
PHYSICAL REVIEW A 99, 012305 (2019)
Editors’ Suggestion

Quantum limit to subdiffraction incoherent optical imaging
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The application of quantum estimation theory to the problem of imaging two incoherent point sources has
recently led to new insights and better measurements for incoherent imaging and spectroscopy. To establish a
more general limit beyond the case of two sources, here I evaluate a quantum bound on the Fisher information
that can be extracted by any far-field optical measurement about the moments of a subdiffraction object. The
bound matches the performance of a spatial-mode-demultiplexing (SPADE) measurement scheme in terms of its
scaling with the object size, indicating that SPADE is close to quantum-optimal. Coincidentally, the result is also
applicable to the estimation of diffusion parameters with a quantum probe subject to random displacements.
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I. INTRODUCTION

The fundamental resolution of optical imaging can be
framed as a problem of quantum estimation [1]: With any
measurement permitted by quantum mechanics, how well
can one estimate unknown parameters from the light? While
Helstrom laid the foundation of quantum estimation theory
and first applied it to incoherent imaging [1], it was not
until recently that this approach yielded genuine surprises on
the age-old topic. Through the computation of the quantum
Fisher information (QFI), it was found that the separation
between two sub-Rayleigh incoherent point sources can be
estimated much more accurately than previously realized
[2]. This discovery has since led to new insights and bet-
ter measurements for incoherent imaging and spectroscopy
[2–26]. Experimental demonstrations have also been reported
[27–35].

Generalizing such results for arbitrary source distributions
is much more difficult, as the quantum state may depend on
infinitely many spatial modes and infinitely many parameters.
Some progress has been made in Refs. [3,4], which evaluate
the performance of a spatial-mode-demultiplexing (SPADE)
measurement for estimating the moments of any subdiffrac-
tion object. Reference [3] also proves quantum bounds for lo-
cation and scale parameters and conjectures that SPADE may
be quantum-optimal for general imaging. A similar conjecture
was raised earlier by Krovi, Guha, and Shapiro in Ref. [11].
Zhou and Jiang have recently taken a major step towards
proving the conjectures [21]: Using novel arguments that do
not resort to the QFI, they propose limits on the scaling of
the Fisher information with respect to the object size for any
moment parameter. Their bounds may have issues concerning
their precise values and validity, however, as elaborated in
Appendix E.

To derive a limit using more standard quantum estima-
tion theory, here I evaluate an upper bound on the QFI
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for the moment-estimation problem. The result matches the
performance of SPADE evaluated in Refs. [3,4] in terms of
the object-size scaling, indicating that SPADE is close to
quantum-optimal. While the end result looks similar to those
of Zhou and Jiang, the use of the QFI here leads to a bound
that overcomes the issues in Ref. [21] and sets a more absolute
and computable quantum limit for incoherent imaging.

II. QUANTUM OPTICS AND QUANTUM
ESTIMATION THEORY

Consider the far-field imaging of quasimonochromatic in-
coherent optical sources, as depicted by Fig. 1. The quantum
state of light in M temporal modes can be modeled as the
tensor product ρ⊗M , where

ρ = (1 − ε)ρ0 + ερ1, (2.1)

ε � 1 is the expected photon number per temporal mode, ρ0

is the vacuum state, ρ1 is the one-photon state, and O(ε2)
terms are ignored [2,36,37]. Assuming scalar paraxial waves
[38] and the imaging of sources in one transverse dimension
for simplicity, the one-photon state on the image plane is given
by [2,3]

ρ1 =
∫

dXF (X|θ )e−ik̂X |ψ〉 〈ψ | eik̂X, (2.2)

|ψ〉 =
∫

dk�(k) |k〉 , (2.3)

where F (X|θ ) is the normalized object intensity distribution
with

∫
dXF (X|θ ) = 1, X is the object-plane coordinate, θ =

(θ1, θ2, . . . ) is a vector of unknown parameters, k̂ is the
one-photon spatial-frequency (momentum) operator, |k〉 is the
one-photon eigenket that satisfies k̂ |k〉 = k |k〉 and 〈k|k′〉 =
δ(k − k′), and �(k) is the optical transfer function (OTF) of
the imaging system [38]. The diffraction limit introduces a
finite bandwidth to �(k), and the Fourier transform of �(k)
gives the point-spread function. X and k̂ are normalized with
respect to the magnification factor and the OTF bandwidth
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FIG. 1. A far-field incoherent optical imaging system. F (X|θ ) is
the object intensity distribution, � is its characteristic width, �(k)
is the optical transfer function (OTF) of the imaging system, ρ⊗M is
the quantum state of light in M temporal modes on the image plane,
E is the POVM that models the measurement, and ξ is a measure-
ment outcome.

such that they are unitless. While this work will focus on
imaging, note that Eq. (2.2) also describes a quantum object
in initial state |ψ〉 subject to random displacements with
unknown statistics [39–41].

Any measurement can be modeled by a positive operator-
valued measure (POVM) E [1,42], such that the probability
of a measurement outcome ξ conditioned on θ is

P (ξ |θ ) = tr E(ξ )ρ⊗M, (2.4)

where tr denotes the operator trace. If the measurement
consists of passive linear optics and photon counting, the
standard Poisson model in optical astronomy and fluorescence
microscopy [4,7,43–50] is retrieved in the “ultraviolet” limit
of ε → 0 and M → ∞, with N ≡ Mε, the expected photon
number in all modes, held constant [2].

Denoting the partial derivative with respect to θμ by the
comma notation P,μ ≡ ∂P/∂θμ, the Fisher information ma-
trix is given by

Jμν (P ) ≡
∑

ξ

P,μ(ξ |θ )P,ν (ξ |θ )

P (ξ |θ )
, (2.5)

which plays a fundamental role in parameter estimation theory
and can be used to set Cramér-Rao lower error bounds [5,51].
In the context of imaging, the Fisher information has been
proposed by many as the fundamental measure of resolution
[46–50,52–56]. In recent years, it has become especially
popular in fluorescence microscopy [46–50].

In quantum estimation theory, it is known [1,2,42] that, for
any POVM,

J (P ) � NK (ρ1), (2.6)

Kμν (ρ1) = tr ρ1,μLν, ρ1,μ = 1
2 (Lμρ1 + ρ1Lμ), (2.7)

where the matrix inequality means that NK − J is positive-
semidefinite. Appendix A proves that Eq. (2.6) in fact holds
for any thermal state with arbitrary ε. The QFI matrix NK (ρ1)
thus serves as an even more fundamental measure of resolu-
tion that depends only on the quantum state and holds for any
measurement.

III. QUANTUM BOUND BASED ON AN ALTERNATIVE
CHOI-KRAUS REPRESENTATION

Define the object moment parameters as

θμ ≡
∫

dXF (X|θ )Xμ, μ ∈ N, (3.1)

with θ0 = 1. Under benign conditions, each moment sequence
determines F uniquely [57], so there is little loss of gen-
erality by parametrizing the imaging problem in terms of
the moments. Expanding exp(−ik̂X) in the Taylor series∑∞

q=0(−ik̂)qXq/q!, I can rewrite Eq. (2.2) as

ρ1 =
∞∑

q=0

∞∑
p=0

θq+p

(−ik̂)q

q!
|ψ〉 〈ψ | (ik̂)p

p!
. (3.2)

Assume that the support of F (X|θ ) has an infinite number
of points, such that

∫
dXF (X|θ )P2(X) > 0 for any nonzero

polynomial P , and the Hankel matrix θq+p is positive-definite
[57]. The Cholesky factorization can then be used to write

θq+p =
∞∑

r=0

�qr�pr , (3.3)

where � is a real lower-triangular matrix with strictly positive
diagonal elements [58]. Equation (3.2) becomes

ρ1 =
∞∑

r=0

Ar |ψ〉 〈ψ | A†
r , Ar ≡

∞∑
q=0

�qr

(−ik̂)q

q!
, (3.4)

where {Ar} are Choi-Kraus operators [42] and † denotes the
Hermitian conjugate. It can be shown via purification [59] that
an upper bound on the QFI is

K (ρ1) � K̃, K̃μν = 4 Re(BμBν + Cμν ), (3.5)

Bμ ≡
∞∑

r=0

〈ψ | A†
rAr,μ |ψ〉 , (3.6)

Cμν ≡
∞∑

r=0

〈ψ | A†
r,νAr,μ |ψ〉 . (3.7)

Defining the positive-semidefinite matrix

�pq ≡ 1

p!q!
〈ψ | (ik̂)p(−ik̂)q |ψ〉= ip−q

p!q!

∫
dk|�(k)|2kp+q,

(3.8)

which consists of the OTF moments, I obtain

Bμ = tr ����
,μ, Cμν = tr ��,μ��

,ν , (3.9)

where � denotes the transpose. Assume that the OTF mag-
nitude is even, viz., |�(k)|2 = |�(−k)|2, such that � is real
and symmetric (� = ��), and Bμ and Cμν are also real. To
evaluate Bμ, first note that

Bμ = tr ����
,μ = tr(����

,μ)� = tr �,μ����

= tr ���,μ�� = tr ��,μ��. (3.10)

Then the normalization of ρ1 can be used to show

tr ρ1 = tr ���� = 1, (3.11)

tr ρ1,μ = tr ��,μ�� + tr ����
,μ = 2Bμ = 0. (3.12)
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FIG. 2. Relationships among the key quantities in this work.

Hence

K̃μν = 4Cμν = 4 tr ��,μ��
,ν . (3.13)

Figure 2 summarizes the relationships among the key quanti-
ties in this work.

As the right-hand side of Eq. (3.13) consists of infinite
sums, their convergence is needed for K̃ to be a nontrivial
upper bound on the QFI. Appendix B proves that |K̃μν | < ∞
if |�(k)|2 is bandlimited or Gaussian (∝ exp[−k2/(2β2)]) and
F (X|θ ) is any probability density with compact support in
the Szegő class [60] or Gaussian (∝ exp[−X2/(2�2)]). If

both are Gaussian, a further condition is β� < 1/2. These
are sufficient conditions but already quite general; K̃ may
converge under more relaxed conditions.

IV. QUANTUM BOUND IN THE
SUBDIFFRACTION REGIME

Although the QFI and its upper bound K̃ are functions of
infinitely many parameters in general, the goal of this work
is to show that K̃μμ obeys a universal behavior when the
parameters correspond to a subdiffraction regime. Let � > 0
be a characteristic width of F (X|θ ) around X = 0, such that
θμ = O(�μ), where the big O notation denotes terms on the
order of the argument and is defined by

lim
�→0

∣∣∣∣O[f (�)]

f (�)

∣∣∣∣ < ∞. (4.1)

Recall that X has been normalized with respect to the magni-
fication factor and OTF bandwidth; the subdiffraction regime
can therefore be defined by � � 1 [3,4].

The dependence of the Cholesky factor � on θ can be
studied via the recursive relation [61]

�qr =

⎧⎪⎪⎨
⎪⎪⎩

√
θ2q − ∑q−1

s=0 (�qs )2, r = q,(
θq+r − ∑r−1

s=0 �qs�rs

)/
�rr , r < q,

0, r > q,

(4.2)

starting from �00 = √
θ0 = 1. Equation (4.2) can be differen-

tiated to give

�qr,μ =

⎧⎪⎨
⎪⎩

(
δ

2q
μ − 2

∑q−1
s=0 �qs�qs,μ

)/
(2�qq ), r = q,[

δ
q+r
μ − ∑r−1

s=0(�qs,μ�rs + �qs�rs,μ) − �qr�rr,μ

]/
�rr , r < q,

0, r > q,

(4.3)

where δa
b is the Kronecker delta. Since the diagonal elements

of the Cholesky factor � are all strictly positive, all � and �,μ

elements are finite, and a dimensional analysis of Eqs. (4.2)
and (4.3) gives

�qr = O(�q ), (4.4)

�qr,μ = O(�q−μ). (4.5)

Inspecting the dependence of the � elements on a given θμ

with even μ, starting from the upper-left corner and going
row by row, one can see that the dependence does not ap-
pear until the diagonal element �qq with q = μ/2. In other
words,

�qr,μ =

⎧⎪⎨
⎪⎩

0, q � μ/2, r < μ/2,

1/(2�qq ) = O(�−μ/2), q = r = μ/2,

o(�−μ/2), q > μ/2,

(4.6)

where the small o notation denotes terms that are asymptoti-
cally negligible relative to the argument and is defined by

lim
�→0

∣∣∣∣o(f (�))
f (�)

∣∣∣∣ = 0. (4.7)

Thus only one element in �,μ is O(�−μ/2), and the rest of the
elements are all in higher orders. I can then express Eq. (3.13)
as

K̃μμ = 4
∑
s,t

�st

∑
r

�tr,μ�sr,μ (4.8)

= 4�qq (�qq,μ)2+4
∑

s+t>μ

�st

∑
r

�tr,μ�sr,μ, q = μ

2
.

(4.9)

Recall that k̂ has been normalized with respect to the OTF
width, and usual OTFs, such as bandlimited and Gaus-
sian functions, have finite moments. Thus �st = O(1), only
4�qq (�qq,μ)2 is O(�−μ), and the rest of the terms on the
right-hand side of Eq. (4.9) are all o(�−μ). Assuming K̃μμ <

∞, the infinite sum in Eq. (4.9) converges to o(�−μ), and K̃μμ
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can be approximated as

K̃μμ = O(�−μ) ≈ 4�qq (�qq,μ)2 = 〈ψ | k̂2q |ψ〉
q!2(�qq )2

, q = μ

2
. (4.10)

If μ is odd, the dependence of � on a given θμ starts to appear only on the row q = (μ + 1)/2 in the elements �q q−1 and
�qq . Specifically,

�qr,μ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, q � (μ + 1)/2, r < (μ − 1)/2,

1/(�rr ) = O(�−(μ−1)/2), q = (μ + 1)/2, r = (μ − 1)/2,

−�q q−1/(�qq�q−1 q−1) = O(�−(μ−1)/2), q = r = (μ + 1)/2,

o(�−(μ−1)/2), q > (μ + 1)/2.

(4.11)

Now there are two O(�−(μ−1)/2) leading-order terms in �qr,μ. I can express Eq. (3.13) as

K̃μμ = 4�qq[(�q q−1,μ)2 + (�qq,μ)2] + 4
∑

s+t>μ+1

�st

∑
r

�tr,μ�sr,μ, q = μ + 1

2
, (4.12)

where 4�qq[(�q q−1,μ)2 + (�qq,μ)2] = O(�−(μ−1)) and the
rest of the terms are all o(�−(μ−1)). Assuming again K̃μμ <

∞, I obtain

K̃μμ = O(�−(μ−1)) ≈ 4�qq[(�q q−1,μ)2 + (�qq,μ)2]

= 4 〈ψ | k̂2q |ψ〉
q!2(�q−1 q−1)2

[
1 +

(
�q q−1

�qq

)2]
, q = μ + 1

2
.

(4.13)

Equation (4.10) for even μ and Eq. (4.13) for odd μ can be
summarized as

Jμμ(P ) � NKμμ(ρ1) � NK̃μμ = NO(�−2�μ/2�), (4.14)

which sets a lower bound on the mean-square error MSEμ of
any unbiased estimator of a moment θμ via the Cramér-Rao
bound MSEμ � (J−1)μμ � 1/Jμμ [51].

V. DISCUSSION

Equations (4.10), (4.13), and (4.14) are the central results
of this work. The scaling of Eq. (4.14) with respect to �

matches the performance of SPADE for moment estimation
evaluated in Refs. [3,4]. The Fisher information for direct
imaging is Jμμ = NO(1) in the subdiffraction regime, so
substantial improvements can be obtained for μ � 2 [3,4].
For μ = 1, 2, the inverse of Eq. (4.14) also matches an
O(�2μ−2)/N quantum error bound computed in Appendix C
via the convexity of QFI.

For a more sobering perspective, consider the signal-to-
noise ratio (SNR), defined here as θ2

μ = O(�2μ) divided by
the mean-square error. Equation (4.14) then suggests that a
quantum limit on the SNR is

QSNRμ ≡ NK̃μμθ2
μ = NO(�2�μ/2�). (5.1)

While it remains a significant improvement over the
NO(�2μ) SNR for direct imaging, Eq. (5.1) still decreases
for smaller �, especially for higher moments, and decays
in a roughly exponential fashion with increasing μ for a given
� in the subdiffraction regime, as shown more carefully in
Appendix D. This difficulty with higher moments is known in

the context of SPADE [3,4], but the quantum limit here proves
that it is fundamental for any measurement.

Although Eq. (4.14) assumes one-dimensional imaging,
previous studies of two-dimensional imaging in quantum
estimation theory [3,4,10,21] show no new surprises, and it
is reasonable to conjecture that the quantum limit on the
Fisher information becomes NO(�−2�|μ|/2�)—the same as
the SPADE performance—where |μ| = ∑

j μj is the total
moment order [3,4].

Unlike Zhou and Jiang’s Theorem 1 in Ref. [21], the
quantum bound here does not depend on the POVM and is
more amenable to approximation or numerical computation.
The scaling of Eq. (4.14) with � for odd moments is also
tighter than that suggested by their Theorem 1. Furthermore,
their Theorem 3 makes a questionable assumption about the
optimal POVM. Appendix E presents a review of Ref. [21]
and highlights these issues. The use of the QFI here, on the
other hand, guarantees that Eq. (4.14) holds for any POVM.

Beyond imaging, Eq. (2.2) also describes a quantum object
subject to random displacements with unknown and possibly
non-Gaussian statistics. � is then a measure of the displace-
ment magnitude. The result here can therefore be applied
to the estimation of diffusion parameters with a quantum
probe in the weak-signal (� � 1) regime, without the need to
assume Gaussian statistics as in prior works [39–41]. Potential
applications include magnetometry [39], optical interferome-
try [40], and optomechanical force sensing [41].

VI. CONCLUSION

I have proposed a general quantum limit to subdiffraction
incoherent imaging in terms of moment estimation, going far
beyond the simple example of two point sources in previous
studies. This limit does not depend on the measurement and
is also tight in terms of its scaling with the object size, thus
setting a fundamental criterion of resolution for far-field inco-
herent imaging, with prime applications being observational
astronomy and fluorescence microscopy.

Looking forward, many open problems still remain, includ-
ing a more precise evaluation of the QFI, a more detailed com-
parison with SPADE, generalizations for more dimensions
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and other types of sources, derivations of tighter multiparam-
eter quantum bounds, and an experimental demonstration of
quantum-limited measurements for more general objects. As
the light sources are classical and the measurements require
only far-field linear optics and photon counting [3,4,7], a clear
path towards practical applications of the quantum-inspired
technology can be envisioned, with the quantum limit serving
as the ultimate yardstick.
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APPENDIX A: QUANTUM BOUNDS
FOR THERMAL STATES

1. A bound on the QFI

Let {aj } be the bosonic annihilation operators with respect
to a set of optical modes and

ρ =
∫

Dα�(α) |α〉 〈α| , (A1)

where α ≡ (α1, α2, . . . )� is a column vector of complex am-
plitudes, Dα ≡ ∏

j d2αj , � is the Glauber-Sudarshan distri-
bution, and |α〉 is a coherent state that satisfies aj |α〉 = αj |α〉
[1]. For a thermal state,

� = 1

det(π�)
exp(−α†�−1α), (A2)

where � > 0 is the mutual coherence matrix. Helstrom has
shown in Sec. V of Ref. [62] [see also Sec. VIII 6(b) of
Ref. [1]] that the QFI is

Kμν (ρ) = tr �,μϒν, (A3)

where ϒμ is a Hermitian matrix that satisfies

�,μ = 1
2 [(I + �)ϒμ� + �ϒμ(I + �)], (A4)

and I is the identity matrix. The QFI is an upper bound on the
Fisher information for any POVM [42], viz.,

J (P ) � K (ρ⊗M ) = MK (ρ). (A5)

To obtain a simpler bound than Eqs. (A3)–(A5), diago-
nalize � in terms of its eigenvalues {γj } and orthonormal
eigenvectors {ej } as

� =
∑

j

γj ej e
†
j , (A6)

where {ej } includes vectors that support {�,μ} and γj � 0. In
terms of this basis, Eqs. (A3) and (A4) can be expressed as
[62]

Kμν (ρ) =
∑
j,l

2(e†j�,μel )(e
†
l �,νej )

γj + γl + 2γjγl

. (A7)

Let u be an arbitrary real vector and �′ ≡ ∑
μ uμ�,μ. Since

�,μ and therefore �′ are Hermitian,

∑
μ,ν

uμKμν (ρ)uν =
∑
j,l

2|e†j�′el|2
γj + γl + 2γjγl

�
∑
j,l

2|e†j�′el|2
γj + γl

= ε
∑
μ,ν

uμKμν (�)uν, (A8)

where I have extended the definition of the QFI for any
positive-definite matrix as

Kμν (�) = tr �,μL(�)
ν

tr �
, (A9)

�,μ = 1

2

(
L(�)

μ � + �L(�)
μ

)
, (A10)

and L(�)
μ is a symmetric logarithmic derivative (SLD) of �.

Equation (A8) results in

K (ρ) � εK (�), MK (ρ) � NK (�), (A11)

which can be combined with Eq. (A5) to give

J (P ) � K (ρ⊗M ) � NK (�). (A12)

In other words, rather than computing K (ρ) via Eqs. (A3)
and (A4), one can compute a looser quantum bound given by
Eqs. (A9) and (A10) in terms of the SLDs of �.

2. Ultraviolet and infrared limits

Let

� = εg, ε = tr �, tr g = 1. (A13)

In the limit ε → 0, I + � → I , and the ϒμ defined by
Eq. (A4) becomes identical to the L(�)

μ defined by Eq. (A10).
Taking the ultraviolet limit ε → 0 while holding N ≡ Mε

constant, I obtain

lim
ε→0

MKμν (ρ) = lim
ε→0

M tr �,μϒν = NKμν (�), (A14)

which means that, in the ultraviolet limit, the QFI approaches
NK (�), and the second inequality in Eq. (A12) becomes an
equality.

One may also ask what happens in the opposite ε → ∞
“infrared” limit, which is more applicable to radio and mi-
crowave frequencies or scattered laser sources. Then I +
� → �, ϒμ → �−1�,μ�−1, and the ε → ∞ limit gives

lim
ε→∞ Kμν (ρ⊗M ) = M tr �,μ�−1�,ν�

−1 = MJ (�), (A15)

which is equal to the classical Fisher information with respect
to � [63]. Heterodyne detection is sufficient to achieve this
quantum limit, as the Husimi distribution, which governs the
heterodyne statistics, approaches � in the ε → ∞ limit. For
any ε, the classical-simulation technique [64] can also be used
to show that

Kμν (ρ⊗M ) � MJ (�), (A16)

since � is positive.
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3. Proof of Eq. (2.6) for any thermal state

Now suppose that ε does not depend on θ . The SLDs of �

become the same as the SLDs of g, resulting in K (�) = K (g).
Following Refs. [2,3], Eq. (2.2) assumes that g is the density
matrix of ρ1 with respect to the basis {a†

j |vac〉}. Since K is
basis-independent, I can write

K (�) = K (g) = K (ρ1), (A17)

which can be combined with Eq. (A12) to give Eq. (2.6).
Hence Eq. (2.6) in fact holds for any thermal state with
arbitrary ε. The right-hand side of Eq. (2.6) is equal to the
QFI for a thermal state in the ultraviolet limit, as shown by
Eq. (A14); Sec. II arrives at the same result by making the
ε � 1 approximation at the beginning.

Consider the QFI per photon defined as

κ (ε) ≡ K (ρ)

ε
, (A18)

κμν (ε) =
∑
j,l

2(e†j g,μel )(e
†
l g,νej )

λj + λl + 2ελjλl

=
∑
j,l

2 〈ej | ρ1,μ |el〉 〈el | ρ1,ν |ej 〉
λj + λl + 2ελjλl

, (A19)

where {λj ≡ γj/ε} are the eigenvalues of g and also ρ1 and
{|ej 〉 ≡ ∑

l ej la
†
l |vac〉} are the eigenkets of ρ1. It is obvious

that κ (ε) is a nonincreasing function of ε, viz.,

κ (ε′) � κ (ε) if ε′ > ε, (A20)

with the supremum achieved at limε→0 κ (ε) = K (ρ1). This
behavior is consistent with the explicit calculations of κ (ε) in
Refs. [8,9] via other methods.

APPENDIX B: SUFFICIENT CONDITIONS FOR |K̃μν| < ∞
Since the � matrix given by Eq. (3.8) is positive-

semidefinite, the K̃ matrix given by Eq. (3.13) is Gramian [58]
and also positive-semidefinite, with

K̃μμ � 0, |K̃μν | �
√

K̃μμK̃νν. (B1)

It suffices to prove K̃μμ < ∞ for any μ. Let

�̃ ≡ W��W, �̃,μ ≡ W−1�,μ, (B2)

where W is a real invertible matrix. Then

K̃μμ = 4 tr ��,μ��
,μ = 4 tr �̃�̃,μ�̃�

,μ

� 4‖�̃‖ · ‖�̃,μ�̃�
,μ‖1 = 4‖�̃‖ · ‖�̃,μ‖2

2, (B3)

where ‖ · ‖ is the operator norm, ‖ · ‖1 is the trace norm, and
‖ · ‖2 is the Hilbert-Schmidt norm [65]. Thus K̃μμ < ∞ if

(1) �̃ is bounded (‖�̃‖ < ∞), and
(2) �̃,μ is Hilbert-Schmidt (‖�̃,μ‖2 < ∞).
In the following, I assume

Wqp = wq
√

q!δq
p, (B4)

where 0 < w < ∞ is an adjustable constant to make the
convergence conditions more general.

1. Sufficient conditions for ‖�̃‖ � ‖�̃‖1 < ∞
First I prove that �̃ is in fact trace-class (‖�̃‖1 < ∞) and

must therefore be bounded (‖�̃‖ � ‖�̃‖1 < ∞) [65] if the
OTF is bandlimited or Gaussian. In the latter case w should
be chosen appropriately.

Since �̃ � 0, it is trace-class if

‖�̃‖1 = tr �̃ =
∞∑

q=0

w2q

q!

∫
dk|�(k)|2k2q < ∞. (B5)

Two cases are of interest:
(i) For a bandlimited OTF with support in [−β, β] and 0 <

β < ∞, ∫
dk|�(k)|2k2q � β2q, (B6)

tr �̃ �
∞∑

q=0

(wβ )2q

q!
= exp[(wβ )2], (B7)

which converges for any w and β.
(ii) For a Gaussian OTF with standard deviation β [66],∫

dk|�(k)|2k2q = (2q )!

q!2q
β2q, (B8)

tr �̃ =
∞∑

q=0

(2q )!

q!22q
(wβ )2q, (B9)

which converges if wβ < 1/
√

2 according to the ratio test
[67]. Thus I should choose a w that satisfies

w <
1√
2β

. (B10)

2. Sufficient conditions for ‖�̃,μ‖2 < ∞
Next I prove that �̃,μ is Hilbert-Schmidt if F (X|θ ) is any

probability density with compact support in the Szegő class
[60,68,69] or Gaussian. In the latter case, w should also be
chosen appropriately.

Noting that �,μ is lower-triangular, the Hilbert-Schmidt
norm is given by

‖�̃,μ‖2
2 = tr �̃,μ�̃�

,μ =
∞∑

q=0

1

q!w2q

q∑
r=0

(�qr,μ)2

=
∞∑

q=0

ηq

q!w2q
, (B11)

ηq ≡
q∑

r=0

(�qr,μ)2. (B12)

For convenience, I normalize the object-plane coordinate X

with respect to the object characteristic width 0 < � < ∞ as
X = x�, such that

θμ =
∫

dXF (X|θ )Xμ = φμ�μ, (B13)

φμ ≡
∫

dxf (x|θ )xμ, (B14)

f (x|θ ) ≡ �F (x�|θ ), (B15)
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and φμ and f (x|θ ) are independent of �. Define the Hankel
matrix with respect to θ as

	qp = θq+p, (B16)

and the normalized Hankel matrix as


qp = φq+p. (B17)

Define also the lower-triangular Cholesky factors � and V by

	 = ���, (B18)


 = V V �. (B19)

Then the matrices are related by

	 = D
D, � = DV, Dqp ≡ �qδq
p. (B20)

In particular,

�qr = �qVqr = O(�q ), (B21)

which verifies Eq. (4.4). A formula for �qr,μ is [70]

�qr,μ =
q∑

s=0

�qsTsr

(
�−1

(q )	(q ),μ�−�
(q )

)
sr

, (B22)

Tsr ≡

⎧⎪⎨
⎪⎩

0, s < r,

1/2, s = r,

1, s > r,

(B23)

where the subscript (q ) denotes the (q + 1)-by-(q + 1) upper-
left submatrix, viz.,

�(q )rs = �rs , 0 � r � q, 0 � s � q, (B24)

�−1
(q ) = (�(q ) )

−1, �−�
(q ) = [(�(q ) )

−1]�. (B25)

Since

	qr,μ = δq+r
μ , (B26)

	(q ),μ = 0 if q < �μ/2�, and Eq. (B22) gives

�qr,μ = 0 if q <
⌈μ

2

⌉
, (B27)

which is consistent with Eqs. (4.6) and (4.11). Suppressing the
subscript (q ) for clarity, I can also write

D−1	,μD−1 = �−μ	,μ, (B28)

�−1	,μ�−� = V −1D−1	,μD−1V −� = �−μQ, (B29)

Q ≡ V −1	,μV −�. (B30)

Equation (B22) becomes

�qr,μ = �q−μ

q∑
s=0

VqsTsrQsr = O(�q−μ), (B31)

which verifies Eq. (4.5). Applying the Cauchy-Schwartz in-
equality to Eq. (B31), I obtain

(�qr,μ)2 � �2q−2μ

[
q∑

s=0

(Vqs )2

][
q∑

s=0

(TsrQsr )2

]

= �2q−2μφ2q

q∑
s=0

(TsrQsr )2. (B32)

This leads to an upper bound on Eq. (B12) given by

ηq � �2q−2μφ2q

q∑
r=0

q∑
s=0

(TsrQsr )2. (B33)

To simplify the double sum, note that Q as defined by
Eq. (B30) is symmetric with Qrs = Qsr , so it can be shown
that [71]

‖Q‖2
2 =

q∑
r=0

q∑
s=0

(Qsr )2 =
q∑

s=0

(Qss )2 + 2
q∑

r=0

q∑
s=r+1

(Qsr )2

� 2
q∑

r=0

q∑
s=0

(TsrQsr )2, (B34)

leading to

ηq � �2q−2μφ2q

2
‖Q‖2

2. (B35)

With Eq. (B30), ‖Q‖2 can be bounded as

‖Q‖2 �
∥∥V −1

(q )

∥∥2 · ‖	(q ),μ‖2 �
∥∥
−1

(q )

∥∥√
μ + 1, (B36)

where I have restored the subscript (q ) for emphasis and used
the facts [58,65]

‖AB‖2 � ‖A‖ · ‖B‖2, (B37)∥∥V −1
(q )

∥∥ = ∥∥V −�
(q )

∥∥ = ∥∥V −�
(q ) V −1

(q )

∥∥1/2 = ∥∥
−1
(q )

∥∥1/2
, (B38)

‖	(q ),μ‖2
2 =

q∑
r=0

q∑
s=0

(
δr+s
μ

)2 =
q∑

r=0

q∑
s=0

δr+s
μ � μ + 1.

(B39)

Combining Eq. (B11), (B27), (B35), and (B36), I obtain

‖�̃,μ‖2
2 � μ + 1

2
�−2μ

∞∑
q=�μ/2�

ζq, (B40)

ζq ≡ φ2q

q!

(
�

w

)2q∥∥
−1
(q )

∥∥2
. (B41)

Since 
 and therefore its submatrix 
(q ) are positive-definite
[58], ‖
−1

(q )‖ is the largest eigenvalue of 
−1
(q ), which is equal

to the inverse of the smallest eigenvalue of 
(q ). Let λq be the
smallest eigenvalue of 
(q ). The right-hand side of Eq. (B40)
converges and �̃,μ is Hilbert-Schmidt if it passes the ratio test

lim
q→∞

∣∣∣∣ζq+1

ζq

∣∣∣∣ = lim
q→∞

1

q + 1

�2

w2

φ2q+2

φ2q

λ2
q

λ2
q+1

< 1. (B42)

Two cases are of interest:
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(a) f (x|θ ) is any probability density in the Szegő class
with compact support within [x1, x2], |xj | < ∞ [60,69], viz.,

S ≡
∫ x2

x1

dx
ln f (x|θ )√

(x − x1)(x2 − x)
> −∞. (B43)

For example, any strictly positive f is in the class, as there ex-
ists a δ such that f � δ > 0 and ln f � ln δ > −∞, leading
to

S � ln δ

∫ x2

x1

dx√
(x − x1)(x2 − x)

= π ln δ > −∞. (B44)

If Eq. (B43) is satisfied, it is known [60,69] that, for q → ∞,
there exist constants � > 0 and 0 < τ < 1 such that

λq → �
√

qτq,
λ2

q

λ2
q+1

→ 1

τ 2
. (B45)

Furthermore, since x2 � max(|x1|, |x2|)2 for x ∈ [x1, x2],

φ2q+2 =
∫ x2

x1

dxf (x|θ )x2q+2

� max(|x1|, |x2|)2
∫ x2

x1

dxf (x|θ )x2q

= max(|x1|, |x2|)2φ2q . (B46)

The left-hand side of Eq. (B42) can therefore be bounded as

lim
q→∞

∣∣∣∣ζq+1

ζq

∣∣∣∣ � lim
q→∞

�2 max(|x1|, |x2|)2

(q + 1)w2τ 2
, (B47)

which approaches zero and passes the ratio test given by
Eq. (B42) for any w, �, and |xj |. Beyond the Szegő class,
Eq. (B42) is also satisfied if λ2

q/λ
2
q+1 = o(q ), or if λ2

q/λ
2
q+1 =

O(q ) and a small enough �/w is chosen.
(b) f (x|θ ) ∝ exp(−x2/2). Then the standard deviation

of F (X|θ ) is � and φ2q+2/φ2q = 2q + 1. It is known that
[60,68]

λq → �q1/4τ
√

q,
λ2

q

λ2
q+1

→ 1. (B48)

Equation (B42) becomes

lim
q→∞

∣∣∣∣ζq+1

ζq

∣∣∣∣ = 2�2

w2
< 1, (B49)

which is satisfied if

w >
√

2�. (B50)

3. Summary

To summarize, Appendix B 1 shows that �̃ is trace-class
if |�(k)|2 is one of the following: (i) bandlimited with any
choice of w, or (ii) Gaussian with w < 1/(

√
2β ), while

Appendix B 2 shows that �̃,μ is Hilbert-Schmidt if F (X|θ )
is one of the following: (a) in the Szegő class with any choice
of w, or (b) Gaussian with w >

√
2�.

Thus the choice of w becomes an issue only if both are
Gaussian. To satisfy both (ii) and (b), the standard deviations
should satisfy

β� < 1
2 , (B51)

such that a choice within
√

2� < w < 1/(
√

2β ) is possible.

Taking � � 1, β = O(1), and w = O(1), ‖�̃‖ = O(1)
and the right-hand side of Eq. (B40) converges to O(�−2�μ/2�)
under the conditions above. Equation (B3) becomes

K̃μμ � O(�−2�μ/2�), (B52)

which is consistent with Eq. (4.14).
With a trace-class �̃, �̃,μ is said to be square-summable

with respect to �̃ if and only if K̃μμ converges [65]. An
operator is guaranteed to be square-summable if it is bounded,
and may still be so even if it is unbounded [65]. As Hilbert-
Schmidt operators are a subclass of bounded operators, re-
quiring �̃,μ to be Hilbert-Schmidt may be an overkill; more
relaxed conditions for the convergence of K̃μμ may exist.
Choosing a different scaling matrix W can also lead to other
conditions.

APPENDIX C: QUANTUM BOUNDS VIA CONVEXITY
AND CLASSICAL SIMULATION

Discretize F (X|θ ) as a distribution of point sources, such
that

F (X|θ ) =
∑

s

Fsδ(X − Xs ), (C1)

ρ1 =
∑

s

Fse
−ik̂Xs |ψ〉 〈ψ | eik̂Xs . (C2)

First assume that {Fs} are known. Denoting the QFI with
respect to parameters {Xs} as K (X), I can use the convexity
of QFI [41,72,73] to write

K (X)(ρ1) � G, (C3)

G ≡
∑

s

FsK
(X)(e−ik̂Xs |ψ〉 〈ψ | eik̂Xs ), (C4)

Gst = 4Fsβ
2δt

s, (C5)

β =
√

〈ψ | k̂2 |ψ〉 − (〈ψ | k̂ |ψ〉)2. (C6)

With

θμ =
∑

s

FsX
μ
s , Hμs ≡ ∂θμ

∂Xs

= FsμXμ−1
s , (C7)

I can transform the Cramér-Rao bounds back to the ones with
respect to θ as

K (ρ1)−1 � HG−1H�, (C8)

(HG−1H�)μν = μνθμ+ν−2

4β2
= O(�μ+ν−2). (C9)

Hence

[J (P )−1]μμ � [K (ρ1)−1]μμ

N
� (HG−1H�)μμ

N

= μ2θ2μ−2

4Nβ2
= O(�2μ−2)

N
. (C10)

The scaling of this bound with respect to � is looser than that
of the inverse of Eq. (4.14) for � � 1 and μ > 2 but does not
rely on the � � 1 approximation.
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Yet another bound can be computed by treating {Fs} as
parameters and using the classical-simulation technique [64]:

K (F )(ρ1) � J (F )(F ), (C11)

J
(F )
st (F ) =

∑
u

1

Fu

∂Fu

∂Fs

∂Fu

∂Ft

= δt
s

Fs

, (C12)

K (ρ1)−1 � RJ (F )(F )−1R�, (C13)

Rμs ≡ ∂θμ

∂Fs

= Xμ
s , (C14)

[RJ (F )(F )−1R�]μν = θμ+ν = O(�μ+ν ). (C15)

This proof is a straightforward generalization of Appendix D
in Ref. [4]. The final result is

[J (P )−1]μμ � [K (ρ1)−1]μμ

N
� [RJ (F )(F )−1R�]μμ

N

= θ2μ

N
= O(�2μ)

N
, (C16)

the scaling of which is unfortunately looser than those of
Eqs. (4.14) and (C10) for � � 1.

APPENDIX D: DECAY OF THE QUANTUM SNR
FOR HIGHER MOMENTS

With Eq. (4.10), the quantum SNR given by Eq. (5.1) for
an even μ = 2q can be expressed in terms of the normalized
quantities defined by Eqs. (B13)–(B21) as

QSNR2q = N [χq�
2q + o(�2q )], (D1)

χq = 〈ψ | k̂2q |ψ〉φ2
2q

q!2(Vqq )2
, (D2)

where φ2q is a normalized object moment and V is the
Cholesky factor of the normalized Hankel matrix 
. For a
given � in the subdiffraction regime, the SNR as a function
of q depends on not only �2q but also the prefactor χq . Here I
show that the sequence {χq : q ∈ N} is bounded under benign
conditions, so the SNR must decay with q at least as quickly
as the exponential �2q .

If the OTF is bandlimited or Gaussian with bandwidth β <

∞, Eqs. (B6) and (B8) give

〈ψ | k̂2q |ψ〉 � (2q )!

q!2q
β2q . (D3)

If the f (x|θ ) given by Eq. (B15) has a compact support within
[−1, 1],

φ2q � 1. (D4)

As the support has been assumed to contain an infinite number
of points, 
(q ) > 0, and Vqq > 0 is an eigenvalue of the lower-
triangular Cholesky factor V(q ) [58]. Let v be the eigenvector
of V(q ) with eigenvalue Vqq and v�v = 1. Then

V 2
qq = v�V �

(q )V(q )v � min
v�v=1

v�V �
(q )V(q )v = λq, (D5)

where λq is the smallest eigenvalue of V �
(q )V(q ) and also

V(q )V
�
(q ) = 
(q ) [58], so λq > 0. Substituting Eqs. (D3)–(D5)

into Eq. (D2) gives

χq � (2q )!β2q

q!32qλq

≡ χ ′
q . (D6)

χ ′
q < ∞ for any finite q, and if f (x|θ ) is in the Szegő class,

λq obeys Eqs. (B45) as q → ∞, leading to limq→∞ χ ′
q = 0.

Hence {χ ′
q : q ∈ N} is a bounded sequence, so is {χq : q ∈

N}, and there exists a finite χ̃ such that

χq � χ̃ < ∞, QSNR2q ≈ Nχq�
2q � Nχ̃�2q . (D7)

A similar decay behavior of the quantum SNR for the odd
moments can be shown via the same procedure.

APPENDIX E: REVIEW OF REF. [21]

Here I summarize the essential arguments in Ref. [21],
using the notation and parametrization here and focusing on
the one-photon state for simplicity. Rewrite Eq. (3.2) as

ρ1 =
∞∑

ν=0

θνσν, (E1)

σν ≡
ν∑

q=0

(−ik̂)q |ψ〉 〈ψ | (ik̂)ν−q

q!(ν − q )!
, (E2)

such that the probability distribution for a measurement E1(ξ )
obeys

π (ξ |θ ) = tr E1(ξ )ρ1 =
∞∑

ν=0

θνSν (ξ ), (E3)

Sν (ξ ) ≡ tr E1(ξ )σν =
ν∑

q=0

〈ψ | (ik̂)ν−qE1(ξ )(−ik̂)q |ψ〉
q!(ν − q )!

.

(E4)

The Fisher information for θμ becomes

Jμμ = N
∑

ξ

π,μ(ξ |θ )2

π (ξ |θ )
= N

∑
ξ

S2
μ(ξ )

π (ξ |θ )

= N�−μ
∑

ξ

�μ|Sμ(ξ )|
π (ξ |θ )

|Sμ(ξ )|. (E5)

If

�μ|Sμ(ξ )|
π (ξ |θ )

� cμ = O(1),
∑

ξ

|Sμ(ξ )| ≡ dμ < ∞, (E6)

then

Jμμ � cμdμN�−μ = NO(�−μ), (E7)

which is essentially Theorem 1 in Ref. [21]. To prove cμ =
O(1), note that Sμ(ξ ) �= 0 must hold for π,μ(ξ |θ ) �= 0, so the
expansion in Eq. (E3) must contain at least the term θμSμ(ξ ).
In other words,

π (ξ |θ ) = O(�α ), α � μ. (E8)
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Coupled with the proof of |Sμ(ξ )| < ∞ in Ref. [21] and the
fact π (ξ |θ ) > 0,

�μ|Sμ(ξ )|
π (ξ |θ )

= �μ|Sμ(ξ )|
O(�α )

= O(�μ−α ). (E9)

Reference [21] also proves dμ < ∞ under reasonable condi-
tions.

Compared with Eqs. (4.10), (4.13), and (4.14), not only is
the scaling of Eq. (E7) with � for odd moments less tight, the
value of its prefactor cμdμ also depends on the measurement
and does not seem easy to compute. Without a more concrete
prefactor, it would not be possible to study the SNR as a
function of μ for a given � like Appendix D and show that
higher moments are more difficult to estimate, as the prefactor
may increase quickly with μ.

Reference [21] further argues that the optimal POVM
that maximizes the Fisher information for a given θμ should
satisfy

E1(ξ )(−ik̂)q |ψ〉 = 0 for q <
⌊μ

2

⌋
, (E10)

in order to obtain

Sν (ξ ) = 0 for ν < 2
⌊μ

2

⌋
, π (ξ |θ ) = O(�2�μ/2�). (E11)

This leads to

max
E1

Jμμ(θ )
?= NO(�−2�μ/2�), (E12)

which is essentially their Theorem 3. This argument seems
to be flawed, however: it is not clear that Eq. (E10) is a
necessary condition for the optimal POVM. Although it leads
to a scaling that is close to the one suggested by Eq. (E7), the
scaling is not the only concern when evaluating maxE1 Jμμ(θ )
at a specific θ ; the prefactor also matters. There may exist a
POVM that violates Eq. (E10) and obeys a worse overall scal-
ing but gives a prefactor large enough to make the information
higher at that specific θ . This would imply that the optimal
POVM does not satisfy Eq. (E10), and Eq. (E12) does not
follow from Eq. (E10).
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