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Experimental realization of quantum algorithms for a linear system inspired
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Adiabatic quantum computation is of fundamental importance in the field of quantum computation as it
offers an alternative approach to the gate-based model for the manipulation of quantum systems. Recently,
an interesting work [arXiv:1805.10549] indicated that we can solve a linear equation system via an algorithm
inspired by adiabatic quantum computing. Here we demonstrate the algorithm in a four-qubit nuclear magnetic
resonance system by determining the solution of an eight-dimensional linear equation Ax = b. The result is by
far the maximum-dimensional linear equation solution with a limited number of qubits in experiments, which
include some ingenious simplifications. Our experiment provides the possibility of solving so many practical
problems related to linear equations systems and has the potential applications in designing the future quantum
algorithms.
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I. INTRODUCTION

Based on the principles of quantum mechanics, quantum
computation presents a novel framework to design the effi-
cient algorithms and boost the computation processing with
respect to the classical situations. The research on quantum
computing can not only bring us powerful ability to manip-
ulate microscopic system, but also can provide us novel per-
spectives to understand the world and invent new techniques.
Since the birth of quantum computation [1,2], so many works
have been performed to apply the properties of quantum
systems to other research fields, such as communication [3–5],
cryptography [6,7], and machine learning [8,9]. Furthermore,
many computation models have been put forward including
a circuit model [10,11], one-way quantum computing [12],
topologic quantum computation [13,14], adiabatic quantum
computing (AQC) [15,16] and duality quantum computing
[17]. Among them, AQC might be one of the most prospective
models for practical application at the recent advances in
quantum machine learning because machine learning usually
deals with a form of multivariate optimization, which can be
directly translated to AQC [18].

In general, AQC starts with a time-dependent initial Hamil-
tonian H0, which is convenient to prepare in experiments.
By driving the initial Hamiltonian to the target Hamiltonian
Hp (the so-called “problem Hamiltonian”), we could get the
information encoded in the ground state of Hp [15]. The tran-
sition from H0 to Hp is realized by driving an instantaneous

*These authors contributed equally to this work.
†xint@sustc.edu.cn
‡gllong@tsinghua.edu.cn

Hamiltonian,

H (t ) = [1 − s(t )]H0 + s(t )Hp, (1)

where the function s(t ) varies from 0 to 1 to parametrize the
interpolation. Adiabatic theorem tells us that quantum systems
tend to stay in the ground state of the instant Hamiltonian
as long as the whole transformation process is sufficiently
smooth and slow. Quantum adiabatic evolution can be in-
trinsically robust against experimental imperfections whereas
the necessity of smoothness and long timescales limits its
implementation. Recently, some methods have been proposed
to optimize the AQC process including randomization method
(RM) [19] and shortcut to adiabatic passage [20].

The fundamental algorithm related to quantum machine
learning was first proposed by Harrow et al. (HHL algo-
rithm) [21]. The HHL algorithm is devoted to preparing a
quantum state |x〉 representing the solution of a linear system
of equation Ax = b. Supposing that A is a N × N matrix
and b is a N -dimensional vector, the best classical algorithm
can find the solution with complexity in O(N ) [22], whereas
the complexity of the quantum HHL algorithm is polynomial
in log2 N and κ , where κ is called the condition number, a
parameter measuring the numerical instability of A. Recently,
it has been shown that the HHL algorithm can be neatly recast
in the duality quantum computing formalism where linear
combinations of unitary operators are used for computing
[17,23]. Experimental realization of the HHL algorithm has
been demonstrated the in nuclear magnetic system (NMR)
[25], the optical system [24,26], and the superconducting sys-
tem [27], whereas these experimental protocols only demon-
strated the simplest situation of the HHL algorithm by solving
a 2 × 2 linear equation.
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Both the HHL algorithm and its experimental realization
are based on a gate model. Recently, an interesting approach
has been proposed to implement algorithms inspired by adi-
abatic quantum computing for solving linear equations. In
this paper, we experimentally demonstrate two kinds of al-
gorithms proposed in Ref [28] using the NMR system. On
near-term quantum devices, quantum resources will remain
scarce and expensive. Thus, this approach shows a significant
advantage on the consumption of qubit resources compared
with the HHL algorithm. This paper is organized as follows: In
Sec. II, we briefly review the basic theory. In Sec. III, experi-
mental setups and experimental procedure will be introduced.
Then, we present the experimental results. Finally, a conclu-
sion is given in Sec. IV.

II. A BRIEF REVIEW OF THE THEORY

In this section, we briefly preview the basic framework of
quantum algorithms introduced in Ref. [28]. The first quantum
algorithm aims at changing the system Hamiltonian from the
initial to the final form smoothly, keeping the quantum state
staying at the ground state of the instantaneous Hamiltonian,

H (s) = A2(s) − A(s)|b〉〈b|A(s), (2)

where A(s) = (1 − s)Z ⊗ I + sX ⊗ A and |b〉 = |+, b〉.
The notations X, Y , and Z represent the Pauli matrix, and
I is the identity matrix whose dimension is equal to the one of
matrix A. State |±〉 are the eigenstates of the Pauli X gate
in the computational basis. A lower bound to the spectral
gap between the ground-state energy and the energy of the
first excited state of H (s) is determined by parameter s (s ∈
[0, 1]): �∗(s) = (1 − s)2 + (s/κ )2, and κ is the condition
number of the A matrix. Under the natural parametrization,
s(v) can be written as

s(v) =
exp

(
v

√
1+κ2√

2κ

) + 2κ2 − κ2 exp
(−v

√
1+κ2√

2κ

)

2(1 + κ2)
, (3)

where va � v � vb satisfying

va =
√

2κ√
1 + κ2

log2(κ
√

1 + κ2 − κ2), (4)

vb =
√

2κ√
1 + κ2

log2(
√

1 + κ2 + 1). (5)

When parameter v varies from boundary-value va to
vb, s(v) will increase progressively from 0 to 1. In this
procedure, the eigenstate will correspondingly evolve from
|−, b〉 to |+, x〉, and the target solution state |x〉 can be
obtained by discarding the ancillary qubit. We choose fixed
value H (vj ) of Hamiltonian in the j th step and evolve for a
random time t j with t j ∈ [0, 2π/�∗(vj )], which is actually
the RM algorithm introduced in Ref. [19].

The second algorithm realizes energy gap amplification
and improves the time complexity. In this algorithm, the
system Hamiltonian is given by

H ′(s) = σ+ ⊗ A(s)P ⊥
b

+ σ−P ⊥
b

A(s), (6)

where σ± = (X ± iY )/2 and P ⊥
b

= I − |b〉〈b| is an
orthogonal projector. The eigenvalues of H ′(s) are

[ 0, 0,±√
γ1(s), . . . ,±√

γ2N−1(s) ], where γj (s) > 0 are
the nonzero eigenvalues of H (s). When we evolve the
system from initial-state |0〉 ⊗ |−, b〉, a series of projective
measurements on the eigenstates of H ′(s) will make
the system end up staying in state |0〉 ⊗ |+, x〉 with
sufficiently high probability. The fixed points we choose
can be the same as the ones in the first algorithm, and we
evolve the Hamiltonian H ′(vj ) for a random time t j with
t j ∈ [0, 2π/

√
�∗(vj )] at the j th step.

Compared with the first algorithm, the second algorithm
introduces one more ancillary qubit, whereas the time com-
plexity is decreased from O[κ2 log2(κ )/ε] to O[κ log2(κ )/ε],
where ε ∈ (0, 1) is a precision parameter. Without the phase
estimation procedure, the number of ancillary qubits is inde-
pendent of the size of the quantum system. Thus, the expan-
sibility of the algorithms can have a much better performance
compared with the HHL algorithm in spatial complexity.

III. EXPERIMENTAL SETUPS AND RESULTS

As proof-of-principle demonstrations, we experimentally
realize the two algorithms mentioned above by solving eight-
and four-dimensional linear equations, respectively. Because
of the completeness of the Pauli basis, we can expand matrix
A in eight-dimensional Hilbert space. Without the loss of
generality, the linear equation we demonstrate in the first algo-
rithm is Ax = b where matrix A = (3III + XII − 2XYI +
3XYZ)/4 and b = [1, 1, 1, 1, 1, 1, 1, 1]T /

√
8. It is worth

emphasizing that the determination of matrix A and vector
b is arbitrary because this algorithm does not include any
subroutines, such as phase estimation which has been used
in the HHL algorithm. Moreover, if we set A as a positive-
definite matrix, then the parametric matrix can be simplified as
A(s) = (1 − s)I + sA with A(s) still being a positive-definite
nonsingular matrix. As a result, the experimental methods
used in this paper should allow for solving even 16 × 16 linear
systems for some special cases.

In experiments, the used four-qubit sample is 13C-labeled
transcrotonic acid dissolved in d6-acetone with 1H decoupled
throughout all the process. The structure and parameters of
this molecule are shown in Fig. 1. Notations C1–C4 denote
the four qubits, and we choose C1 as the ancillary qubit. The
internal Hamiltonian under the weak coupling approximation
is

Hint = −
4∑

i=1

πνiσ
i
z +

4∑

i<j

π

2
Jijσ

i
zσ

j
z , (7)

where νi is the chemical shift and Jij is the J -coupling
strength between the ith and the j th nuclei. All experiments
are carried out on a Bruker DRX 400-MHz spectrometer at
room temperature (296.5 K).

We start from the thermal equilibrium state and drive the
system to the pseudopure state (PPS) using the spatial aver-
aging technique method [29–31]. The procedure is realized
by gradient fields and unitary operators which are realized by
gradient ascent pulse engineering (GRAPE) [32,33] with the
fidelity over 99.5%. The final form of the four-qubit PPS is

|ρ0000〉 = 1 − ε

16
I16 + ε|0000〉〈0000|, (8)
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(a)

(b)

FIG. 1. (a) Molecule structure of 13C-labeled crotonic acid. C1–
C4 are used as four qubits in the experiment, whereas all 1H’s are
decoupled throughout the experiment. (b) Molecule parameters of
the sample: the chemical shifts and J couplings (in hertz) are listed
by the diagonal and off-diagonal elements, respectively. T2’s(in
seconds) are also shown at the bottom.

where I16 represents a 16 × 16 identity operator and ε ≈ 10−5

is the polarization. We first apply one X gate on the ancillary
qubit followed by four Hadamard gates acting on all qubits,
then we finish the preparation of the initial ground-state
|−, b〉. As we introduced above, the evolution we want to real-
ize is to slowly drive an instant Hamiltonian H (t ) which can
be equivalently expressed by a unitary evolution U |−, b〉 =
|+, x〉. Practical implementation of AQC is unlikely to per-
form a smooth sweep but rather to use a piecewise constant
Hamiltonian with small jumps between steps. According to
the RM theory mentioned above, we divide the total procedure
into 300 steps,

U =
300∏

i=1

Ui = U300 · · ·Ui · · · U2U1, (9)

where Ui = e−iH (ti )�i . Notation �i is the random evolution
time of the ith step and �i ∈ [0, 2π/�∗]. In our experiment,
we pack every 60 steps in one pulse which is also optimized by
the GRAPE method, with the length of each pulse 20 ms and
the fidelity with theoretical operators over 99%. At the end
of the circuit, we obtain the density matrix of the final quan-
tum state by performing quantum-state tomography (QST)
[34–38]. QST is finished by applying 17 readout pulses with
the duration 0.9 ms after the evolution. Then we can recon-
struct all the density-matrix elements of final-state ρf .
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FIG. 2. Experimental results for the first algorithm. (a) (Energy
and fidelity). The light and dark blue solid lines are theoretical values
of the first-two energy levels of the time-dependent Hamiltonian,
respectively. The solid points (black below) represent the experimen-
tal energy results, and the corresponding experimental fidelities are
shown by the circle points above. (b) (Final solution). The real and
imaginary parts of the theoretical (light blue bars) and experimental
(dark blue bars) final quantum states of solution |x〉 are shown.
The numbers labeled present the corresponding differences between
experimental and theoretical values.

We perform four-qubit QST after each step and monitor
the energy of system by using definition 〈H 〉 = tr(ρH ). Ex-
perimental results are shown in Fig. 2(a) . It is shown that the
ground energy of the system does not exceed the energy of
the first excited state within the range of experimental error,
which means the process we realized is definitely adiabatic.
Using the definition F (ρ, σ ) = tr(ρσ )/

√
tr ρ2

√
tr σ 2 [39],

the fidelity between the theoretical and the experimental mea-
sured quantum state is over 95.5% in the whole process of the
experiment. After tracing out the ancillary qubit, we find that
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the fidelity between the experimental three-qubit quantum-
state ρx and the theoretical solution |x〉〈x| is about 98.4%. We
reconstruct the quantum state from the final density matrix
and find the solution xexp in experiment (theoretical solution
xth), which is also shown in Fig. 2(b). We also label the
difference values between the experimental and the theoretical
data beside the bars in the picture.

By far, we have demonstrated the experimental realization
of the first algorithm. In the following we would turn to
the discussion of the second algorithm and its experimental
results. In this case, we attempt to solve a four-dimensional
linear equation where matrix A and vector b are chosen as
A = (3II + 2ZI + 3XI − 3XY )/4 and b = [1, 1, 1, 1]T /2.

The experimental setups are almost the same: Total
numbers of the evolution steps we set are 300, and we
pack every 60 steps in one package and optimize them
with the GRAPE method. The four-qubit fidelities in ex-
periments are all over 97%. After tracing out the an-
cillary qubits (C1 and C2), the two-qubit density ma-
trix representing the solution is created and the two-
qubit fidelities are about 97.65% on average. As a result,
the experimental solution xexp = [0.157 − 0.039i, 0.193 +
0.009i, 0.454 − 0.590i, 0.509 + 0.352i], and the theoretical
solution is xth = [0.175 − 0.019i, 0.175 + 0.019i, 0.500 −
0.468i, 0.500 + 0.468i]. We also list the energy levels of
the experimental and theoretical states in Fig. 3. The results
indicate that the second algorithm does amplify the energy gap
and the energy drift is merely 5% of the energy gap between
the ground-state energy level and the closest excited energy
level. Therefore, the second algorithm obtains better adiabatic
performance than the first one with an identical evolution
time, which means the second algorithm is more robust in the
AQC model.

The inaccuracies of our experiments are mostly eliminated
because of the robustness of the adiabatic evolution. However,
if the amplitude and phase of the control field have random
fluctuations with a range of 5 Hz and 5◦, which is common
in the actual experimental process, the adiabatic passage will
still have a random variation. We numerically analyzed the
fluctuation range of the energy and fidelities after each step of
the adiabatic passage and list the theoretical range in Table I.
The actual experimental results are also listed in the table for
comparison.
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FIG. 3. Experimental results for the second algorithm. The solid
lines are theoretical values of the energy spectrum of the time-
dependent Hamiltonian. The light blue line is the middle level of the
spectrum, and the other lines represent the closest eight energy levels.
The black points represent experimental energy results in each step
of our experiment.

IV. CONCLUSION

To summarize, we first demonstrate the solution of an
eight-dimensional linear equation system by utilizing algo-
rithms inspired by adiabatic quantum computing in our NMR
platform. The experimental results match well with the the-
oretical expectations, and we also compare the performance
of the two different algorithms. This is a solution of the
largest-dimensional linear equations realized in a quantum
simulator. It is worth emphasizing that these algorithms have
better expansibility than the previous algorithms. The de-
terminations of matrix A and vector b are arbitrary, and
the complicated subroutines, such as phase estimation and
variable-time amplitude amplification are not necessary. In
the future, one of the predominant challenges is how to
establish a scalable physical system for quantum computation,
and resources of qubits are still very precious in the present
development stage of quantum information. Under such a

TABLE I. Error range of the two algorithms based on the assumption that the fluctuations of amplitude and phase are within a range of
5 Hz and 5◦. We numerically analyzed the fluctuations of the energy and fidelities after each step and list the fluctuation range. The actual
experimental results are also listed in the table for comparison.

Algorithm 1 Algorithm 2

Energy Fidelity Energy

Error range Theory range Experiment Theory range (%) Experiment (%) Theory range Experiment

Step 1 0.0002–0.0029 0.0010 96.70–99.98 97.00 0.0000–0.1080 0.0657
Step 2 0.0020–0.0129 0.0112 96.79–99.18 96.98 0.0018–0.0422 0.0298
Step 3 0.0067–0.0437 0.0369 96.79–98.82 96.97 0.0035–0.1090 0.0689
Step 4 0.0100–0.0673 0.0509 95.22–97.06 95.59 0.0048–0.0940 0.0489
Step 5 0.0089–0.0420 0.0193 95.82–97.30 96.30 0.0064–0.0601 0.0290
Step 6 0.0072–0.0412 0.0105 94.33–96.99 95.70 0.0072–0.1050 0.0370
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background, the protocols we demonstrate would be scalable
and meaningful because the number of required ancillary
qubits is independent of the size of the quantum system. In
experiments, we realize the demonstration of these algorithms
by solving eight- and four-dimensional linear equations with
high fidelities. It is believed that the process we demonstrated
can be extended to other quantum computing platforms.
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