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We consider the controlled quantum teleportation performed on a single copy of entangled three-qubit pure
states and show how the fidelity of teleportation and the control power are related to the tripartite entanglement
measures, namely, three-tangle and genuine concurrence. We characterize the states with extreme properties,
and use them to derive tight lower and upper bounds on both the teleportation fidelity and control power for a
given amount of entanglement. Furthermore, we discuss the usefulness of these two quantities for experimental
detection and/or quantification of tripartite entanglement. In particular, we present the results which imply that
the control power cannot be considered as a candidate for a degree of three-qubit entanglement complementary
to the three-tangle as conjectured recently [K. Jeong, J. Kim, and S. Lee, Phys. Rev. A 93, 032328 (2016)].
Furthermore, we prove a mutual relation between teleportation fidelity and control power which provides
attainable limits of the controller’s authority for existing controlled teleportation schemes. Although those
relations are derived for pure states, their extensions for mixed states are also examined.
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I. INTRODUCTION

Quantum teleportation is one of the most important proto-
cols in quantum information science due to its essential role in
the development of formal quantum information theory [1,2]
and quantum technology, such as quantum computing [3],
quantum repeaters [4,5], and quantum network teleportation
[6–8]. The concept of quantum teleportation involves the
transfer of a quantum state from one location to another with-
out having to exchange the physical system, which requires
classical communication and the shared resources of quantum
entanglement [9,10]. Without such resources, the transfer of
a quantum state would not be possible within the laws of
quantum mechanics. The cost of constructing an exact replica
of the original unknown state in the remote location is the
destruction of the original state.

The reliability of teleportation is quantified by the fi-
delity F which measures the overlap of the states |ψt 〉 to
be teleported and the output state depicted by the density
operator ρout. Since the state |ψt 〉 is generally unknown, it
is more appropriate to consider the average of the fidelity
F = 〈ψt |ρout|ψt 〉, taken over all possible input states to obtain
a quantitative description of the efficiency of the protocol
which is independent of |ψt 〉 [10,11]. In the ideal quantum
teleportation procedure based on the maximally entangled
states, |ψt 〉 can be reconstructed with fidelity F = 1, whereas
the resemblance of the teleportation attainable by a purely
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classical channel cannot exceed F = 2
3 [9,10] (hereafter, the

classical limit).
Although quantum teleportation is a typically bipartite

process, it has been also extended to a multipartite case. For
instance, a tripartite variant of quantum teleportation called
controlled quantum teleportation (CQT) has been proposed
by Karlsson and Bourennane [12]. The essential idea of the
CQT protocol is to transfer an arbitrary quantum state from
the sender to the receiver, but only with the permission of the
controller [12–15]. Specifically, the controller determines the
success or failure of the teleportation by restricting the access
to his measurement information. Therefore, the CQT protocol
is always characterized by two quantities: the conditioned
fidelity FCQT (i.e., with controller’s permission) which should
be greater than the classical limit and the nonconditioned fi-
delity FNC (i.e., without controller’s permission) which cannot
exceed 2

3 . At this point, a substantial question arises of the
achievable teleportation fidelity FCQT which guarantees better
than classical teleportation with simultaneous fulfillment of
the second requirement of CQT protocol. Although a lot
of work has been devoted to studying controlled teleporta-
tion on maximally entangled GHZ state, only a few studies
are directed to nonmaximally entangled states, despite the
importance of such states in practical experiments. On the
other hand, as the teleportation faithfulness is directly related
with the quantity called fully entangled fraction [16,17], the
above question is essential also in the context of entan-
glement distillation, where the fully entanglement fraction
quantifies how close a state is to a maximally entangled
one [18–21].
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Recently, an additional parameter which provides a quan-
titative characteristic of the controller’s authority has been
defined [14,15]. This quantity, called control power, is mea-
sured by the deference between conditioned and noncon-
ditioned fidelity and it is meaningful if and only if both
requirements of CQT are satisfied. It is also conjectured [15]
that a special variant of control power (so-called minimal
control power) can be considered as a candidate for a mea-
sure of three-party correlation complementary to the tripartite
entanglement monotony called three-tangle [22]. However,
this hypothesis is based on a study conducted on just a few
examples of pure states and no general analysis has been
carried out in this field. Only recently it has been shown that
the tripartite entanglement is not a necessary recourse for the
CQT protocol if one considers mixed-state channels [21]. This
means that nonzero control power appears also for biseparable
states. For that reason, it is important to reexamine the rela-
tionship between control power and tripartite entanglement
for an arbitrary pure state. Such relation could (potentially)
be further used to witness the tripartite entanglement without
measuring the correlations between parties, which is strongly
demanding experimentally [23,24].

This paper aims at filling all these gaps and presents
an extensive analysis of the CQT protocol. We derive the
tight upper and lower bounds on the fidelity and the con-
trol power for given three-tangle and genuine multipartite
(GME) concurrence [25]. The need to use two entanglement
measures is caused by the fact that the tripartite entangle-
ment has no unambiguous definition. Specifically, the three-
tangle corresponds to the so-called residual entanglement
and takes nonzero value only for the GHZ-class states [26].
Consequently, one cannot distinguish the biseparable state
from the tripartite entangled W -class state in the frame of
the three-tangle. In contrast, the GME concurrence which is
based on the bipartite concurrence of all possible bipartitions
vanishes only for biseparable and fully separable states. Our
results provide important information on the usefulness of
CQT protocol for experimental detection and/or quantifica-
tion of tripartite entanglement. Moreover, by means of the
Karush-Kuhn-Tucker (KKT) method, we show that previous
results concerning the relation between control power and
three-tangle are incorrect and hence lead to inappropriate
conclusions.

II. CONTROLLED TELEPORTATION PROTOCOL

Consider a system which is partitioned into three subsys-
tems distributed between Alice (the sender), Charlie (the con-
troller), and Bob (the receiver). All subsystems are far from
each other, and they share an entangled three-qubit quantum
state ρ. The entangled state is delivered to all participants in
such a way that Alice receives qubit 1, Charlie keeps qubit
2, and Bob gets qubit 3. The only manipulations that all
participants are allowed to do are local quantum operations
and classical communications.

Now, suppose that Alice wants to transfer an unknown
quantum state represented by the state of qubit 4 to Bob with
the Charlie participation (permission). For this purpose, the
controller, Charlie, makes a one-qubit orthogonal measure-
ment on qubit No. 2 with the measurement outcome t . As

a result, the entangled channel ρ is projected onto two-qubit
state ρt

13 [27]:

ρt
13 = Tr2[12 ⊗ |t〉〈t |U ⊗ 12ρ12 ⊗ U †|t〉〈t | ⊗ 12]

〈t |Uρ2U †|t〉 , (1)

where U is a 2 × 2 unitary matrix, 12 stands for a 2 × 2 iden-
tity matrix, and ρ2 = Tr13(ρ) is a reduced state of qubit 2. In
the next step, Alice performs a joint orthogonal measurement
on qubits 1 and 4. Then, Bob applies an accordingly chosen
unitary transformation on qubit 3 in order to reconstruct the
input state in the most optimal way. Naturally, the selection
of the appropriate unitary operation requires a classical com-
munication with both Alice and Charlie. For such a scenario,
the teleportation fidelity FCQT can be written in a general form
[27]

FCQT(ρ) = 2 maxU

[ ∑1
t=0〈t |Uρ2U

†|t〉f (
ρt

13

)] + 1

3
, (2)

where 〈t |Uρ2U
†|t〉 denotes the probability of receiving out-

come t and f (�) = maxe〈e|�|e〉 is the fully entangled fraction
(FEF) [16,17]. Note that the first term in Eq. (2) can be
interpreted as an average FEF localized between qubits 1
and 3 after the one-qubit measurement of the controller. It
provides information about the distance between ρt

13 and
the maximally entangled state. By analogy to Refs. [28,29]
we call that quantity as localizable FEF (hereafter denoted
as f L(ρ) = maxU [

∑1
t=0〈t |Uρ2U

†|t〉f (ρt
13)]). Recently, the

relation between localizable FEF and localizable concurrence
in the context of CQT has been derived in Ref. [21].

On the other hand, if Charlie decides not to send his
information to Alice and Bob, i.e., to forbid the teleportation,
Alice can transfer a quantum state to Bob through the tele-
portation channel described by the density matrix ρ13 = Tr2ρ,
where we traced out the qubit No. 2. The faithfulness of
the process without controller’s participation is given by the
nonconditioned fidelity

FNC(ρ) = 2f (ρ13) + 1

3
. (3)

Based on these two fidelities, the controller’s measurable
authority can be characterized by the parameter called control
power [14,15]

P (ρ) = FCQT(ρ) − FNC(ρ). (4)

We recall that the CQT protocol and, hence, the control
power is meaningful if and only if the nonconditioned fidelity
FNC(ρ) � 2

3 and the conditioned fidelity FCQT > 2
3 .

Suppose now that the teleportation channel prepared by
Charlie is a pure tripartite state. For convenience and without
loss of generality we write such state in a canonical form
proposed by Acín et al. [30]:

|ψ〉=λ0|000〉 + λ1e
iφ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉,

(5)

with real λi � 0, 0 � φ � π and standard normalization. For
such state, the conditioned fidelity FCQT in Eq. (2) can be
expressed [27] as

FCQT(ψ ) =
2 +

√
τ + C2

13

3
, (6)
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where the three-tangle τ = 4λ2
0λ

2
4 and C13 = 2λ0λ2 is the

Wootters’ concurrence between qubits 1 and 3. Furthermore,
the nonconditioned fidelity can be computed by means of
Horodecki theorem [31] as

FNC(ψ ) = ||T13||1 + 3

6
, (7)

where || · ||1 is a trace norm and T13 is a correlation tensor
for the state ρ13. In particular, for the pure state in Eq. (5) the
correlation tensor writes

T13 =
⎛
⎝2λ0λ2 0 2λ0λ1 cos φ

0 −2λ0λ2 2λ0λ1 sin φ

� 2λ1λ2 sin φ 1 − 2
(
λ2

1 + λ2
3

)
⎞
⎠, (8)

where � = −2(λ3λ4 + λ1λ2 cos φ).

III. PURE STATE CHANNELS

First, we explicitly derive the possible range of values of
FCQT as a function of its three-tangle τ under a constraint
FNC � 2

3 . It is easy to notice that the lower bound of FCQT in
Eq. (6) with given τ is reached when C13 ≡ 0. It is because the
three-tangle and concurrence are always positive and, hence,
any value C13 �= 0 can only increase the fidelity. This assump-
tion also implies that the two-qubit channel ρ13 achieved by
tracing over qubit No. 2 is a product state. Consequently, the
teleportation protocol performed without Charlie’s participa-
tion cannot exceed the classical limit FNC � 2

3 , as is required
for the CQT protocol. The lower bound of FCQT can be written
then as

2 + √
τ

3
� FCQT. (9)

We note that there are few important examples of states which
provide the lower bound, namely, the generalized GHZ and
the maximal slice (MS) states

|ψG〉 = λ0|000〉 + λ4|111〉,
|ψMS1〉 = λ0|000〉 + λ1|100〉 + 1√

2
|111〉,

|ψMS3〉 = 1√
2
|000〉 + λ3|110〉 + λ4|111〉, (10)

where the standard normalization condition is assumed. For
these states, both fidelities can be easily computed (see
Table I). We also note that the MS state of the form |ψMS2〉 =

1√
2
|000〉 + λ2|101〉 + λ4|111〉 with qubit 2 kept by the con-

troller is not suitable for CQT protocol. It is because for
any λ2, λ4 � 0, the teleportation fidelity achieved without
controller’s permission is greater than the classical limit
FNC(ψMS2 ) > 2

3 [14].
Determination of the upper limit of attainable FCQT for

given value τ is much more complicated. In Ref. [15]
a special case of τ = 0 has been discussed. It has been
shown that all W -class pure states are suitable for CQT
and the maximum of FCQT is reached for standard W

state. However, this result is incorrect as we show in the
Appendix. In order to find the upper bound, we use the
Karush-Kuhn-Tucker (KKT) conditions. For this purpose, we
consider the Lagrange function L(ψ ) = F (ψ ) + α[τ (ψ ) −
τ0] + β[

∑4
m=0 λ2

m − 1] + μ[FNC(ψ ) − 2
3 ], where F = τ +

TABLE I. Exact results of fidelities (controlled fidelity FCQT

given in the second column and nonconditioned fidelity FNC shown
in the third column) and control power P for extremal states (see text
for details).

State FCQT FNC P

|ψG〉 2
3 + 2λ0

√
1−λ2

0
3

2
3

2λ0

√
1−λ2

0
3

|ψMS1 〉 2
3 +

√
2λ0
3

1
2 +

√
2λ0
6

1
6 +

√
2λ0
6

|ψMS3 〉 2
3 +

√
2λ4
3

1
2 +

√
2λ4
6

1
6 +

√
2λ4
6

|ψT 〉 5
6 + 2

√
2d2

0 −4d4
0

6
2
3

1
6 + 2

√
2d2

0 −4d4
0

6

|ψW 〉 2
3 + 2c2

3
2
3

2c2

3

C2
AB denotes a target function, τ0 is a constant value in the

range 〈0, 1〉, and we discuss all states |ψ〉 defined in Eq. (5)
which refer to a given value of the three-tangle τ (ψ ) − τ0 =
0. The third term in the Lagrange function corresponds to
normalization condition while the last term implies FNC � 2

3 .
We note that the nonconditioned fidelity FNC in Eq. (7) can
be calculated analytically, even for a general pure state |ψ〉.
However, a direct expression for ||T13||1 takes a long form.
For that reason, to simplify our presentation let us consider a
special case of φ = π [cf. Eq. (5)]. Then,

||T13||1 = 2λ0λ2 +
√

max{A+, A−}, (11)

where

A± = [(λ1 + λ4)2 + (±λ0 + λ2 + λ3)2]

× [(λ1 − λ4)2 + (λ0 ± λ2 ∓ λ3)2]. (12)

With the above assumptions the Lagrange function can be
recast as

L(ψ ) = 4λ2
0

(
λ2

2 + λ2
4

) + α
[
4λ2

0λ
2
4 − τ0

]
+β

[
4∑

m=0

λ2
m − 1

]
+ μ1[A+ − (1 − 2λ0λ2)2]

+μ2[A− − (1 − 2λ0λ2)2]. (13)

The complementary slackness conditions are given by
∂L
∂λi

� 0, λi

∂L
∂λi

= 0, λi � 0, 4λ2
0λ

2
4 = 0,

4∑
m=0

λ2
m = 1, A± � (1 − 2λ0λ2)2,

μ1,2[A± − (1 − 2λ0λ2)2] = 0, μ1,2 � 0 (14)

for i = {0, . . . , 4}.
By straightforward calculations one can find that the com-

plementary slackness conditions are satisfied when

λ0 =
√

1 + 4d0d1

2
, λ1 =

(
1 − 4d2

0

)√
d0d1

2(d0 + d1)λ0
,

λ2 =
(
1 − 4d2

0

)
(d1 − d0)

4(d0 + d1)λ0
, λ3 =

(
1 − 4d2

0

)
4(d0 + d1)λ0

,

λ4 =
√

d0d1

λ0
, (15)
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where d0 = 1
2 (1 −

√
1 − τ 2

0 ) and d1 =
√

1−2d2
0

2 . We note that
although the above-described upper bound is derived with the
assumption φ = π , it represents a global maximum of the
analyzed target function; other values of φ �= π do not yield a
greater outcome of the target function.

Further simplifications of the upper bound state based on
local unitary operations allow us to rewrite it as

|ψT 〉 = d0|000〉 +
√

1 − 2d2
0

2
|101〉 + 1

2
(|110〉 + |011〉),

(16)

where 0 � d0 � 1
2 . For that state one can find

τ (ψT ) = 2
√

2d2
0 − 4d4

0 , C(ψT ) = 1 − τ (ψT )

2
. (17)

Substituting these results into Eq. (6) and using Eq. (7), one
has

FCQT(ψT ) =
5 + 2

√
2d2

0 − 4d4
0

6
, FNC(ψT ) = 2

3
, (18)

which confirms the usefulness of the |ψT 〉 state for CQT
protocol.

At this point, it should be noted that the state |ψT 〉 rep-
resents a special example of the tetrahedral states [32–34].
When d0 = 1

2 , Eq. (16) is equivalent to the GHZ state, up to
the local unitary transformation. On the other hand, for d0 =
0 one has |ψT 〉d0=0 = 1√

2
|101〉 + 1

2 (|110〉 + |011〉) (hereafter
denoted as |W1〉) which evidently is not the prototype W state
[cf. Eq. (A1)]. Interestingly, |W1〉, in contrast to the prototype
W state, can also be used for perfect (F = 1) two-partite
teleportation performance on three-qubit channel [35]. In this
protocol, Alice has qubits 1 and 3 while Bob gets qubit 2.
When Alice wants to transfer an unknown state of qubit 4
to Bob, she makes a joint measurement on the three qubits
“413” and broadcasts her result to Bob through classical com-
munication channel. The optimal set of orthogonal states used
by Alice is defined in the W -state category (see Ref. [35] for
details). Naturally, such an optimal set cannot be determined
in the CQT protocol as a combination of Alice (two-qubit)
and Charlie (one-qubit) measurements. For that reason, the
maximal fidelity of CQT protocol for W class is FCQT = 5

6 <

1. Finally, we note that the question whether the state |W1〉
is suitable for CQT was posed in Ref. [35]. Our calculations
provide the affirmative answer for this question, but only if the
qubits are distributed among all participants in the sequence
given in Sec. II. Any permutation of qubits makes the state
|W1〉 unsuitable for CQT.

Now, combining together Eqs. (9) and (17) the range of
attainable values FCQT is given by

2 + √
τ

3
� FCQT � 5 + τ

6
. (19)

In Fig. 1(a), we illustrate the results of our calculation. As
we see, the difference between the upper and lower bounds
in terms of τ becomes very small (approximately ε2/24)
for large three-tangle τ = 1 − ε. Therefore, one can reverse
this relation in order to quantify a tripartite entanglement
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FIG. 1. (a), (b) Range of values of fidelity FCQT for given value
of tripartite entanglement measure. (c), (d) Range of values of control
power P for given value of tripartite entanglement measure. We
consider two kinds of entanglement measure, namely, the three-
tangle and genuine concurrence. In all panels, the blue line with
circle symbols depicts the MS states |ψMS〉, the green line with
triangle symbols corresponds to the GHZ state |ψG〉, the red line
with square symbols denotes tetrahedral state |ψT 〉, and the violet
line with diamond symbols represents the W -class states |ψW 〉.
Gray areas correspond to all admissible values of pure states. We
note that in (a) and (b) FCQT(ψMS) ≡ FCQT(ψG) and the dotted line
corresponds to classical limit while the dashed-dotted line refers to
no-cloning limit [36].

experimentally. Specifically, by measuring FCQT one can es-
timate the three-tangle as 6FCQT − 5 � τ � (3FCQT − 2)2,
where the difference between the upper and lower bounds
in terms of FCQT is approximately equal to 9ε2 for large
FCQT = 1 − ε. The higher the FCQT value, the better the τ

estimate.
From relation (19) one can also notice that when τ > 0

the fidelity of the upper bound is always greater than 5
6 .

Consequently, the controlled quantum teleportation proceeded
through |ψT 〉 always ensures the nonexistence of any other
copy of the output state with better fidelity [36]. On the other
hand, the GHZ and MS states beat the no-cloning limit if
and only if τ exceeds 1

4 . Since these states correspond to
the lower bound of FCQT with given τ , this result implies
a more general conclusion, i.e., the three-tangle τ � 1

4 is a
sufficient condition to guarantee that CQT performed through
an arbitrary pure state is secure.

In the next step, we analyze the controller’s authority
measured by the control power P (ρ) given in Eq. (4). Once
again, we use the KKT method with the target function F =
2
√

τ + C2
AB − ||T13||1. We also keep the assumption φ = π

which provides ||T13||1 given by Eq. (11). Furthermore, in or-
der to simplify the calculations, we consider two independent
situations, namely, A+ � A− and A+ < A−. The first case
is ensured by the inequality λ2(1 − 2λ2

3) � 2λ1λ3λ4 and the
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analyzed Lagrange function takes a form

L+(ψ ) = 4λ0

√
λ2

2 + λ2
4 − 2λ0λ2 −

√
A+ + α

[
4λ2

0λ
2
4 − τ0

]

+β

[
4∑

m=0

λ2
m − 1

]
+ μ1[A+ − (1 − 2λ0λ2)2]

+μ2
[
2λ1λ3λ4 − λ2

(
1 − 2λ2

3

)]
. (20)

In the same manner, we construct the second Lagrange func-
tion L−(ψ ) for the situation when A+ < A−. By making
appropriate calculations, we have found that the control power
P is limited by the MS (upper border) and GHZ (lower
border) states [see Fig. 1(c)]. Note that for these two extreme
states A+ = A− and the choice of Lagrange function has no
influence on the solutions. All exact results of our calculations
are presented in Table I and they imply the following relation
linking P and τ :

√
τ

3
� P � 1 + √

τ

6
. (21)

We note that Eq. (21) is true even if one replaces control power
P by the minimal control power [15]. It is because any permu-
tation of the qubits in the GHZ and MS states either does not
change the controller’s authority or leads to the meaningless
result (i.e., FNC > 2

3 ). Moreover, it is worth noting that when
τ becomes arbitrary close to 0, the maximum of P approaches
1
6 . This value is provided either by the W -class state |W1〉
or biseparable state, for instance, |ψMS3〉λ4→0 = 1√

2
(|000〉 +

|110〉). In other words, despite that both states |W1〉 and
|ψMS3〉λ4→0 exhibit different entanglement properties, for τ ≈
0 the control power P is not sufficient to distinguish these
two states. Taking into account the fact that the control power
cannot be applied for all W -class pure states (for instance,
the prototype W state) and it may take nonzero value for
biseparable mixed states, the above discussion provides an-
other argument that control power cannot be considered as
a measure of three-party correlation complementary to the
three-tangle as conjuncted in Ref. [15].

In the same way, we estimate the extreme states of
FCQT and P for given genuine tripartite concurrence CGME

[25]. We recall that CGME = min{C1(23), C2(13), C3(12)},
where Ci(jk) stands for a bipartite concurrence of
qubit i and joint qubits jk. The exact expressions
for Ci(jk) are given by C1(23) = 2λ0

√
λ2

2 + λ2
3 + λ2

4,

C2(13) = 2
√

λ2
0(λ2

2 + λ2
4) + |λ1λ4e

iφ − λ2λ3|2, C3(12) =
2
√

λ2
0(λ2

3 + λ2
4) + |λ1λ4e

iφ − λ2λ3|2. As a result of our
calculations, we have found that the upper bound for FCQT

and P for given CGME is realized by the MS states, whereas
the lower bound is either the |ψT 〉 state (when CGME �

√
3

2 )
or the W -class state

|ψW 〉 =
√

1 − 2c2
0|101〉 + c0(|110〉 + |011〉), (22)

with 0 � c � 1/2 [see Figs. 1(b) and 1(d)]. The above out-
comes lead to the following sharp bounds for FCQT and P as

a function of its genuine concurrence CGME:

3 −
√

1 − C2
GME

3
� FCQT � 2 + CGME

3
,

1 −
√

1 − C2
GME

3
� P � 1 + CGME

6
(23)

for CGME <
√

3
2 and

5 +
√

4C2
GME − 3

6
� FCQT � 2 + CGME

3
,

1 +
√

4C2
GME − 3

6
� P � 1 + CGME

6
(24)

otherwise. In contrast to previous analysis, here, the difference
between the upper bound and the lower bound (for both FCQT

and P ) is much greater. Moreover, the fidelity FCQT of an
arbitrary pure state exceeds the no-cloning limit 5

6 if the

genuine concurrence exceeds
√

3
2 ≈ 0.866.

Finally, let us consider the CQT protocol from the con-
troller’s point of view. Note that for Charlie the optimal
solution is not only the one that maximizes the fidelity of
teleportation, but also one that simultaneously maximizes his
measurable authority. Therefore, combining together previ-
ously discussed results we derive the sharp bounds for the
fidelity FCQT versus the control power P :

max

{
2

3
,

1

3
+ 2P

}
� FCQT � 2

3
+ P, (25)

where the second inequality directly corresponds to the re-
quirement FNC � 2

3 and, hence, is always satisfied accord-
ing to the definition of CQT protocol. The first inequality,
however, implies FCQT � 2FNC − 1

3 (or, alternatively, P �
FNC − 1

3 ). In other words, this relation provides an upper
bound of FCQT (or P ) based on FNC. Moreover, since both
fidelities are linear functions of FEF, one can estimate upper
and lower bounds of localizable FEF in a function of standard
FEF, 1

2 < f L(ρ) � 2f (ρ13), where f (ρ13) � 1
2 to satisfy the

requirement FNC � 2
3 .

A plot of bounds in Eq. (25) is presented in Fig. 2. As we
see, the optimal teleportation channel which maximizes FCQT

for given P is the GHZ state (or the |ψT 〉 state if P > 1
6 ).

However, if Charlie wants to maximize his authority, then the
MS states are the best choice.

IV. SYMMETRIC MIXED STATES

Let us now verify whether the above-described relations
are also satisfied when mixed states are taken as a teleportation
resource. Unfortunately, such analysis for a general situation
represents an NP-hard problem because there is no exact ana-
lytical formula for tripartite entanglement measures. However,
one can always simplify this task and limits the investigation
to a certain family of symmetric states (see, for instance,
[37,38] and references therein).

In this paper, as an example of symmetric mixed family we
analyze the three-qubit X-matrix states proposed by Yu and
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FIG. 2. Range of values of fidelity FCQT for given control power
P . Here, we use the same symbols as in Fig. 1, namely, the blue
line with circle symbols depicts |ψMS〉, the green line with triangle
symbols corresponds to |ψG〉, and the red line with square symbols
denotes |ψT 〉. The dotted line corresponds to classical limit, whereas
the dashed-dotted line corresponds to no-cloning limit.

Eberly [39]. These states are represented by a density matrix
of three qubits, written in an orthonormal product basis, whose
nonzero elements are only diagonal elements (denoted by
a1, a2, a3, a4, b1, b2, b3, b4 � 0) and/or antidiagonal elements
(given by z1, z2, z3, z4, z

∗
1, z

∗
2, z

∗
3, z

∗
4). The X-matrix states are

positive if |zj | �
√

ajbj and we also expect
∑

j (aj + bj ) = 1
to ensure the normalization of ρX. Moreover, it can be shown
that the genuine multipartite concurrence of the X-matrix
states is given by CGME(ρX ) = 2 max{0, |zj | − ωj }, where
ωj = ∑

k �=j

√
akbk and 1 � k � 4 [40].

Recently, both fidelities in Eqs. (2) and (3) have been
determined for three-qubit X matrices as [21]

FNC(ρX ) = 3 + |�1|
6

, (26)

FCQT(ρX ) = max
{
F

(1)
CQT, F

(2)
CQT, F

(3)
CQT, F

(4)
CQT

}
, (27)

where �1 = a1 − a2 + a3 − a4 + b1 − b2 + b3 − b4 and

F
(1)
CQT = 3 + |�1| + 4(|z1| + |z3|)

6
,

F
(2)
CQT = 3 + |�1| + 4(|z2| + |z4|)

6
,

F
(3)
CQT =

3 +
√

�2
2 + 16(|z1| + |z3|)2

6
,

F
(4)
CQT =

3 +
√

�2
2 + 16(|z2| + |z4|)2

6
, (28)

with �2 = a1 − a2 − a3 + a4 − b1 + b2 + b3 − b4.
Based on these results and the KKT method we determine

the range of attainable values of FCQT and P as a function of
genuine tripartite concurrence

max

{
3 + 2CGME

6
,

1 + 2CGME

3

}
� FCQT � 1,

CGME

3
� P � 1

3
, (29)
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FIG. 3. Range of values of fidelity FCQT and control power P

for given value of genuine multipartite concurrence CGME. Blue line
with circle symbols depicts the MS states |ψMS〉, the red line with
square symbols denotes tetrahedral state |ψT 〉, and the violet line
with diamond symbols represents the W -class states |ψW 〉. Black
line with stars symbol represents the X-matrix state given in Eq. (32)
and the X-matrix state given in Eq. (32) is marked by the orange
line with plus symbols. Dark gray areas correspond to all admissible
values achievable by all pure states while light gray areas denote all
attainable values of X-matrix states. The dotted line corresponds to
the classical limit, while the dashed-dotted line refers to no-cloning
limit.

illustrated also in Fig. 3. As one can see, the area defined
by Eq. (29) does not coincide with results presented in the
previous section. In particular, pure states do not provide
the maximization of the attainable values of both FCQT and
P . This outcome contrasts with the standard teleportation
protocol, where the upper bound of teleportation faithfulness
for given degree of entanglement is achieved for all pure states
[19]. In our case, the upper bound of both FCQT and P versus
CGME is realized by the X-matrix state being a statistical
mixture of two GHZ states

ρu(p) = p
∣∣ψ (1)

G

〉〈
ψ

(1)
G

∣∣ + (1 − p)
∣∣ψ (4)

G

〉〈
ψ

(4)
G

∣∣, (30)

where 0 � p � 1, |ψ (1)
G 〉 = 1√

2
(|000〉 + |111〉), and |ψ (4)

G 〉 =
1√
2
(|011〉 + |100〉) [21]. We note that ρu(p) also ensures the

upper bound of FCQT in terms of its τ ∈ 〈0, 1〉 [21]. For
that reason, the previous discussion concerning experimental
estimation of τ based on FCQT cannot be extended to a general
mixed state. It should rather be limited to pure states affected
by the presence of a small amount of noise.

The states which minimize the fidelity FCQT and control
power P are, up to local unitaries, of the form

ρ
(1)
d (x)= CGME

2
[|001〉+|110〉][〈001|+〈110|]+x|000〉〈000|

+ (1 − CGME − x)|010〉〈010| (31)
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for CGME � 1
2 , and

ρ
(2)
d (x) =

(
1

2
− x

)
[|000〉〈000| + |001〉〈001|] + x[|111〉〈111| + |011〉〈011|] + CGME

2
[|000〉〈111| + |111〉〈000|] (32)

otherwise. Here, x is an independent variable in the range 1
4 (1 −

√
1 − 4C2

GME) � x � 1
4 (1 +

√
1 − 4C2

GME).
Similarly, we derive tight upper and lower bounds on fidelity for a given amount of control power for three-qubit X-matrix

states

max
{

2
3 , g(P )

}
� FCQT � 2

3 + P, (33)

where

g =

⎧⎪⎨
⎪⎩

1
2 + P for FCQT � 9+2

√
3

18 ,

1
6 + 4P − √

2P (6P − 1) for 9+2
√

3
18 < FCQT � 6+√

6
12 ,

1
3 + 2P for FCQT > 6+√

6
12 .

(34)

Interestingly, the relation FCQT versus P in Eq. (33) remains

unchanged with respect to Eq. (25) when FCQT > 6+√
6

12 . Oth-
erwise, the X-matrix states provide a small enhancement of
achievable P for given FCQT (see Fig. 4). This means that
for mixed states, inequality FCQT � 2FNC − 1

3 is no longer
satisfied. Consequently, the relation fL(ρ) � 2f (ρ13) also
does not hold if fL(ρ) � 2+√

6
8 .

Now, it only remains to show the existence of X-matrix
states which correspond to the limits given in Eq. (33). By the
very definition of X-matrix states, one can conclude that the
GHZ state |ψG〉 in Eq. (10) belongs to this family and, hence,
|ψG〉 saturates the second inequality in Eq. (33) as shown in
Sec. III. The saturation of the first inequality is realized by
three states ρ

(3)
d − ρ

(5)
d which refer to three different shapes of

function g(P ), respectively. These states are given by

ρ
(3)
d (x) = [a−|000〉 + a+|111〉][a−〈000| + a+〈111|]

+ [a+|010〉 + a−|101〉][a+〈010| + a−〈101|]
+ 1

2 |011〉〈011|, (35)
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FIG. 4. Range of values of fidelity FCQT for given control power
P for three-qubit X-matrix states. Here, we use the same symbols
as in Fig. 2. The light gray area stands for an additional range of
attainable values of FCQT versus P provided by the three-qubit X-
matrix states. The dotted line corresponds to classical limit while the
dashed-dotted line refers to no-cloning limit.

where a± =
√

1
6 (1 ± √

1 − 27P 2) and 1
6 � P � 1

3
√

3
;

ρ
(4)
d (x) = 3B − 1

10(2 − B)
[|000〉 +

√
B|111〉][〈000| +

√
B〈111|]

+ 3

10
[
√
B|010〉 + |101〉][

√
B〈010| + 〈101|]

+ 3(B − 1)

2(2 − B)
|011〉〈011|, (36)

where B = 5P−12P 2−√
2P (6P−1)

2P (2−3P ) and 1
24 (2 + √

6) � P < 1
3
√

3
;

and

ρ
(5)
d (x) = 3P

4
[|000〉 + |111〉][〈000| + 〈111|]

+ 3P

4
[|010〉 + |101〉][〈010| + 〈101|]

+ (1 − 3P )|100〉〈100|, (37)

where 1
24 (2 + √

6) � P � 1
3 .

We note that the state ρ
(3)
d yields |�1| = 0, i.e., FNC =

1
2 , while for ρ

(4)
d and ρ

(5)
d one has 0 < |�1| < 1. For

ρ
(3)
d the maximal attainable value of controlled fidelity is

FCQT(ρ (3)
d ) = 9+2

√
3

18 which is greater than 2FNC − 1
3 = 2

3 [cf.
Eq. (25)] and it is also a maximal violation of FCQT � 2FNC −
1
3 provided by X-matrix states. A natural question arises
as to whether this relation can be violated stronger if one
takes an arbitrary mixed state. Due to the large number of
parameters which characterize three-qubit mixed states, we
are not able to analyze this task analytically. However, one can
perform such analysis numerically in order to find (at least)
a partial answer for that question. We have found that the
inequalities in Eq. (33) hold for arbitrary mixed states, as we
have numerically verified using a large ensemble of randomly
generated density matrices.

V. CONCLUSIONS

We have investigated the problem of controlled quan-
tum teleportation protocol via nonmaximally entangled pure
states. By testing the Karush-Kuhn-Tucker extremality con-
ditions within a generalized Lagrange multiplier method, we
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have derived a tight upper and lower bound for the fidelity and
control power for given values of the three-tangle and genuine
concurrence, and we have identified all states for which these
bounds are saturated. Interestingly, we have shown that the
controlled teleportation cannot be performed through all W -
class states. In particular, the standard W state is unsuitable
for controlled teleportation, which is in contrast to Ref. [15].
As the control power takes nonzero values also for biseparable
mixed states, all these results imply that the (minimal) control
power cannot be interpreted as an appropriate measure of a
degree of tripartite entanglement as suggested in Ref. [15].
Nonetheless, the conditioned fidelity seems to be useful for
experimental quantification of three-tangle, at least for the
pure states or in the presence of small levels of noise.

Finding relations between the fidelity (control power) and
tripartite entanglement for general three-qubit mixed states is
impeded by the lack of an analytical formula for all discussed
quantities. However, using the class of symmetric mixed
states, namely, the X-matrix states, we have shown that the
above-described relations are no longer satisfied. Remarkably,
three-qubit pure states are not extreme ones, and perfect con-
trolled teleportation can be reached for any value of tripartite
entanglement if one uses, for instance, the statistical mixture
of GHZ states.

Finally, we have analyzed the localizable FEF which mea-
sures, on average, the distance between maximally entangled
state and the reduced bipartite state obtained by local mea-
surements on the rest of the particles. Since the FEF provides
an upper bound for the entanglement of distillation, the lo-
calizable FEF leads to the upper limit for the entanglement of
distillation which can be concentrated in two particular qubits.
We have found that for three-qubit states, the localizable FEF
can be at most twice as large as the FEF of the reduced
bipartite state where the rest of the particles have been traced
out if the last one is greater than approximately 0.278.
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APPENDIX: PROOF 1

Let |W 〉 be the standard W state written in a form [30]

|W 〉 = 1√
3

(|000〉 + |101〉 + |110〉). (A1)

Then, it is straightforward to notice that the correlation tensor
T13 in Eq. (8) is a diagonal matrix (cf. [15])

T13 =

⎛
⎜⎝

2
3 0 0

0 − 2
3 0

0 0 1
3

⎞
⎟⎠,

and the trace norm which is given by ||T13||1 = Tr
√

T
†

13T13 =
5
3 . Therefore, the nonconditioned fidelity in Eq. (7)

FNC(|W 〉) = ||T13||1 + 3

6
= 7

9
� 2

3
. (A2)

Note that the same result can be obtained for T12 and T23,
which is cased by the permutation symmetry of W 〉. In other
words, regardless of who (Alice, Bob, or Charlie) plays a role
of controller, not all W -class states are suitable for CQT. This
result is in contrast to [15].
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