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Collective quantum phase slips in multiple nanowire junctions

Zeng-Zhao Li,1,2 Tie-Fu Li,3 Chi-Hang Lam,4 and J. Q. You2,*

1Division of Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
2Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device,

Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
3Institute of Microelectronics and Tsinghua National Laboratory of Information Science and Technology,

Tsinghua University, Beijing 100084, China
4Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

(Received 26 October 2018; published 8 January 2019)

Realization of robust coherent quantum phase slips represents a significant experimental challenge. Here
we propose a design consisting of multiple nanowire junctions to realize a phase-slip flux qubit. It admits
good tunability provided by gate voltages applied on superconducting islands separating nanowire junctions.
In addition, the gates and junctions can be identical to or distinct from each other, leading to symmetric and
asymmetric setups. We find that the asymmetry can improve the performance of the proposed device compared
with the symmetric case. In particular, it can enhance the effective rate of collective quantum phase slips.
Furthermore, we demonstrate how to couple two such devices via a mutual inductance. This is potentially
useful for quantum gate operations. Our investigation on how symmetry in multiple nanowire junctions affects
the device performance should be useful for the application of phase-slip flux qubits in quantum information
processing and quantum metrology.
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I. INTRODUCTION

There has been growing research interest in quantum phase
slips in not only condensed matter but also ultracold quantum
gas [1]. In a solid-state context such as superconducting
nanowires, the phase of the superconducting order parameter
ψ = ψ0e

iφ is allowed to change (i.e., slip) rapidly by ±2π

if its amplitude tends to zero, due to the requirement that
ψ2

0 ∇φ is a constant [2–4]. For a long time, achieving coherent
quantum phase slips has been a challenging topic. Traditional
methods [5] rely on the detection of phase-slip changes in
resistance measurements of superconducting wires. However,
one cannot fully reveal the quantum nature of the phase-slip
process [6,7] because phase slips can also be activated by
thermodynamic fluctuations that contribute to the residual
resistance of superconducting wires [8–10]. A more sophis-
ticated method for detecting coherent quantum phase slips is
to engineer a device known as a quantum phase-slip junction
[11]. This phase-slip junction can play the role of a Josephson
junction [12] in a superconducting flux qubit to form a kind of
qubit known as the phase-slip flux qubit [11,13]. Compared
with conventional superconducting qubits for quantum infor-
mation processing (see Refs. [14–16] for reviews), this phase-
slip qubit is insensitive to the charge noise. Moreover, similar
to Josephson junctions for accurate standards of voltage [17],
the flux-charge duality [13,18] renders this phase-slip qubit a
promising device for providing a quantum current standard
[19]. In recent experiments, highly disordered indium ox-
ide and niobium nitride nanowires were utilized to achieve
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phase-slip flux qubits [20–23]. In addition, a single-charge
transistor based on quantum phase slips was realized [24],
which is dual to the dc superconducting quantum interference
device and can be operated as an electrometer. Quantum
paired phase slips that could reduce decoherence in qubits
by exploiting parity effects was experimentally demonstrated
[25]. In particular, a very recent experiment, which used
microscopic spectroscopy [20,22,23] rather than direct current
transport measurement [24,26,27], reported the realization
of a charge quantum interference device [28] based on two
phase-slip junctions [29]. These experiments represent im-
portant steps towards the applications of phase-slip circuits
in quantum information processing and quantum metrology.
Note that coherent quantum phase slips could also be explored
through the approximate self-duality of Josephson-junction
circuits, such as a Cooper-pair box [30] and Josephson arrays
[31–38], which however have been shown a challenging route
towards a phase-slip quantum current standard [39].

Achieving robust coherent quantum phase slips is still
an experimental challenge. The major difficulty comes from
quasiparticle dissipations in nanowires or vortex cores which
make the phase-slip rate imperceptible. These dissipations
can be suppressed in a highly disordered superconductor near
the superconductor-insulator transition, where electrons are
localized and quantum fluctuations of the order parameter are
prominent. Despite the weak quantum fluctuations in bulk
disordered superconductors, they can become significantly
stronger in disordered nanowires where the localization length
is comparable to the coherence length. It was shown that the
phase-slip rate can be increased by raising the disorders in
the superconducting nanowires [40,41]. Further increases are
however prohibited since too much disorder in the nanowires

2469-9926/2019/99(1)/012309(12) 012309-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.012309&domain=pdf&date_stamp=2019-01-08
https://doi.org/10.1103/PhysRevA.99.012309


ZENG-ZHAO LI, TIE-FU LI, CHI-HANG LAM, AND J. Q. YOU PHYSICAL REVIEW A 99, 012309 (2019)

can yield strong Coulomb interactions and destroy the su-
perconductivity [42]. Alternatively, the phase-slip rate can be
increased by using a longer nanowire [6,11], but the enhance-
ment is also limited because the quantum fluctuations needed
for the emergence of the phase slips become weakened and
even disappear for long nanowires, e.g., the MoGe nanowire
can be up to ζ ∼ 200 nm long [6,43] while still maintaining
the needed quantum fluctuations. Therefore, an alternative
method to enhance the phase-slip rate is strongly desired.

In this paper we investigate the effects of symmetric and
asymmetric setups on collective quantum phase slips in mul-
tijunction phase-slip flux qubits. In contrast to a single junc-
tion exhibiting only weak phase slips, multiple junctions are
particularly important because they can collectively give rise
to a large phase-slip rate demonstrating appreciable quantum
phase slips. In such a phase-slip qubit, each superconducting
island separated by two adjoining phase-slip junctions is
biased by a gate voltage so as to achieve a tunable phase-
slip rate. Moreover, we propose to couple two multijunction
phase-slip flux qubits via the mutual inductance between
them. This inductively coupled phase-slip flux qubit pair is
dual to a charge qubit pair coupled via a mutual capacitance.
Our proposed multijunction device has distinct advantages
over a single phase-slip junction or a charge quantum interfer-
ence device based on two phase-slip junctions. This is because
various symmetry configurations can give rise to drastically
distinct results and may potentially be used, for example,
to achieve a large effective phase-slip rate. This can widen
the range of materials usable for superconducting quantum
circuits.

II. MULTIJUNCTION PHASE-SLIP FLUX QUBIT

The proposed multijunction phase-slip flux qubit is
schematically shown in Fig. 1(a), where a superconducting
loop is interrupted by m phase-slip junctions. The voltage
drop across each junction is given by Vi = V C

i sin(2πqi ) [13]
for i = 1, 2, . . . , m, where qi is the number of Cooper pairs
having tunneled through the ith phase-slip junction. Also,
V C

i = 2πEi/2e is the critical voltage of the ith junction,
where Ei denotes the phase-slip rate. Neighboring phase-slip
junctions are connected by a superconducting island biased by
a gate voltage νl via a gate capacitance Cl (l = 1, 2, . . . , m −
1). The reduced offset charge on each island is Nl ≡ Clνl/2e

and the supercurrent through each junction is I = 2eq̇i . The
phase drop across the ith phase-slip junction with a kinetic
inductance Lki is given by γi = 2π (LkiI/�0) and the phase
drop related to the geometric inductance Lg of the loop is
γg = 2π (LgI/�0), where �0 ≡ h/2e is the flux quantum.

We consider m phase-slip junctions in which the first α

of them (i = 1, 2, . . . , α) have properties {γA,LkA,EA, V C
A },

while the other m − α junctions (i = α + 1, α + 2, . . . , m)
are characterized by {γB, LkB,EB, V C

B }, i.e.,

{
γi, Lki, Ei, V

C
i

} =
{{

γA,LkA,EA, V C
A

}
for 1 � i � α{

γB, LkB,EB, V C
B

}
for α < i � m.

(1)

The two sets are colored in red and green, respectively, in
Fig. 1. An asymmetric number of junctions in the two sets

FIG. 1. (a) Schematic diagram of a multijunction phase-slip flux
qubit, where γi , for i = 1, 2, . . . , m with m = 6, represents the phase
drop across the ith junction in the loop and f ≡ �ext/�0 is the
reduced magnetic flux applied to the loop. Each superconducting is-
land between two adjoining phase-slip junctions is controlled by the
gate voltage νl via a gate capacitance Cl , where l = 1, 2, . . . , m − 1.
(b) Two multijunction phase-slip flux qubits coupled by a mutual
inductance M between them.

(i.e., α �= m/2) can significantly change the behaviors of the
proposed device and in particular improve its performance, as
demonstrated below.

Accordingly, we have three sets of values for the capaci-
tance Cl and the gate voltage νl defined by

{Cl, νl} =

⎧⎪⎨
⎪⎩

{CA, νA} for 1 � l � α − 1

{CC, νC} for l = α

{CB, νB} for α + 1 � l � m − 1

(2)

and the corresponding gates are shaded in red, yellow, and
green in Fig. 1. For time-independent applied voltages at the
gates, charge balance implies

qi+1 − qi =

⎧⎪⎨
⎪⎩

NA = CAνA

2e
for 1 � i � α − 1

NC = CCνC

2e
for i = α

NB = CBνB

2e
for α + 1 � i � m − 1.

(3)

Note that the superconducting island with a reduced offset
charge NC connects the two sets of phase-slip junctions and is
particularly important, as will be demonstrated below.

Adopting the fluxoid (flux quanta) representation, the
fluxoid states {|n〉} are the eigenstates of n ≡ �/�0. Let
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f ≡ �ext/�0 be the reduced externally applied flux of the
loop. The Hamiltonian of the multijunction phase-slip flux
qubit is (see the Appendix)

Hq =
∑

n

[
EL(n − f )2|n〉〈n| − 1

2
Eeff (e−iϕ|n + 1〉

× 〈n| + eiϕ|n〉〈n + 1|)
]
, (4)

with the inductive energy scale EL, the effective phase-slip
rate Eeff , and the phase ϕ given, respectively, by

EL = �2
0

2[Lg + αLkA + (m − α)LkB]
, (5)

Eeff =
√

η2
A + η2

B + 2ηAηB cos(4πq̄ ), (6)

ϕ = arctan

[
ηA − ηB

ηA + ηB

tan(2πq̄ )

]
, (7)

where

ηA = EA sin(απNA)

sin(πNA)
, (8)

ηB = EB sin[(m − α)πNB]

sin(πNB )
, (9)

q̄ = 1

2
NC + m − α − 1

4
NB + α − 1

4
NA. (10)

Note that the phase ϕ vanishes if we consider, e.g., EA =
EB , α = m/2, and NA = NB . Then Hq in Eq. (4) reduces
to the same form of the Hamiltonian with a real phase-slip
rate for a single-junction phase-slip flux qubit [11,13]. The
same reduction can alternatively be obtained by applying the
transformation

|ñ + 1〉 = e−iϕ(n+1)|n + 1〉, |ñ〉 = e−iϕn|n〉 (11)

and Eq. (4) becomes real and is given by

Hq =
∑

ñ

[
EL(n − f )2|ñ〉〈ñ| − 1

2
Eeff (|ñ + 1〉〈ñ| + |ñ〉

× 〈ñ + 1|)
]
. (12)

Note that the above transformation does not alter the inductive
energy scale EL and the phase-slip rate Eeff , which are given
in Eqs. (5) and (6), respectively. In the proposed phase-slip
flux qubit, the inductive energy proportional to EL depends
parabolically on the applied flux �ext = f �0 at each flux-
oid number and the phase-slip rate Eeff couples states with
adjacent fluxoid numbers and lifts the degeneracy at half-
integer values of f . In the considered flux regime satisfying
EL � Eeff , this proposed multijunction phase-slip flux qubit,
described by Eq. (4) with a real effective phase slip rate [i.e.,
Eq. (12)], is dual to a Cooper-pair box [13].

Compared with the single-junction phase-slip flux qubit
[11], Eq. (5) shows that EL can be decreased by using multiple
phase-slip junctions so that the effect of the flux noise on the
qubit is suppressed. Also, note that the effective phase-slip
rate given by Eq. (6) depends on the reduced offset charges

(i.e., NA, NB , and NC) and also the numbers of junctions (i.e.,
α and m). Therefore, in comparison with the single-junction
phase-slip flux qubit [11,13], the proposed qubit consisting
of multiple junctions can be tuned by not only the externally
applied magnetic flux �ext in the loop (i.e., f ) but also the
gate voltage on each island. We finally mention that the use of
multiple junctions for the purpose of enhancing collectively
quantum phase slips in our work is different from the shunted
large-capacitance Josephson junctions in a fluxonium that
behave effectively like a superinductance and are used to
reduce charge fluctuations [44].

III. COLLECTIVE QUANTUM PHASE SLIPS IN THE
PHASE-SLIP FLUX QUBIT

To illustrate collective phase slips of the proposed mul-
tijunction phase-slip flux qubit and in particular how they
are influenced by the symmetry property of the qubit, in this
section we first consider two limiting cases, i.e., cos(4πq̄ ) =
±1 in Eq. (6), and then we investigate general cases of both
symmetric and asymmetric setups.

When considering the limit cos(4πq̄ ) = 1 that is accessi-
ble by tuning NC via the gate voltage CC [see Eq. (3)] to
be NC = k − (m − α − 1)NB/2 − (α − 1)NA/2 (with k an
integer) obtained from Eq. (10), the effective phase-slip rate
becomes Eeff = |ηA + ηB |. The behavior of ηA and ηB with
local maxima or minima in Eqs. (8) and (9) would give rise
to periodic oscillations of Eeff , as demonstrated below. If
integer values of both NA and NB are considered, Eqs. (8)
and (9) reduce to ηA = αEA and ηB = (m − α)EB , respec-
tively. We then have Eeff = αEA + (m − α)EB , indicating
constructively collective phase slips of multiple junctions.
Further consideration of a symmetric setup, i.e., EA = EB and
α = m/2, shows the m-fold enhancement [see, for example,
the lattice points in Fig. 2(a)].

For the other limit cos(4πq̄ ) = −1 that is achievable via
NC = k + 1/2 − (m − α − 1)NB/2 − (α − 1)NA/2, Eq. (6)
becomes Eeff = |ηA − ηB |. For integer values of NA and NB ,
it reduces to Eeff = |αEA − (m − α)EB |, implying destruc-
tively collective phase slips of two sets of junctions defined
in Eq. (1). This rate vanishes if a symmetric setup, i.e.,
EA = EB and α = m/2 (m is an even integer), is considered
[see, e.g., Fig. 3(b)]. When α or EB goes away from the
symmetric point m/2 or EA, respectively, Eeff increases from
zero to a finite value, as also shown in Figs. 4(a) and 4(b)
or Fig. 6(a), implying the advantage of an asymmetric setup.
This asymmetry-induced enhancement of Eeff still holds for
m an odd number.

In the following we present our detailed study of collective
phase slips by considering both symmetric and asymmetric
cases. This would not only verify the analyses of limiting
cases above but also illustrate how the symmetry property
influences and particularly enhances the performance (i.e.,
collective coherent quantum phase slips) of the proposed
phase-slip flux qubit.

A. Symmetric case

The symmetric configuration of the device corresponds
to an equal number in the two sets of phase-slip junctions
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FIG. 2. Effective phase-slip rate Eeff of a multijunction phase-
slip flux qubit (in units of EA) versus the reduced offset charges NA

(≡CAνA/2e) and NB (≡CBνB/2e) for (a) α = 5 and (b) α = 2. The
other parameters are NC = 1, m = 10, and EB/EA = 1.

(i.e., α = m/2), the identical single-junction phase-slip rate
(i.e., EA = EB), and also an integer value for the reduced
offset charge NC (=CCνC/2e). The first two conditions lead
to a vanishing phase (i.e., ϕ = 0) of the tunneling flux in
Eq. (4) and identical coefficients of the NA and NB terms in
the expression of q̄ in Eq. (10).

In Fig. 2(a) the effective phase-slip rate from Eq. (6) for
a symmetric setup is presented. It is shown that the tuning of
both NA and NB generates square lattice patterns. These lat-
tice patterns essentially result from the symmetric dependence
of Eeff on NA and NB . In particular, Eeff is maximized at the
lattice points and three weaker maxima with the same values
are located in between nearest-neighboring lattice points.
The Eeff at the lattice point, e.g., (NA,NB ) = (1, 1), can
be analytically checked. In addition, let us consider special
junctions and gates that are all identical, i.e., EA = EB =
Es and NA = NB = NC = Ng . Compared with the single-
junction case (i.e., m = 1) with Eeff reduced to the constant
Es , tuning the reduced offset charge Ng towards an integer
k ∈ N leads to limNg→k∈N Eeff (Ng ) = mEs , indicating an
m-fold enhancement of the phase-slip rate.

B. Asymmetry induced by noninteger values of NC

To investigate how the symmetry breaking affects the co-
herent quantum phase slips, we first consider the asymmetry
induced by a gate voltage CC and capacitance νC that leads
to noninteger values of NC (=CCνC/2e). In Figs. 3(a)–3(c)
the effective phase-slip rate from Eq. (6) is presented for three
different values of NC . It is shown that square lattice patterns
similar to Fig. 2(a) are generated. However, the consideration
of a noninteger value of NC , e.g., 0.2 [Fig. 3(a)] or 0.8
[Fig. 3(c)], leads to the positions for the maximized Eeff

slightly shifted away from the lattice points and the three
weaker maxima are not identical anymore. In particular, we
find that the half-integer value, i.e., NC = 0.5, considered in
Fig. 3(b) gives rise to a vanishing Eeff at the lattice points with
two split maxima around, implying an asymmetry-induced
reduction of Eeff compared with that in Fig. 2(a) for an integer
value of NC .

The main features presented in Figs. 3(a)–3(c) are under-
standable. Let us consider Eeff at (NA,NB ) = (0, 0) as an
example. Now q̄ = 1

2NC and ηA = ηB = αEA [see Eqs. (8)–
(10)], so Eq. (6) gives Eeff/EA = 2α|cos(πNC )|, which leads
to 8.09, 0, and 8.09 when α = 5 and NC = 0.2, 0.5, and 0.8,
respectively, as shown in Figs. 3(a)–3(c). Moreover, it equals
10 for NC = 1 in Fig. 2(a). Due to the periodic dependence
of Eeff on NA and NB , this analysis based on the point
(NA,NB ) = (0, 0) is generalizable to all lattice points. We
additionally notice that there is a mirror symmetry between
Figs. 3(a) and 3(c) with respect to the white dashed line cor-
responding to NA + NB = 0. This symmetry results from the
fact that Eq. (10) reduces to q̄i = NCi/2 + NBi + NAi , with
i = a, c corresponding to Figs. 3(a) and 3(c), respectively,
and assuming the mirror symmetry together with cos(4πq̄i )
in Eeff [i.e., Eq. (6)] implies NAa + NBa = −NAc − NBc,
q̄c + q̄a = k/2, and in particular NCc + NCa = k, with k an
integer. This condition holds for NC = NCa = 0.2 [Fig. 3(a)]
and NC = NCc = 0.8 [Fig. 3(c)].

C. Asymmetric numbers of junctions

In this section we further consider the asymmetry induced
by unequal numbers in the two sets of phase-slip junctions.
Similar to Figs. 2(a) and 3(a)–3(c) for the symmetric and
asymmetric setups induced by an integer and noninteger
values of NC , respectively, Figs. 2(b) and 3(d)–3(f) show the
phase-slip rate Eeff for the asymmetric setup with α = 2 for
a total of m = 10 junctions. This asymmetric configuration
drastically changes the behaviors of Eeff , as demonstrated by
stripe patterns in sharp contrast to square lattice patterns in
Figs. 2(a) and 3(a)–3(c). In particular, instead of a vanishing
phase slip with Eeff = 0 at NA = NB = 0 and NC = 0.5 for
α = 5 in Fig. 3(b), Fig. 3(e) shows finite values of the phase-
slip rate Eeff induced by the asymmetry (i.e., α �= m/2). This
shows that the asymmetric number of junctions can increase
collective phase slips. In addition, similar to the mirror sym-
metry between patterns of Figs. 3(a) and 3(c), Figs. 3(d) and
3(f) are also symmetric to each other with respect to the point
(NA,NB ) = (0, 0). This symmetry requires NAd + NAf =
NBd + NBf = 0 and cos(4πq̄d ) = cos(2kπ − 4πq̄f ), where
k is an integer and q̄i = NCi/2 + 7NBi/4 + NAi/4, with
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FIG. 3. Effective phase-slip rate Eeff of an asymmetric multijunction phase-slip flux qubit (in units of EA) versus the reduced offset charges
NA (≡CAνA/2e) and NB (≡CBνB/2e) for (a) and (d) NC = 0.2, (b) and (e) NC = 0.5, and (c) and (f) NC = 0.8 with (a)–(c) α = 5 and (d)–(f)
α = 2. The other parameters are m = 10 and EB/EA = 1.

i = d, f corresponding to Figs. 3(d) and 3(f), respectively.
Then we have q̄d + q̄f = (NCd + NCf )/2 = k/2, which
holds for Figs. 3(d) and 3(f).

In order to have a better understanding of the asymmetry
effect due to unequal numbers of two types of nanowire
junctions, in Fig. 4 we demonstrate how the effective phase-
slip rate changes when varying α/m. To be consistent with
the consideration above, let us first consider a total number
of junctions m = 10 in Fig. 4(a). Figure 4(a) shows, for
NC = 1.0, an independence of Eeff on α, implying that an
asymmetric setup (α �= m/2) is as good as a symmetric one
(α = m/2), both of which give tenfold enhancement. For
NC = 0.2, 0.5, 0.8, Eeff is, however, minimized at α = 5 [see
the vertical dashed line in magenta in Fig. 4(a)]. The further
increase of the degree of asymmetry (i.e., far away from
α = m/2) for a fixed NC increases Eeff , indicating the better
performance of an asymmetric setup than that of a symmetric
one, although it is limited by the m-fold enhancement, i.e.,
Eeff/EA � m for EA = EB and NA = NB = 1.0. Note that
these results at α = 5 and 2 are consistent with observations
at the lattice point (NA,NB ) = (1.0, 1.0) in Figs. 2(a) and
3(a)–3(c) and Figs. 2(b) and 3(d)–3(f), respectively.

Since the degree of asymmetry (e.g., |α/m − 1/2|) can
increase by using a large m, we consider m = 50 in Fig. 4(b).
Similar to Fig. 4(a), a symmetric setup, i.e., α = m/2 (in-
dicated by the vertical dashed line in magenta), shows a
minimized Eeff for a given NC and the increase of an asym-
metry away from α = 25 (so that α/m = 0.5) enhances phase
slips. In addition, for a given asymmetry, e.g., α/m = 1/5

together with a fixed NC = 0.5, Fig. 4(b) shows the 30-fold
enhancement at α = 10, which is larger than the sixfold
enhancement for α = 2 in Fig. 4(a), indicating an advantage
of using multiple junctions. Finally, we notice that the m-fold
enhancement at α = 0 and α = m in Figs. 4(a) and 4(b) is
consistent with our analytical result obtained in Sec. III A.

D. Asymmetric junction slip rates

In Fig. 5 we show how the asymmetry induced by EB/EA

affects the effective phase-slip rate. In contrast to Fig. 2(a)
with EB/EA = 1, which shows behaviors in a square lattice
for a symmetric setup, the considerations of EB/EA = 5 in
Fig. 5(a) and EB/EA = 10 in Fig. 5(b) significantly change
the behaviors of Eeff and in particular the latter gives much
larger Eeff at, e.g., the lattice point (NA,NB ) = (0, 0). This
asymmetry effect due to EB/EA �= 1 is also quite different
from that resulting from α/m �= 1/2 in Figs. 2(b) and 3(d)–
3(f), compared with the fully symmetric case in Fig. 2(a) with
EB = EA and α = m/2.

Besides two examples of EB/EA considered in Fig. 5, in
Fig. 6(a) we particularly consider the response of the effective
phase-slip rate to continuously varying the asymmetry charac-
terized by EB/(EA + EB ). When the gate voltages and capac-
itances are fixed at e.g., NA = NB = 1, Fig. 6(a) shows that,
with the increase of the asymmetry [i.e., varying EB/(EA +
EB ) away from 0.5 indicated by the vertical dashed line
in magenta], Eeff/(EA + EB ) increases monotonically for
NC = 0.2, 0.5, 0.8, while for NC = 1.0 it does not change.
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FIG. 4. Effective phase-slip rate Eeff as a function of α for a
given total number of junctions (a) m = 10 and (b) m = 50 with
NA = NB = 1.0 and EA = EB . The other parameters are the same
as in Fig. 2(a). The vertical dashed line in magenta indicates the
position of a symmetric number of junctions, i.e., α/m = 1/2, and
the degree of asymmetry becomes maximal when α → 0 or m, while
it is minimal for α = m/2 for m even.

When considering EA = EB , these results at the symmetry
position [i.e., EB/(EA + EB ) = 0.5] are consistent with those
with α = 5 in Fig. 4(a). Besides m = 10, we additionally
consider the total number of junctions m = 50 [just like that
in Fig. 4(b)] in Fig. 6(b) with the same α as in Fig. 6(a). It is
shown that, in contrast to Fig. 6(a), the minimized Eeff/(EA +
EB ) does not appear at EB/(EA + EB ) = 0.5. This is due to
the symmetry already broken by unequal numbers of junc-
tions, i.e., α/m �= 1/2 in Fig. 6(b). The comparison between
Figs. 6(a) and 6(b) additionally shows that the increase of
the number of total junctions can lead to an enhanced Eeff

for a given α = 5. In addition, the results at the symmetry
position indicated by the vertical dashed lines in magenta
in Fig. 6(b) become the ones at α = 5 (indicated by the
dotted line in green) in Fig. 4(b) if EA = EB is assumed. To
summarize, compared with the results at EB/(EA + EB ) =
0.5, Fig. 6 shows that much larger Eeff/(EA + EB ) can ap-
pear at EB/(EA + EB ) �= 0.5, indicating a better performance
of an asymmetric setup than that of a symmetric one is
available.

FIG. 5. Effective phase-slip rate Eeff of an asymmetric multi-
junction phase-slip flux qubit (in units of EA) versus the reduced off-
set charges NA (≡CAνA/2e) and NB (≡CBνB/2e) for (a) EB/EA = 5
and (b) EB/EA = 10 given that NC = 1, α = 5, and m = 10. The
other parameters are the same as in Fig. 2(a). Note that the symmetric
case of EB/EA = 1 has been presented in Fig. 2(a).

E. Further remarks

We now briefly discuss a single phase-slip junction in
order to highlight the advantages of using multiple phase-
slip junctions. For a single junction, the phase-slip rate Es

characterizing coherent quantum phase slips in a phase-slip
flux qubit follows [6,11]

Es = 1.5c
kBTcζ

h̄ξ

√
Nξe

−0.3dNξ , (13)

where ζ and ξ are the physical length and the coherence
length of the superconducting wire, respectively, and Tc is
the critical temperature. The constants c and d are of order
unity [11]. Also, Nξ ≡ Rq/Rξ is the number of effective con-
ductive channels (or dimensionless conductance) defined by
the ratio between the resistance quantum Rq ≡ h/4e2 and the
resistance Rξ of a superconducting wire. In order to increase
Es , one can raise the factor e−0.3dNξ

√
Nξ/ξ . This requires

using a disordered material with a small Nξ for the junction.
However, the increase of the phase-slip rate by raising the
disorders in the junction is limited because too many disorders
in the material can lead to strong Coulomb interactions and
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FIG. 6. Effective phase-slip rate Eeff/(EA + EB ) as a function of
the asymmetry characterized by EB/(EA + EB ) at NA = NB = 1 for
(a) m = 10 and (b) m = 50 with α = 5. The vertical dashed lines in
magenta indicate the symmetry positions. The other parameters are
the same as in Fig. 2(a).

thus destroy the superconductivity [42]. Alternatively, one can
increase the phase-slip rate Es by using a longer junction
[see Eq. (13)]. However, the enhancement is also limited
because the quantum fluctuations needed for the emergence
of the phase slips become weakened and can even disappear
as the junction becomes long. For example, the length of the
junction can only be as long as ζ ∼ 200 nm for a MoGe
nanowire [6,43].

Instead of using a single junction, we can use multiple
phase-slip junctions, which allows, for example, asymmetric
configurations to achieve a large effective phase-slip rate Eeff

under certain parameters according to Eq. (6) as demonstrated
above, although each junction may have a small phase-slip
rate Es . Both the disorders and the length are within the
allowed range for the phase slips to occur. Indeed, a single
junction may not exhibit an appreciable phase slip when
its phase-slip rate is small, but our result reveals that a
large phase slip can be achieved by multiple junctions acting
collectively. Therefore, the multiple-junction setup not only
can achieve a large effective phase-slip rate to demonstrate
appreciable phase slips, but also could enable the use of
materials with weak phase slips in superconducting quantum
circuits.

IV. TWO INDUCTIVELY COUPLED MULTIJUNCTION
PHASE-SLIP FLUX QUBITS

In order to implement a nontrivial two-qubit quantum gate,
one needs a pair of coupled phase-slip flux qubits. It has
been experimentally demonstrated that two inductively cou-
pled fluxonium atoms constitute a fluxonium-based artificial
molecule that shows a tunable magnetic dipole or quadrupole
moment [45]. In analogy, here we consider two multijunction
phase-slip flux qubits coupled via a mutual inductance as
shown in Fig. 1(b). Adopting again two sets of junction
parameters [see Eq. (1)], the phase drop across the ith phase-
slip junction in the left (right) superconducting loop is

γi,1 (2) =
{

γA,1 (2) = 2π
LkA,1 (2)I1 (2)

�0
for 1 � i � α1 (2)

γB,1 (2) = 2π
LkB,1 (2)I1 (2)

�0
for α1 (2) < i � m1 (2),

(14)

where Lki,1 (2) is the kinetic inductance of the ith junction in
the left (right) phase-slip flux qubit and I1 (2) is the correspond-
ing supercurrent. The phase drop related to the geometric
inductance of each loop is

γg,1 (2) = 2π
Lg,1 (2)I1 (2)

�0
. (15)

Also, the magnetic flux in each loop is affected by an adjacent
loop through the mutual inductance M between them. The
resulting phase drops are given by

γ12 = 2π
MI2

�0
, γ21 = 2π

MI1

�0
. (16)

Now the fluxoid quantization condition for each supercon-
ducting loop becomes

2πf1 (2) − γt,1 (2) + γ12 (21) = 2πn1 (2), (17)

where γt,1 = α1γA,1 + (m1 − α1)γB,1 + γg,1 and γt,2 =
α2γA,2 + (m2 − α2)γB,2 + γg,2. Here the eigenvalues of
n1 (2) ≡ �1 (2)/�0 are integers and f1 (2) ≡ �1 (2),ext/�0 is
the reduced external magnetic flux, with �1 (2),ext being the
externally applied flux in the left (right) loop.

From Eqs. (14)–(16) we have two coupled equations

L1I1 − MI2 = �0

2π
(γt,1 − γ12), (18)

L2I2 − MI1 = �0

2π
(γt,2 − γ21), (19)

where the total inductance of the left and the right loops
are respectively given by L1 = α1LkA,1 + (m1 − α1)LkB,1 +
Lg,1 and L2 = α2LkA,2 + (m2 − α2)LkB,2 + Lg,2. Using the
fluxoid quantization condition in Eq. (17), we can solve
Eqs. (18) and (19) and obtain the currents in two loops as

I1 = L2(f1 − n1) + M (f2 − n2)

�−
�0, (20)

I2 = L1(f2 − n2) + M (f1 − n1)

�−
�0, (21)

where �− = L1L2 − M2.
Similar to the single phase-slip flux qubit (see the

Appendix), the Hamiltonian of the two inductively coupled
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phase-slip flux qubits is given by

Hq−q =
2∑

j=1

[
1

2
LjI

2
j − Eeff,j cos(ϕj ) cos(2πQj )

−Eeff,j sin(ϕj ) sin(2πQj )

]
+ MI1I2, (22)

with

Eeff,j =
√

η2
A,j + η2

B,j + 2ηA,jηB,j cos(4πq̄j ), (23)

Qj = 1

2

⎛
⎝ αj∑

i=1

qi,j

αj

+
mj∑

i=αj +1

qi,j

mj − αj

⎞
⎠, (24)

ϕj = arctan

[
ηA,j − ηB,j

ηA,j + ηB,j

tan(2πq̄j )

]
, (25)

where

ηA,j = EA,j

sin(αjπNA,j )

sin(πNA,j )
, (26)

ηB,j = EB,j

sin[(mj − αj )πNB,j ]

sin(πNB,j )
, (27)

q̄j = 1

2
NC,j + mj − αj − 1

4
NB,j + αj − 1

4
NA,j , (28)

with NA,j , NB,j , and NC,j the reduced offset charge in the
j th multijunction phase-slip flux qubit and αj the number of
sets of junctions with mj the total number of junctions in the
qubit. In Eq. (24), qi,1 (2) is the number of Cooper pairs having
tunneled through the ith phase-slip junction in the left (right)
qubit. In the fluxoid representation, the Hamiltonian (22) can
be written as

Hq−q =
2∑

j=1

∑
nj

[
EL,j (nj − fj )2|nj 〉〈nj |

− Eeff,j

2
(e−iϕj |nj + 1〉〈nj | + eiϕj |nj 〉〈nj + 1|)

]
+E12(n1 − f1)(n2 − f2), (29)

where

EL,1 (2) = (2�+ − �−)L2(1)

2�2−
�2

0, (30)

E12 = 2�+ + �−
�2−

√
�+ − �−

2
�2

0, (31)

with �+ = L1L2 + M2. Similar to a single qubit, the phase in
the Hamiltonian of two coupled qubits can be eliminated by
using the transformation |ñ1 (2)〉 = e−iϕ1 (2)n1 (2) |n1 (2)〉 and we
have

Hq−q =
2∑

j=1

∑
ñj

[
EL,j (nj − fj )2|ñj 〉〈ñj |

− Eeff,j

2
(|ñj + 1〉〈ñj | + |ñj 〉〈ñj + 1|)

]
+E12(ñ1 − f1)(ñ2 − f2). (32)

These two inductively coupled phase-slip flux qubits are dual
to two capacitively coupled charge qubits [46,47].

For a multijunction phase-slip flux qubit described by
Hamiltonian (12), if it is in the flux regime with EL � Eeff ,
the two fluxoid states |0〉 and |1〉 are important when f is
tuned to be around the optimal point f ∼ 1

2 . The Hamiltonian
(12) can be reduced to H = EL(f − 1

2 )σz − 1
2Eeffσx , where

σz = |0〉〈0| − |1〉〈1| and σx = |0〉〈0| + |1〉〈1| [11]. For the
two inductively coupled phase-slip flux qubits, let us also
consider the flux regime with EL,j � Eeff,j , E12. Around the
optimal point fj ∼ 1

2 for each qubit, the Hamiltonian (29) is
reduced to

Hq−q =
[
EL,1

(
f1 − 1

2

)
− 1

2
E12

(
f2 − 1

2

)]
σ (1)

z

+
[
EL,2

(
f2 − 1

2

)
− 1

2
E12

(
f1 − 1

2

)]
σ (2)

z

− 1

2

2∑
j=1

Eeff,j σ
(j )
x + 1

4
E12σ

(1)
z σ (2)

z . (33)

From Eq. (33), it can be seen that the mutual inductance yields
a ZZ-type interaction between the two phase-slip flux qubits.
Also, it shifts the energy level of each qubit.

V. DISCUSSION AND CONCLUSIONS

The electrostatic gates that enable one to tune the charges
on the superconducting islands in our proposed device un-
avoidably cause crosstalk and therefore, in practice, it seems
difficult for such tuning to be realized very reliably in exper-
iments. One recent experiment on a semiconductor quantum-
dot array, however, shows that it is possible to eliminate
crosstalk through the definition of virtual gates [48]. In ad-
dition, these gates may polarize possible inhomogeneities
located randomly inside the phase-slip junctions [24,49]. This
gives rise to ineffective gating and the charge fluctuations on
inhomogeneities increase the decoherence of a qubit. How-
ever, the recent experimental realization of a charge quantum
interference device that contains an island which separates
two junctions indicates that the inhomogeneities are possibly
not strong enough to destroy the coherence [28].

It would be expected that the offset charge fluctuations
and charge noise on the islands of phase-slip junctions possi-
bly affect the performance and also experimental realization
of our proposed device. We notice that, besides enhancing
the effective phase-slip rate, the increase of an asymmetry
|α/m − 1/2| or EB/(EA + EB ), as shown in Fig. 4(b) or
6(b), respectively, decreases the sensitivity of Eeff to NC . This
implies an asymmetry-induced reduction of the sensitivity to
charge noise on the islands and the largest asymmetry gives
a minimal sensitivity. In general, charge noise exists on all
islands such as those with the gate-induced charge NA or NB

and its reduction might be also possible. There have been
previous works on suppressing the sensitivity to charge noise
by using a capacitor to shunt the smaller Josephson junction
in a flux qubit [50] or the Cooper-pair box in a transmon
[51]. In addition, one can reduce the charge fluctuations by
shunting a junction with an array of Josephson junctions
that behave effectively like a large inductance [44,52,53].
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One would expect that shunting capacitively or inductively
phase-slip junctions with appropriately chosen parameters
may provide a possible way of suppressing charge noise
and fluctuations on the islands of the junctions. A detailed
investigation is left for future work. Although a reduction
of offset charge fluctuations and charge noise on multiple
islands seems quite challenging, the experimental observation
of collective phase slips in Josephson-junction arrays excludes
a significant contribution of background charges [32]. In par-
ticular, the demonstration of Aharonov-Casher interference in
a system of many Josephson junctions in a recent experiment
indicates that charges on the islands of the Josephson chain
can be controlled with a sufficient precision and therefore are
stable enough to enable the chain’s collective behavior to be
observed at the timescale needed for the measurement [34].
These examples, together with the experimental realization of
a charge quantum interference device [28], suggest that the
charge fluctuations and charge noise on islands may be suffi-
ciently small for a realization of our proposed multijunction
phase-slip flux qubit.

Although coherent quantum phase slips were explored
in Josephson-junction circuits [32,33,36–38] and the use of
multiple Josephson junctions to improve phase slips was also
investigated [32,34,35], it has been shown that realizing a
quantum current standard via Josephson-junction arrays is
quite challenging [39]. Our study of symmetry and asym-
metry effects on collective coherent quantum phase slips is
complementary to previous works based on nanowire junc-
tions [11,13,20,22,23,28,29]. Future work should include an
extension of the proposed device to consider, for example,
microwave or spatial modulation [37,38], which also helps
one study the phase-charge duality in one-dimensional super-
conducting nanowires out of equilibrium [13,18,53,54].

We want to emphasize that our device made of multiple
nanowire junctions is certainly a nontrivial extension of the
previously considered single junction for a phase-slip flux
qubit [11,13] or double junctions used for a charge quantum
interference device [28,29]. In sharp contrast to these pre-
vious works, our consideration of multiple junctions allows
the demonstration of highly nontrivial effects due to the
asymmetric configurations as presented in our work. Future
work should include an extension to more than two types
of phase-slip junctions, which would certainly lead to rich
and interesting results. Although effects due to an asymmetry
could also be possible in a device made of two junctions, the
significantly different result in Fig. 2(b) or Figs. 3(d)–3(f) and
in particular an enhanced effective phase-slip rate induced by
varying α/m presented in Fig. 4(b), compared with that for
α/m = 1/2 in Fig. 2(a), certainly suggests that the multiple
junctions with m > 2 can give rise to more nontrivial results
in contrast to those for m = 2.

To conclude, we have proposed a device for studying
how quantum phase slips in a phase-slip flux qubit are in-
fluenced by the symmetry in multiple nanowire junctions.
Our results show that the collective effect of the multiple
junctions gives rise to a large phase-slip rate that can lead
to an appreciable number of quantum phase-slip events. The
effective phase-slip rate can be adjusted via the gate voltage on
each island between a pair of adjoining phase-slip junctions.

Consequently, the phase-slip flux qubit can be controlled by
the gate voltages, apart from the magnetic flux applied to
the qubit loop. Furthermore, we have proposed to couple two
multijunction phase-slip flux qubits via the mutual inductance
between them, which are dual to two capacitively coupled
charge qubits. Currently, many materials exhibit only weak
signals of quantum phase slips, which makes them unsuitable
for quantum information processing. Our proposed multijunc-
tion structure not only provides a large effective phase-slip
rate that can enhance appreciable signals of quantum phase
slips, but also potentially allows those materials to be used as
robust elements in superconducting circuits.
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APPENDIX: DERIVATION OF THE HAMILTONIAN FOR A
MULTIJUNCTION PHASE-SLIP FLUX QUBIT

For the multijunction phase-slip flux qubit, the ki-
netic energy and the potential energy can be written,
respectively, as

T = 1

2

(
Lg +

m∑
i=1

Lki

)
I 2, (A1)

U =
m∑

i=1

∫
IVidt =

m∑
i=1

Ei[1 − cos(2πqi )], (A2)

where Lg is the geometric inductance of the loop, Lki is
the kinetic inductance, Ei is the phase-slip rate, and I , Vi ,
and qi denote the supercurrent, the voltage drop, and the
number of Cooper pairs through the ith phase-slip junction,
respectively. Here we consider two sets of phase-slip junctions
that are defined in Eq. (1). The kinetic energy in Eq. (A1) then
becomes

T = 1
2 [Lg + αLkA + (m − α)LkB]I 2 (A3)

and the potential energy can be written as

U = UA + UB, (A4)

with

UA = αEA − EA

α∑
i=1

cos(2πqi ), (A5)

UB = (m − α)EB − EB

m∑
i ′=α+1

cos(2πqi ′ ). (A6)
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Due to the consideration of three sets of values for the
capacitance and the gate voltage as defined in Eq. (2), the
terms in Eq. (A5) can be summed to yield the analytic form

UA = − EA

2 sin(2πNA)

α∑
i=1

{sin[2π (qi + NA)]

− sin[2π (qi − NA)]}
= − EA

2 sin(2πNA)
{sin(2πqα ) + sin[2π (qα + NA)]

− sin[2π (q1 − NA)] − sin(2πq1)}, (A7)

where we have used the relation qi+1 − qi = NA (1 � i �
α − 1) in Eq. (3). In order to further simplify this expression,
we define the average number of Cooper pairs in the first set
of phase-slip junctions

qA ≡ 1

α

α∑
i=1

qi, (A8)

which together with NA gives rise to two relations

q1 = qA − α − 1

2
NA, (A9)

qα = qA + α − 1

2
NA. (A10)

We then substitute q1 and qα in Eq. (A7) with these two
expressions and obtain UA as

UA = −EA cos(2πqA)

sin(2πNA)
{sin[(α−1)πNA] + sin[(α+1)πNA]}

= −2EA cos(πNA)

sin(2πNA)
sin(απNA) cos(2πqA)

= −EA sin(απNA)

sin(πNA)
cos(2πqA). (A11)

Similarly, UB in Eq. (A6) becomes

UB = −EB sin[(m − α)πNB]

sin(πNB )
cos(2πqB ), (A12)

where qB is the average number of Cooper pairs in the second
set of phase-slip junctions defined by

qB ≡ 1

m − α

m∑
i ′=α+1

qi ′ , (A13)

and we have additionally used qi+1 − qi = NB (α < i � m −
1) in Eq. (3) and

qα+1 = qB − m − α − 1

2
NB, (A14)

qm = qB + m − α − 1

2
NB. (A15)

We further define two alternative variables, i.e.,

Q ≡ qB + qA

2
, (A16)

q̄ ≡ qB − qA

2
. (A17)

By using Eqs. (A8), (A10), (A13), (A15), and qα+1 − qα =
NC from Eq. (3), q̄ in Eq. (A17) can be evaluated to obtain
Eq. (10).

Thus, the Lagrangian of the multijunction phase-slip flux
qubit is given by

L = T − U

= 1
2LtI

2 + (ηA + ηB ) cos(2πq̄ ) cos(2πQ)

+ (ηA − ηB ) cos(2πq̄ ) sin(2πQ), (A18)

where Lt = Lg + αLkA + (m − α)LkB and I = 2eq̇i =
2eQ̇, because q̇i = q̇i+1. Here ηX and ηY are given by Eqs. (8)
and (9), respectively. We then choose Q as the canonical
coordinate. The corresponding canonical momentum is
given by

P = ∂L

∂Q̇
= 2LteI. (A19)

By using the fluxoid quantization condition

�ext − LtI = n�0, (A20)

with the external magnetic flux �ext = f �0 and the flux due
to both geometric and kinetic inductances in the loop LtI =
γt�0/2π , which lead to an equivalent expression 2πf − γt =
2πn, the supercurrent can then be expressed as

I = �0

Lt

(f − n). (A21)

Therefore, the Hamiltonian of the multijunction phase-slip
flux qubit is obtained as

H = PQ̇ − L

= EL(n − f )2 − (ηX + ηY ) cos(2πq̄ ) cos(2πQ)

− (ηX − ηY ) cos(2πq̄ ) sin(2πQ)

= EL(n − f )2 − Eeff cos(ϕ) cos(2πQ) − Eeff sin(ϕ)

× sin(2πQ), (A22)

with EL, Eeff , and ϕ given by Eqs. (5), (6), and (7), respec-
tively. This Hamiltonian gives Eq. (4) when expressed in the
fluxoid representation.
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