data is neglected, an incomplete-oracle learner has
the same complexity of qRAM query as that of a complete-
oracle learning.

II. INCOMPLETE-QUERY LEARNING

Typically, machine learning is often formulated as an
identification of a function c (referred to as a “concept” in
the language of machine learning); it maps the input data
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FIG. 1. A schematic picture of the query-based QML model.
First, the quantum random access memory (qRAM) initializes a
superposition of a large size, say N , of input data. Then, the quantum
oracle Ô(c) is employed. For a general scenario, Ô(c) is assumed to
be unreliable, yielding an incorrect answer with a nonzero probabil-
ity. The last postprocessing block (dashed box) is responsible for the
learning and the reuse of the superposed state initialized by qRAM
(see the main text).

x ∈ {0, 1}n (in arbitrary n-bit strings) to the target c(x) ∈
{0, 1}, i.e., a task of classification [25]. In contrast to classical
machine learning, QML employs a set of quantum training
data, i.e., |x〉 and |c(x)〉. Hence, we design a query-based
QML model, as shown in Fig. 1.

Our model is roughly composed of three blocks. The
first block is the initialization of a quantum superposition of
the input data |xi〉 (i = 1, 2, . . . , N ). At least in theory, this
task can be accomplished by casting the qRAM [12]; more
specifically, qRAM allows for the data to be read (or to be
written) from arbitrary ith memory cells [26] and creates the
superposition of all N input data, denoted hereinafter as

|ψ0〉 =
N∑

i=1

√
Di |xi〉, (1)

where Di is a probability distribution of memory cells.
Then we consider the quantum learning oracle Ô(c) that

is assumed to be unreliable, yielding an incorrect answer
|c(xi ) ⊕ 1〉 with a certain probability [22]. The oracle oper-
ation is defined as

|ψ0〉|0α〉 Ô(c)−−→
N∑

i=1

√
D(xi )(

√
λ+|xi〉|c(xi )〉

+
√

λ−|xi〉|c(xi ) ⊕ 1〉), (2)

where

λ± = 1 ± L
2

(3)

is the qubit state of the oracle-answer register. Here, we define
the oracle’s reliability with the factor L ∈ [0, 1]; for example,
Ô(c) is perfectly reliable when L = 1, but is less reliable
when L < 1. For the case when L = 0, the oracle Ô(c) pro-
duces a completely random answer, yielding no information.
We clarify that the queries to qRAM and Ô(c) are distinct;
the qRAM query is engaged as the process of initializing a
superposition [as in Eq. (1)] of the input data, while the oracle
Ô(c) is queried about the legitimate learning output for the
(superposed) inputs.

The last block is for postprocessing, i.e., learning and the
reuse of |ψ0〉 in Eq. (1). Prior to those processes, the oracle’s
answer, or equivalently the learning information, should be
identified within this block. Thus, a projection measurement
Mα is assumed first to yield (the information of) the ora-
cle’s answer, followed by sequential operations denoted by
Ûmα

. The information for learning can be extracted from the
measurement outcome mα . After the measurement, mα is
delivered to and utilized by Ûmα

for the learning and/or reuse
process. To recycle |ψ0〉, the operation Ûmα

is manipulated
according to the outcome mα and is applied to the output state
of Ô(c). Another projection measurement Mβ is performed
after Ûmα

. Here, we define the reusability, denoted by R,
in terms of the overall probability of attaining |ψ0〉 after the
measurement Mβ .

It is worth noting that our model is general and equiva-
lent to the conventional query-based model of learning [27],
by which the best speedup is polynomial [28,29]. However,
employing such a model is sufficient to derive a quantitative
relation between the oracle’s reliability and the reusability of
|ψ0〉.

III. TRADEOFF RELATION BETWEEN ORACLE
RELIABILITY AND INPUT REUSABILITY

We herein present a tradeoff relation between the reliability
L of the oracle Ô(c) and the reusability R of the quantum
state |ψ0〉 of the input data. For convenience in calculations,
we rewrite Eq. (1) as the following form:

|ψ0〉 =
N∑

i=1

√
D(xi )|xi〉 =

∑
τ=0,1

√
ξτ |Xτ 〉, (4)

where

|Xτ 〉 =
∑

xi∈Xτ

√
D(xi )

ξτ

|xi〉 and ξτ =
∑

xi∈Xτ

D(xi ). (5)

Here, Xτ ⊂ {xi : i = 1, . . . , N} denotes a set of xi , satisfying
c(xi ) = τ and ∪τ=0,1Xτ = {xi : i = 1, . . . , N}.

Subsequently, we introduce a set of Kraus operators Âmα

(mα = 0, 1), defined by the combination of Ô(c) and Mα . By
adopting a fixed form of Ô(c) as

Ô(c)=
∑
τ=0,1

|Xτ 〉〈Xτ |(
√

λ+|c=τ 〉〈0|+
√

λ−|c=τ ⊕ 1〉〈0|),

(6)

we can characterize Âmα
such that

Â0 =
√

λ+|X0〉〈X0| +
√

λ−|X1〉〈X1|,
Â1 =

√
λ−|X0〉〈X0| +

√
λ+|X1〉〈X1|, (7)

with the eigenvalues
√

λ±. The process of extracting the
learning information is subsequently expressed as follows:

Âmα
|ψ0〉 = √

Pmα

∣∣ϕmα

〉
(mα = 0, 1), (8)

where Pmα
is given as

P0 = 1 + (ξ0 − ξ1)L
2

and P1 = 1 − (ξ0 − ξ1)L
2

. (9)
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Here, |ϕmα
〉 is the postmeasurement state as a general term. In

our scenario, Pmα
is the probability of obtaining mα from Mα

and |ϕmα
〉 is the remaining state after Mα , as shown in a later

section.
We also define an operator R̂(mα ) for the reuse process

as the combination of Ûmα
and Mβ . The reuse process is

subsequently expressed as

R̂(mα )Âmα
|ψ0〉 =

√
η(mα )|ψ0〉, (10)

where η(mα ) is a nonzero complex number. Because 1̂ −
R̂(mα )†R̂(mα ) is positive semidefinite,

sup
|χ〉

〈χ |R̂(mα )†R̂(mα )|χ〉 � 1 (11)

for arbitrary normalized states |χ〉. Meanwhile, for the state

|ϕmα
〉 = Âmα |ψ0〉√

Pmα

[17],

sup
|χ〉

〈χ |R̂(mα )†R̂(mα )|χ〉

� sup
|ϕmα 〉

〈
ϕmα

∣∣R̂(mα )†R̂(mα )
∣∣ϕmα

〉

= sup
|ψ0〉

〈ψ0|Â†
mα

R̂(mα )†R̂(mα )Âmα
|ψ0〉

Pmα

= inf
|ψ0〉

η(mα )

Pmα

, (12)

and by Eq. (11), we obtain η(mα ) � inf |ψ0〉 Pmα
. Subsequently,

from Eq. (9), we can verify that inf |ψ0〉 Pmα
= λ− when ξ0 −

ξ1 = −1 for mα = 0 and when ξ0 − ξ1 = 1 for mα = 1. It
is worth noting that generally the initial state can be written
with an arbitrary orthonormal basis and coefficients according
to the choice of Mα . Thus, for all mα = 0, 1, we can obtain
η(mα ) � λ−. Then, the probability of attaining the reusable
|ψ0〉, for an mα ∈ {0, 1}, is bounded as

∣∣〈ψ0|R̂(mα )
∣∣ϕmα

〉∣∣2 = η(mα )

Pmα

� λ−
Pmα

. (13)

We can finally obtain the overall success probability of the
reuse, i.e., the reusability, as

R =
∑

mα=0,1

Pmα

∣∣〈ψ0|R̂(mα )
∣∣ϕmα

〉∣∣2 � 1 − L. (14)

This clearly shows that R is inversely correlated with and
limited by L, i.e., that of a tight tradeoff relation between the
reusability and the oracle’s reliability. Note that our proof is
valid for arbitrary Ûmα

and Mβ . This result is in agreement

with the theorem made in the information-theoretic perspec-
tives [18].

The tradeoff relation in Eq. (14) manifests the fundamental
limit on the reusability of the quantum state of the input data
in QML. The average reusable number is given by

n =
∞∑

n=0

nRn = R
(1 − R)2

(15)

and by Eq. (14), where we have n � L−1(L−1 − 1); i.e., for
a single run of qRAM, it is possible to continue the reuse
of |ψ0〉, on average, less than L−1(L−1 − 1). This implies
that the higher the learning efficiency or equivalently of the
oracle’s reliability, the lower the reusability of the state of the
input data. Such a limited reusability imposes the requirement
of a higher rate of qRAM query.

IV. OPTIMAL USAGE OF QRAM

We herein demonstrate that the usage of qRAM can be
optimized by cycling the state |ψ0〉 of the input data to the
fundamental bound to saturate the tradeoff relation. Hence,
we consider an exemplary protocol as described below. The
oracle operation is described by

|ψ0〉|0α〉 Ô(c)−−→
∑
τ=0,1

(
√

ξτλ+|Xτ 〉|c = τ 〉

+
√

ξτλ−|Xτ⊕1〉|c = τ ⊕ 1〉), (16)

with the states of the correct |c = τ 〉 and incorrect answer
|c = τ ⊕ 1〉. Subsequently, a measurement Mα is performed,
yielding the oracle’s answer with outcomes mα ∈ {0, 1}.
Given the measurement result mα ∈ {0, 1}, the postmeasure-
ment states |ϕmα

〉 defined in Eq. (8) can be obtained [30]. The
processes including the oracle and the subsequent measure-
ment, Ô(c) + Mα , result in a specific form of remaining state
|ϕmα

〉, such that

|ψ0〉|0α〉 →
⎧⎨
⎩|ϕ0〉 =

√
ξ0λ+
P0

|X0〉 +
√

ξ1λ−
P0

|X1〉,
|ϕ1〉 =

√
ξ0λ−
P1

|X0〉 +
√

ξ1λ+
P1

|X1〉,
(17)

where P0 and P1 are given in Eq. (9) and denote the probabil-
ities of getting mα = 0 and mα = 1, respectively.

Subsequently, Ûmα
is applied on the state |ϕmα

〉 and an
ancillary state |0〉β . The optimal Ûmα

can be chosen, according
to the identified mα , to maximize the reusability R. Note that
the optimal form of Ûmα

is not unique; i.e., many structures
with the maximum R may be constructed. Here, we can select
Ûmα

in the form of

Ûmα
= (

cos �
(
σ̂ mα⊕1

x ⊗ 1̂N

) + i(−1)mα⊕1 sin � ĈX0,X1

)
(1̂2 ⊗ R̂(�)), (18)

where ĈX0,X1 = 1̂2 ⊗ |X0〉〈X0| + σ̂x ⊗ |X1〉〈X1|, and R̂(�) = |X0〉〈X0| + ei�|X1〉〈X1|. Here, 1̂d is the identity of the d-
dimensional Hilbert space. For each case of mα , the state |ϕmα

〉 undergoes the transformation with Ûmα
as∣∣0β

〉|ϕ0〉 Ûmα=0−−−→ −i

√
ξ0λ+
P0

sin �|0〉|X0〉 +
√

Q0|1〉
(√

ξ0λ+
P0Q0

cos �|X0〉 +
√

ξ1λ−
P0Q0

|X1〉
)

,

∣∣0β

〉|ϕ1〉 Ûmα=1−−−→
√

Q1|0〉
(√

ξ0λ−
P1Q1

|X0〉 +
√

ξ1λ+
P1Q1

cos �|X1〉
)

+ i

√
ξ1λ+
P1

sin �|1〉|X1〉, (19)
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where

Q0 = ξ0λ+ cos2 � + ξ1λ−
P0

, Q1 = ξ0λ− + ξ1λ+ cos2 �

P1
.

(20)

Because � can be written in terms of L, the optimal Ûmα
is

determined depending on a given oracle’s reliability L. Here,
if we set � = arccos

√
λ−
λ+

, then Qj becomes λ−
Pj

(j = 0, 1)
and the transformations in Eq. (19) are rewritten as

∣∣0β

〉|ϕ0〉 Ûmα=0−−−→ −i

√
ξ0L
P0

|0〉|X0〉 +
√

λ−
P0

|1〉
( ∑

τ=0,1

√
ξτ |Xτ 〉

)
︸ ︷︷ ︸

reusable state |ψ0〉

,

∣∣0β

〉|ϕ1〉 Ûmα=1−−−→ i

√
ξ1L
P1

|1〉|X1〉 +
√

λ−
P1

|0〉
( ∑

τ=0,1

√
ξτ |Xτ 〉

)
︸ ︷︷ ︸

reusable state |ψ0〉

.

(21)

After a secondary measurement Mβ is performed on the
first mode of Eq. (21), the probabilities of the cases when the
results are consistent (mβ = mα) and inconsistent (mβ �= mα)
are obtained, respectively, as

Qmβ=mα
= ξmα

L
Pmα

, Qmβ �=mα
= λ−

Pmα

. (22)

Then, it is inferred—observing Eq. (19)—that the correct
query output |Xτ 〉 can be extracted with the probability
Qmβ=mα

, unless L = 0. In other words, we can confirm that
the oracle’s answer obtained in Mα is correct if it is con-
sistent with the outcome of Mβ , i.e., mα = mβ . The over-
all probability of attaining |Xτ 〉 is subsequently given as∑

mα
Qmβ=mα

Pmα
= 1 − R = L, satisfying the tradeoff rela-

tion [31]. Meanwhile, for the case of inconsistent results,
i.e., mβ �= mα , one can recover the state |ψ0〉 of the input
data, that is, conclusively reusable. It is worth noting that
the probability Qmα �=mβ

obtained in Eq. (22) is optimal,
as described in Eq. (13). Subsequently, the reusability can
be calculated as R = ∑

mα=0,1 Pmα
Qmβ �=mα

= ∑
mα=0,1 λ− =

1 − L, saturating the tradeoff relation in Eq. (14). Therefore,
in principle, |ψ0〉 is allowed to be cycled until the correct

output |Xτ 〉 is extracted, by achieving the fundamental bound
of the reusability. This indeed provides us an optimal process
of query (in principle) without any additional qRAM queries
caused by the incomplete oracle.

V. REMARKS

In summary, we have derived a tight tradeoff relation
between the reliability of the oracle and the reusability of the
quantum state of the input data. It manifests the fundamental
limit on the possibility of reusing a state, initialized as a
superposition of the input data for a single run of qRAM.
The derived tradeoff relation indicated that the more reliable
the oracle, the lower was the reusability. This would impose
the additional usage of qRAM with the query failure. How-
ever, even with the limited reusability, the overall query pro-
cess could be optimized by cycling the state initialized once.
In particular, the optimized process was shown to saturate the
fundamental upper bound of the reusability limited by the
tradeoff relation. Remarkably, it was shown that the learner
could, in principle, arrive at the correct answer without any
additional qRAM queries caused by the incomplete oracle;
for example, when the oracle produces incorrect answers,
the quantum state of the input data could be recovered with
postprocessing to be used again for query. Such a process
could be repeated until the correct answer is extracted. Thus,
the complexity of the qRAM query would not increase even
with an unreliable oracle. This result will be crucial, since the
low usage of qRAM is highly desirable in QML. We believe
that our work will provide a fundamental and practical insight
on the QML.
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