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High-fidelity quantum cloning of two nonorthogonal quantum states via weak measurements
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We propose a scheme to enhance the fidelity of a symmetric quantum cloning machine via weak measure-
ments. By adjusting the intensity of the weak measurement parameter p, we obtain copies of initial states with
different values of fidelity. Choosing a proper value of p, we can obtain perfect copies. In this paper, we focus
on 1-2 quantum cloning for two nonorthogonal states. Sets containing more than two linear independent states
are also briefly discussed. Due to the probabilistic nature of weak measurements, we obtain high-fidelity copies
probabilistically. If the weak measurement is a success, we do subsequent operations to obtain high-fidelity
copies; otherwise, the cloning process fails and we quit. From this perspective, the scheme we propose is
economical for saving quantum resources and time. Our scheme may be very useful in quantum information
processing.
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I. INTRODUCTION

In recent years, quantum information has been developed
very quickly. The study of quantum information processing
(QIP) has attracted much attention from various research com-
munities. Various schemes for logic gates, such as controlled
NOT (CNOT) and SWAP, as required for classical computers,
were proposed theoretically and implemented experimentally
in many systems including optical systems [1–5], trapped ions
[6–8], cavity quantum electrodynamics [9–11], and liquid-
state nuclear magnetic resonance [12–14]. There seems to be
a great promising future in quantum computers. The peculiar
principles such as linearity, unitarity, and inseparability have
been utilized to realize quantum computers [15]. On one hand,
these principles enhance the capacity of information process-
ing, but on the other hand, they put up some obstacles [16].
A fundamental restriction in QIP is that an unknown quantum
state cannot be copied perfectly [17], in contrast with repli-
cating information ubiquitously in the classical world. This
is a consequence of the linearity of quantum mechanics and
makes a qubit so distinct from a classical bit. This limitation is
known as the no-cloning theorem and has found its application
in quite different fields of quantum information theory, such as
quantum computation and quantum cryptography [18].

However, if we pay some price, then an approximate
or even exact cloning is possible. It does not prohibit the
possibility of approximate cloning of an arbitrary state of
a quantum mechanical system. Bužek and Hillery first pre-
sented a scheme in which, given an unknown qubit, two
identical output qubits as approximate as possible to the
input qubits are produced [19]. After their seminal paper,
quantum cloning has been extensively studied and lots of
topmost achievements have been made, both theoretically and
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experimentally [20,21]. This Bužek-Hillery quantum cloning
machine is state independent and known as the universal
quantum cloning machine (UQCM). The optimal fidelity of
a cloning bound achieves 5/6 for UQCM. Shortly after, an-
other quantum cloning machine was proposed [22–24], called
the quantum phase-covariant cloning machine (QPCCM).
The fidelity of the QPCCM reaches 0.854, which is higher
than that of UQCM. The QPCCM is significantly important
in quantum cryptography as it provides the optimal eaves-
dropping method for a large class of attacks on quantum
cryptograph protocols [25–27]. Besides these deterministic
quantum cloning machines, Duan and Guo [28,29] revealed
that a quantum state secretly chosen from a linearly inde-
pendent set of states can be probabilistically cloned with
unit fidelity. They called this quantum cloning probabilistic
quantum cloning (PQC). This kind of quantum cloning is dif-
ferent from the deterministic quantum cloning machine. It has
nonzero probability that the cloning process fails. However,
once it succeeds, perfect copies of the initial qubits are ob-
tained. The scheme we proposed in this paper is different from
the PQC. The more detailed differences between them are
shown later.

It has been well realized that we can clone qubits in a
better way. The QPCCM is one example. Recently, an optimal
quantum cloning machine, which clones qubits of arbitrary
symmetrical distribution around the Bloch vector, was inves-
tigated [30]. More generally, states in the block region, which
is a simply connected region enclosed by a “longitude-latitude
grid” on the Bloch sphere, was also investigated [31]. All
those quantum cloning machines are based on the maximin
principle by making full use of a priori information of am-
plitude and phase about the to-be-cloned qubits. As expected,
the performance of these machines is better than the UQCM.
In addition to the price of limiting the range of input states,
other resources can also be sacrificed, such as the probability
of successful cloning. PQC is one of those machines.
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Inspired by those previous works, we propose a scheme
that combines the weak measurements and unitary transfor-
mations. Assuming that a given qubit is secretly chosen from
a state set {|ψ1〉 , |ψ2〉}, our task is to duplicate the given
qubit. Many relevant studies are reported [29,32,33]. In their
schemes, they all clone given qubits directly. Compared with
their schemes, our scheme has peculiar advantages. Before
complicated quantum transformations, we pretreat the given
qubits. This pretreatment allows us to obtain high-fidelity
copies. What is more, the fidelity can be controlled by ad-
justing the value of the parameter p. Whether we do further
operations depends on the results of measurements. This
economizes quantum resources and makes our scheme an
economical one. The rest of this paper is organized as follows.
In Sec. II, we make a brief review of weak measurements
and optimal quantum cloning for two nonorthogonal states.
In Sec. III, we show our scheme for high-fidelity copies in
detail. In Sec. IV, comparisons with other schemes are made.
We also clarify the generalization of our scheme. Finally, a
concise summary is given in Sec. V.

II. THEORY

A. Weak measurements

The projection postulate is one of the basic postulates
of standard quantum theory and it states that measurement
of a variable of a quantum system irrevocably collapses the
initial state to one of the eigenstates (corresponding to the
measurement outcomes) of the measurement operator. Once
the initial state collapses due to a projection measurement
on a quantum system, it can never be recovered. However,
the situation is different for the case that the measurement is
not sharp, i.e., a nonprojective measurement [34]. For weak
measurements, the information extracted from the quantum
system is deliberately limited, thereby keeping the measured
system’s state from randomly collapsing towards an eigen-
state. It is possible to reverse the measurement-induced state
collapse and the unsharpness of a measurement has been
shown to be related to the probabilistic nature of the reversing
operation which can serve as a probabilistic quantum error
correction [35].

Consider that the initial state of a qubit is a pure state
|φ〉 and the measurement operators P̂1 and P̂2 are orthogonal
projectors whose sum P̂1 + P̂2 = Î is identity. We introduce
the operators

M̂yes = √
pP̂1 + P̂2, M̂no =

√
1 − pP̂1, p ∈ [0, 1].

(1)

It should be noted that M̂
†
yesM̂yes + M̂

†
noM̂no = Î and there-

fore M̂yes and M̂no describe a measurement. Consider the
effect of the operators M̂ on a pure state |φ〉. The state can
be rewritten as |φ〉 = √

p1 |φ1〉 + √
p2 |φ2〉, where |φ1,2〉 =

P̂1,2 |φ〉 /
√

p1,2 are the two possible outcomes of the projec-
tive measurement and p1,2 = 〈φ| P̂1,2 |φ〉 are the correspond-
ing probabilities. The operator M̂yes decreases the ratio p1

p2
,

causing M̂yes |φ〉 to move toward |φ2〉 while operator M̂no

collapses the |φ〉 into |φ1〉.

B. Optimal quantum cloning for two nonorthogonal states

Suppose we are given with equal probability one quantum
state from a set including two known nonorthogonal quantum
states in the form

|ψ1〉 = cos(ξ ) |0〉 + sin(ξ ) |1〉 ,

|ψ2〉 = sin(ξ ) |0〉 + cos(ξ ) |1〉 ,
(2)

where ξ ∈ [0, π/4], with the scalar product

〈ψ1|ψ2〉 = sin(2ξ ). (3)

The transformation of symmetric 1-2 state-dependent cloning
takes the following form:

|00〉 → a |00〉 + b(|01〉 + |10〉) + c |11〉 ,

|10〉 → a |11〉 + b(|10〉 + |01〉) + c |00〉 ,
(4)

where we assume the cloning coefficients a, b, and c are
real numbers. Due to the unitarity of the transformation, the
following formulas must be satisfied:

a2 + 2b2 + c2 = 1, ac + b2 = 0. (5)

Solving Eq. (5), we obtain the following equations:

a = 1
2 (

√
1 − 4b2 + 1), c = 1

2 (
√

1 − 4b2 − 1). (6)

In previous work, fidelity has often been used as a factor of
merit, which is defined as F = 〈φin| ρout |φin〉, where ρout is
a reduced density matrix of output state 1 or 2 and |ψin〉 is
a to-be-cloned state. Due to the symmetry of transformation
given by Eq. (4), we obtain the fidelity as

F (|ψ1〉) = F (|ψ2〉) = 1
4 (3a2 + 4(a + b)(b + c) sin 2ξ

+ (a + c)(a − 2b − c) cos 4ξ

+ 2ab + 4b2 + 2bc + c2). (7)

With some calculation and using the method of Lagrange
multipliers, we can determine the cloning coefficient b as

b = 1
8 (1 − csc 2ξ + csc 2ξ

√
9 sin2 2ξ − 2 sin 2ξ + 1). (8)

Combining with Eq. (6), we obtain the detailed transformation
and the maximum fidelity for optimal cloning.

III. SCHEME FOR HIGHER FIDELITY

In this section, we are going to investigate how to en-
hance the fidelity by using weak measurements. Unlike the
schemes proposed by others, we do a weak measurement
as a pretreatment before transformation. After the success-
ful weak measurement, we obtain new intermediate qubits.
Putting them into a quantum machine, we obtain the final
copies with high fidelity at the output of the machine. Let
us now present our scheme in detail. Suppose we are given
a qubit selected randomly from Eq. (2). We first do a weak
measurement described as in Eq. (1) on the given state. Let
P̂1 = |+〉 〈+| and P̂2 = |−〉 〈−|, where |+〉 = 1√

2
(|0〉 + |1〉)

and |−〉 = 1√
2
(|0〉 − |1〉). Thus |ψ1,2〉 can be rewritten as

|ψ1,2〉 =
√

2

2
(cos ξ + sin ξ ) |+〉 ±

√
2

2
(cos ξ − sin ξ ) |−〉 .
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After the weak measurement, if the outcome is “yes,” we
obtain the intermediate states

|ψ ′
1,2〉 =

√
p[sin(ξ ) + cos(ξ )]√

(p − 1) sin(2ξ ) + p + 1
|+〉

± cos(ξ ) − sin(ξ )√
(p − 1) sin(2ξ ) + p + 1

|−〉 , (9)

with the success probability

pyes = 1
2 [(p − 1) sin(2ξ ) + p + 1]. (10)

Similarly, we obtain the scalar product of two possible inter-
mediate states as

〈ψ ′
1|ψ ′

2〉 = (p + 1) sin(2ξ ) + p − 1

(p − 1) sin(2ξ ) + p + 1
. (11)

Next, we do a transformation on the intermediate qubit
|ψ ′

1,2〉 and ancillary qubit which is originally in a blank
state |0〉. For the sake of convenience, we substitute√

p(sin ξ+cos ξ )√
(p−1) sin 2ξ+p+1

and cos ξ−sin ξ√
(p−1) sin 2ξ+p+1

with
√

2
2 (cos ξ ′ + sin ξ ′),

and
√

2
2 (cos ξ ′ − sin ξ ′) respectively, so the intermediate

qubits can be rewritten as

|ψ ′
1〉 =

√
2

2
(cos(ξ ′) + sin(ξ ′)) |+〉

+
√

2

2
(cos(ξ ′) − sin(ξ ′)) |−〉

= cos(ξ ′) |0〉 + sin(ξ ′) |1〉 ,

|ψ ′
2〉 =

√
2

2
(cos(ξ ′) + sin(ξ ′)) |+〉

−
√

2

2
(cos(ξ ′) − sin(ξ ′)) |−〉

= sin(ξ ′) |0〉 + cos(ξ ′) |1〉 . (12)

Combining them with Eq. (11), we obtain the important
equation as

sin(2ξ ′) = (p + 1) sin(2ξ ) + p − 1

(p − 1) sin(2ξ ) + p + 1
. (13)

By applying transformation (4), we obtain the copy fidelity as

F (|ψ1〉) = F (|ψ2〉) = 1
2 (1 + (a + c) cos 2ξ cos 2ξ ′

+ 2b(a + c) sin 2ξ (sin 2ξ ′ + 1)). (14)

We want to derive the optimal fidelity, with the constraints
as in Eq. (5). After some algebra, we determine the cloning
coefficients as

b = csc 2ξ
√

8(sin 2ξ ′ + 1)2 sin2 2ξ + cos2 2ξ ′ cos2 2ξ

8(sin 2ξ ′ + 1)

− cos 2ξ ′ cot 2ξ

8(sin 2ξ ′ + 1)
. (15)

So the optimal fidelity has the expression

F = 1

32

{
16 + 3

√
2 cos(2ξ ′) cos(2ξ )

(sin(2ξ ′) + 1)
[4 sin2(2ξ ′) + 8 sin(2ξ ′) − cos2(2ξ ′) cot2(2ξ )

+ cos(2ξ ′) cot(2ξ )
√

{cos2(2ξ ′) cot2(2ξ ) + 8[1 + sin(2ξ ′)]2} + 4]1/2

+
√

2 sin(2ξ )

(sin(2ξ ′) + 1)2

√
{cos2(2ξ ′) cot2(2ξ ) + 8[1 + sin(2ξ ′)]2}[4 sin2(2ξ ′) + 8 sin(2ξ ′) − cos2(2ξ ′) cot2(2ξ )

+ cos(2ξ ′) cot(2ξ )
√

{cos2(2ξ ′) cot2(2ξ ) + 8[1 + sin(2ξ ′)]2} + 4]1/2

}
. (16)

Generally, ξ is given in advance and ξ ′ is determined by
the parameter p, which can be adjusted and controlled. By
adjusting the value of the parameter p, we can obtain copies
with different values of fidelity. As shown in Fig. 1, we show
the dependence of the fidelity on the parameters ξ and ξ ′. The
color represents the fidelity of the copies. Given initial states
with a fixed value of ξ , the fidelity changes with different ξ ′.
We can find that under the condition sin(2ξ ′) = sin2(2ξ ), F

always reaches 1, which means we obtain two perfect copies
of the initial states. Combining with Eq. (13), we obtain
a critical value pc = 1+sin2 2ξ

(1+sin 2ξ )2 . For instance, ξ = π/8 and
ξ ′ = π/12 satisfy the above condition. Then all parameters
are determined and we obtain the initial qubits

|ψ1〉 = 1
2

√
2 +

√
2 |0〉 + 1

2

√
2 −

√
2 |1〉 ,

|ψ2〉 = 1
2

√
2 −

√
2 |0〉 + 1

2

√
2 +

√
2 |1〉 , (17)

intermediate qubits

|ψ ′
1〉 = 1

4 (
√

2 +
√

6) |0〉 + 1
4 (

√
6 −

√
2) |1〉 ,

|ψ ′
2〉 = 1

4 (
√

6 −
√

2) |0〉 + 1
4 (

√
2 +

√
6) |1〉 , (18)

and transformation coefficients

b = 1

2
√

3
, a = 1

2

(√
2

3
+ 1

)
, c = 1

2

(√
2

3
− 1

)
. (19)

The final qubits would be

∣∣ψf

1

〉 = (
1
2

√
2 +

√
2 |0〉 + 1

2

√
2 −

√
2 |1〉 )

⊗ (
1
2

√
2 +

√
2 |0〉 + 1

2

√
2 −

√
2 |1〉 )

, (20)
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FIG. 1. The dependence of the fidelity on the parameters ξ and
ξ ′. The dotted line corresponds to sin(2ξ ′) = sin2(2ξ ), where the
fidelity reaches its maximum value of 1.

∣∣ψf

2

〉 = (
1
2

√
2 −

√
2 |0〉 + 1

2

√
2 +

√
2 |1〉 )

⊗ (
1
2

√
2 −

√
2 |0〉 + 1

2

√
2 +

√
2 |1〉 )

, (21)

which are exactly the perfect copies of the initial qubits.
Next, we discuss the success probability, which has the

formula as in Eq. (10). It is a function of ξ and p, where
ξ ranges from 0 to π/4 and p ranges from 0 to 1. As we
mentioned before, ξ is already known and unchangeable. We
choose a proper value of p so that we can keep a balance
between success probability and fidelity. The dependence of
the success probability and the fidelity on p is shown in
Fig. 2 with a fixed value of ξ . The success probability is
monotone increasing with p while the fidelity increases before
pc and then decreases after it. It can be proved that the fidelity
reaches 1 at pc. And the corresponding success probability is
pyes = 1

1+sin(2ξ ) . This is just the Duan-Guo bound [29].

IV. COMPARISONS AND DISCUSSION

In this section, we make some comparisons with other
schemes and give some discussions on our scheme. To clone
states, a trivial cloning strategy is the measurement-based pro-
cedure: one measures initial states and produces two copies of
the states, according to the measurement results. For a given
state chosen randomly from two nonorthogonal states, the
unambiguous discrimination provides a measurement scheme
to identify the state unambiguously with nonzero probability.
Once we identify the state, we produce two perfect copies
(actually we can produce any number of copies). For the given
states in the form of Eq. (2) with equal a priori probabilities,
the minimum probability value of an inconclusive outcome [or
Ivanovic-Dieks-Peres (IDP) limit] [36] is given by

p? = | 〈ψ1| |ψ2〉 | = sin 2ξ . (22)

FIG. 2. The dependence of the success probability and the fi-
delity on the parameters p and ξ . Here, the figure is depicted with
ξ = π/12 and similar curves can be obtained with other values of
ξ . The success probability is monotone increasing with p while the
fidelity increases before pc and then decreases after it. For the case
of ξ = π/12, pc = 5/9.

In our scheme, if p = pc, we would obtain two perfect copies.
In this condition, the pno is given by

pno = sin 2ξ

1 + sin 2ξ
. (23)

Actually, under these circumstances, our scheme is equivalent
to the probabilistic quantum cloning, so it is optimal. As
shown in Fig. 3, pno is always smaller than p? in the region
(0, π/4), which shows the advantage of our scheme.

FIG. 3. The dependence of the probability of obtaining an incon-
clusive result on the parameter ξ . Here, we set p = pc so that we
could obtain two perfect copies.
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FIG. 4. The dependence of the fidelity on the parameter ξ as p =
1, 0.9, 0.8, 0.6, and 0.5. We can obtain higher fidelity by adjusting
the value of the parameter p in the region (pc, 1).

There is another cloning scheme, called optimal state-
dependent cloning [32]. This scheme produces approximate
copies with optimal fidelity deterministically. Actually, setting
p = 1, i.e., ξ = ξ ′, we find that the fidelity we obtained
in Eq. (16) is equivalent to that of optimal 1 → 2 state-
dependent quantum cloning (SDQC) [32,33], which clones
the states directly without pretreatment. Adjusting the value
of p in the region (pc, 1), we obtain higher-fidelity copies
compared with that of optimal 1 → 2 SDQC. The fidelity
would reach 1 if p = pc. However, it would decrease again
if p < pc. We show the dependence of the fidelity on the
parameter ξ with p = 1, 0.9, 0.8, 0.6, and 0.5 in Fig. 4. For
the case of ξ being close to zero and p being small enough,
our scheme may behave badly as shown in Fig. 4. Actually,
the value of p is adjustable and can be confined in the region
(pc, 1). This ensures that we obtain copies with higher fidelity.

In short, we obtain copies with different values of the
fidelity probabilistically by adjusting the value of p. The op-
timal state-dependent cloning, perfect-probabilistic cloning,
and unambiguous discrimination can be regarded as particular
cases. In the case of p = 1, our scheme is equivalent to the
optimal state-dependent cloning. In the case of p = pc, it
is equivalent to the perfect-probabilistic cloning. In the case
of pd = 1−sin 2ξ

1+sin 2ξ
, states after successful weak measurements

are orthogonal, and thus distinguishable, which is equivalent
to states discrimination. Here, pc is always greater than pd ,
accounting for higher success probability. The trick is that,
for proper p, the overlap of states has been adjusted after
successful weak measurements, which is beneficial for the
following cloning transformation.

The most obvious advantage of our scheme is that we
present a method to balance the copy fidelity and the success
probability via weak measurements. This makes our scheme
different from previous ones: one can only obtain perfect
copies with nonzero probability using PQC or approximate
copies deterministically. However, using our scheme, we can
adjust p to achieve a tradeoff between the success probability
and the fidelity. This flexibility may be of great use in QIP. For

instance, for some quantum key distributions, Eve can sac-
rifice the success probability in order to obtain information.
Alice and Bob cannot detect whether they are eavesdropped
upon or not, if they only use the disturbance criterion. Eve
hides herself in qubit loss. In general, the best eavesdropping
scheme for Eve is to choose a proper p to keep a balance
between the success probability and the fidelity so that she
could obtain information as much as possible and hide herself
from discovery in the qubit loss or noise.

Next, we give some brief discussions of generalization
to the cases that state sets contain more than two lin-
ear independent states. Consider a state chosen secretly
from a linearly independent and nonorthogonal set S =
{|ψ1〉 , |ψ2〉 , . . . , |ψN 〉}. The weak measurement is character-
ized by two operators M̂yes and M̂no. They satisfy M̂

†
yesM̂yes +

M̂
†
noM̂no = I . We may write M̂yes |ψi〉 = √

pi |φi〉 (i =
1, 2, . . . , N ), where 0 < pi < 1 and |φi〉 are not orthogonal
necessarily. If |φi〉 are orthogonal, it turns out to be unambigu-
ous discrimination [36–38]. Thus, we obtain the following
equations:

〈ψi | M̂†
yesM̂yes |ψj 〉=√

pipj 〈φi | |φj 〉 (i, j = 1, 2, . . . , N ).

(24)

Since |ψi〉 are linearly independent and nonorthogonal, we
can establish the form of Myes that satisfies Eq. (24) as

M̂yes =
∑

i

√
pi

〈ψ⊥
i | |ψi〉

|φi〉 〈ψ⊥
i | , (25)

where |ψ⊥
i 〉 is orthogonal to all |ψj 〉 for j 
= i. Thus, we could

pretreat the initial states by choosing a proper set of pi and
|φi〉. The average success probability is

ppro = 1

N

∑
i

pi . (26)

We note that the |φi〉 does not appear in Eq. (26), which means
the choice of |φi〉 does not affect the average success probabil-
ity. However, |φi〉 do play an important role in the subsequent
transformation task. Finally, we obtain high-fidelity clones
with a proper set of pi and |φi〉.

The general solution to the weak measurements and
cloning transformations for an arbitrary state set {|ψ〉} is com-
plicated and presently unknown. Some other special cases, for
example, symmetric sets of pure states [39], may be solved
analytically. This is an open question and needs further inves-
tigation. The cloning of two nonorthogonal states is relatively
simple. However, for typical distributions such as universal or
phase-covariant distribution, states to be cloned are linearly
dependent. Thus, there do not exist M̂yes that pretreat initial
states arbitrarily. For example, M̂yes may decrease the overlap
between |ψ1〉 and |ψ2〉. Nevertheless, it would increase the
overlap between some other states, for instance, |ψ3〉 and
|ψ4〉, inevitably. |ψk〉 (k = 1, 2, 3, 4) are four states in the
initial state set. For the uniform distribution, our scheme
may not improve the performance of cloning. However, for
nonuniform distributions, for instance, p1, p2 � p3, p4, pk

being the probability that state is |ψk〉, it may be possible to
find proper weak measurements and unitary transformations
that clone initial states with high fidelity.

012324-5



MING-HAO WANG AND QING-YU CAI PHYSICAL REVIEW A 99, 012324 (2019)

V. SUMMARY

In this paper, we propose a scheme to clone qubits chosen
randomly from a nonorthogonal state set using weak mea-
surements. We demonstrate that weak measurements can be
useful for high fidelity in quantum cloning processing. First,
we do a weak measurement on the qubits to make them easier
to clone. If the result of the measurement is “yes,” we feed
the qubits to the subsequent unitary transformation. After the
cloning process is accomplished, we obtain copies with high
fidelity dependent on the value of p. By choosing a proper p,
we can even obtain perfect copies. It is easily implemented
with current experimental techniques since many experimen-
tal quantum clonings have been reported [40–44]. It is also
clarified that our scheme is valid for state sets that contains
more than two linear independent states. Analogously, what
we need to do is to find a set of proper measurement operators
which pretreats the initial states before the subsequent uni-
tary transformations. Unambiguous discrimination is one of
the pretreatments [37]. Obviously, this is not optimal. Since

the weak measurement is nonunitary, the whole process is
probabilistic and the success probability is dependent on p.
Sometimes, we may get nothing. But, once we succeed, we
would obtain copies with high fidelity. What is more, the
practical cloning transformations usually consist of a series
of complicated quantum logic gates in the experiments. Only
when the outcome is “yes” do we perform further cloning
transformations; otherwise, we quit. This can save us lots
of quantum resources. Thus, our scheme is economical from
this perspective. Finally, the method we used here is not
restricted to the quantum cloning process and could be found
in some other applications in QIP. The core thought is that we
pretreat the target qubits, for which some price may be paid.
Nonetheless, we may obtain final qubits with high fidelity.
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