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Many quantum algorithms, such as the Harrow-Hassidim-Lloyd (HHL) algorithm, depend on oracles that
efficiently encode classical data into a quantum state. The encoding of the data can be categorized into two
types: analog encoding, where the data are stored as amplitudes of a state, and digital encoding, where they are
stored as qubit strings. The former has been utilized to process classical data in an exponentially large space
of a quantum system, whereas the latter is required to perform arithmetics on a quantum computer. Quantum
algorithms such as HHL achieve quantum speedups with a sophisticated use of these two encodings. In this
work, we present algorithms that convert these two encodings to one another. While quantum digital-to-analog
conversions have implicitly been used in existing quantum algorithms, we reformulate it and give a generalized
protocol that works probabilistically. On the other hand, we propose a deterministic algorithm that performs a
quantum analog-to-digital conversion. These algorithms can be utilized to realize high-level quantum algorithms
such as a nonlinear transformation of amplitudes of a quantum state. As an example, we construct a “quantum
amplitude perceptron,” a quantum version of the neural network that hence has a possible application in the area
of quantum machine learning.
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I. INTRODUCTION

A wide variety of quantum algorithms that potentially
give quantum speedups over classical computers has been
proposed. The problems that are efficiently solved by existing
quantum algorithms can be divided into two types: those
where input data of a problem is relatively small in size but
the problem itself is hard classically, and those where the
input of a problem is exponentially large, making it hard
to handle on classical computers. The former are solved by
algorithms such as Shor’s factoring [1] or by quantum chem-
istry calculations [2]. On the other hand, there are algorithms
that solve problems categorized as the latter. They achieve
quantum speedups only if an oracle that encodes N classical
data in O[poly(log2 N )] time exists [3]. A famous example
is the Harrow-Hassidim-Lloyd (HHL) algorithm [4], which is
an algorithm to apply an inverse A−1 of a matrix A to a (N =
2n)-dimensional vector {cj }Nj=1. It requires us to construct a
quantum state,

N∑
j=1

cj |j 〉, (1)

where {cj }Nj=1 is normalized to satisfy
∑N

j=1 |cj |2 = 1. Data
encoding in the format of Eq. (1) is crucial for all HHL-
based algorithms [5–8] and others [9,10]. We will call the
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state of Eq. (1) an “analog-encoded” state since data are
encoded into analog quantities, that is, complex amplitudes of
a quantum state. Here we define an analog-encoding unitary
transformation UA({cj }) by

UA({cj })|0〉 =
∑

j

cj |j 〉. (2)

Another approach is to encode m bits of binary data into
qubit strings. Let N and dj = {d (k)

j }mk=1 (d (k)
j = 0, 1, j =

1, . . . , N ) be the number of binary data provided and the data
bit strings. In this approach, data are encoded as follows:

1√
N

N∑
j=1

|j 〉|dj 〉 = 1√
N

N∑
j=1

|j 〉∣∣d (m)
j · · · d (1)

j

〉
. (3)

We will call this state a “digital-encoded” state. For example,
quantum algorithms for solving semidefinite programs (SDPs)
[11,12] depend on this encoding. Similarly to an analog-
encoding unitary transformation, we define a digital-encoding
unitary transformation by

UD ({d j })|j 〉|0〉 = |j 〉|dj 〉. (4)

UD is often called quantum random access memory (QRAM).
References [13,14] have provided a protocol which employs
qutrits to speed up a memory call to O(log2

2 N ) two-body
interaction gates. Their method is promising compared to a
conventional method that requires O(N ) operations. It might
be worth noting that in the context of QRAM, it is usually
assumed that we already have “memory cells” which store
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FIG. 1. (a) Schematic sketch of analog encoding and digital
encoding. QDAC and QADC mediate these two encodings. (b) A
brief flowchart of the HHL algorithm [4]. {|aj 〉} denote eigenvectors
of a Hermitian matrix A, each corresponding to eigenvalues {λj }. χj

are complex numbers such that
∑N

j=1 xj |j〉 = ∑N

j=1 χj |aj 〉.

data in the form accessible from a quantum computer. The
O(log2

2 N ) operations do not include the construction of them.
Many quantum algorithms sophisticatedly use these two

types of encodings. For example, in the HHL algorithm [4],
an analog-encoded state given by Eq. (1) is put through a
quantum phase estimation algorithm that digitally encode
eigenvalues {λj } of a matrix A, and then the inverse of
them is multiplied to the amplitudes by controlled rotations
[Fig. 1(b)]; in quantum Metropolis sampling [15], energy
eigenvalue {Ej } of a Hamiltonian is first digitally encoded
by the phase estimation and then the encoded energies are
transferred to amplitudes in the form of e−β(Ej −Ek ), again
using controlled rotations.

In this paper, we investigate the relation between these
two different encoding methods. Specifically, we concentrate
on conversions between these two encodings; can you go
from digital encoding to analog encoding [quantum digital-to-
analog conversion (QDAC)] or the other way around [quan-
tum analog-to-digital conversion (QADC)]? DAC and ADC
play important roles in classical information processing since
digitally stored data are easier to handle than analog data,
which physical systems generate and are driven by. QDAC
and QADC can be regarded as quantum analogs of them,
and therefore there is a possibility that they stimulate the
construction of more sophisticated quantum algorithms.

First, we formulate these problems. It is shown that QDAC
can be implemented probabilistically and QADC determinis-
tically. A special case of QDAC, in fact, has implicitly been
employed in existing algorithms such as HHL and quantum
Metropolis samplings. We unify those techniques and give a
generalized procedure. QDAC and QADC algorithms provide
an insight into what should be done in digital or analog encod-
ings. Also, as an application, we show that a QADC-QDAC

combined method can be utilized to perform almost arbitrary
nonlinear transformations of amplitudes of a quantum state.
This result can be utilized, for example, for a purpose of
constructing quantum machine-learning algorithms.

This paper is organized as follows. First, in Sec. II, we sum-
marize the algorithms we use as subroutines and define the
QADC and QDAC problem. In Sec. III, we review the QDAC
procedures that have implicitly been utilized in existing al-
gorithms. We also present the generalized QDAC procedure.
Then, in Sec. IV, we present an algorithm to perform QADC.
In Sec. V, we provide applications of QADC and show that
QADC combined with QDAC provides a way to perform a
nonlinear transformation of amplitudes of a quantum state.

II. PRELIMINARY

Here we summarize some useful results from existing
works along with definitions of terms. Throughout this paper,
N = 2n denotes the number of data.

Fact 1. Analog-encoding unitary [16,17]. For given
classical data {xj }Nj=1 ∈ RN such that

∑N
j=1 x2

j = 1, a
binary-tree-like classical data structure can be constructed
in time O(N log2

2 N ) on a classical computer. With
this structure, there exists a quantum algorithm that
constructs an analog-encoding unitary UA({xj }Nj=1) with
O[log2 Npoly(log2 log2 N )] single- and two-qubit gates.

We use the phase-estimation algorithm stated below as a
key ingredient of our QADC algorithm.

Fact 2. Phase estimation [18]. Let U be a unitary op-
erator acting on M-qubit Hilbert space with eigenstates
{|ψj 〉}2M

j=1 and corresponding eigenvalues {e2πiφj }2M

j=1, where
φj ∈ [0, 1). Let ε = 2−m for some positive integer m. There
exists a quantum algorithm, which consists of O(1/ε)
controlled-U calls and O[log2

2(1/ε)] single- and two-qubit

gates, that performs transformation
∑2M

j=1 aj |ψj 〉|0〉⊗m →
|ψPE〉 = ∑2M

j=1 aj |ψj 〉|φ̃j 〉, where φ̃j denotes a bit string

φ̃j
(1)

φ̃j
(2) · · · φ̃j

(m)
such that |∑m

k=1 φ̃
(k)
j 2−k − φj | � ε for all

j with state fidelity at least 1 − poly(ε).
We say that |ψ̃〉 has fidelity 1 − δ with |ψ〉 when

|〈ψ̃ |ψ〉| = 1 − δ. The phase-estimation algorithm can also be
viewed as a digital-encoding unitary transformation, where
the address is replaced by eigenstates of U .

Next we state a version of the amplitude-amplification
technique.

Fact 3. Amplitude amplification [19]. Suppose we have
a unitary operator U that acts on M-qubit Hilbert space as
U |0〉⊗M = α|ψ〉|0〉 + β|G〉|1〉, where |ψ〉, |G〉 are arbitrary
(M − 1)-qubit states. Then, the probability of getting |ψ〉|0〉
can be made close to unity by O(1/|α|) application of U .

We define QDAC as follows.
Definition 1. QDAC. Let {dj }Nj=1 be a set of real numbers in

[0,1), each of which is represented by dj = ∑m
k=1 d

(k)
j 2−k with

binary variables d
(k)
j ∈ {0, 1}. Let dj denote the m-bit string

d
(1)
j · · · d (m)

j . An m-bit QDAC operation transforms digital-

encoded state 1√
N

∑N
j=1 |j 〉|dj 〉 to C

∑N
j=1 dj |j 〉|0〉⊗m, where

C is a normalization constant.
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As for QADC, the amplitudes {cj }Nj=1 of a quantum state
are, in general, complex numbers. Therefore, we define three
versions of QADC, each corresponding to the analog-to-
digital conversion of the absolute value, the real part, and the
imaginary part of {cj }.

Definition 2. Absolute QADC. Let r̃j denote the m-bit string
r̃

(1)
j · · · r̃ (m)

j that best approximates |cj | by
∑m

k=1 r̃
(k)
j 2−k . An

m-bit absolute-QADC operation transforms analog-encoded
state

∑N
j=1 cj |j 〉|0〉⊗m to 1√

N

∑N
j=1 |j 〉|r̃j 〉.

Definition 3. Real QADC. Let x̃j denote the m-bit string
x̃

(1)
j · · · x̃ (m)

j that best approximates the real part of cj by∑m
k=1 x̃

(k)
j 2−k . An m-bit real-QADC operation transforms

analog-encoded state
∑N

j=1 cj |j 〉|0〉⊗m to 1√
N

∑N
j=1 |j 〉|x̃j 〉.

Definition 4. Imaginary QADC. Let ỹj denote the m-bit

string ỹ
(1)
j · · · ỹ (m)

j that best approximates the imaginary part

of cj by
∑m

k=1 ỹ
(k)
j 2−k . An m-bit imaginary-QADC oper-

ation transforms analog-encoded state
∑N

j=1 cj |j 〉|0〉⊗m to
1√
N

∑N
j=1 |j 〉| ỹj 〉.

We use quantum arithmetics as a subroutine, which is
stated as the following fact.

Fact 4. Quantum arithmetics [20]. Let a, b be m-bit
strings. There exists a quantum algorithm that performs
transformation |a〉|b〉 → |a〉|a + b〉 or |a〉|b〉 → |a〉|ab〉 with
O[poly(m)] single- and two-qubit gates.

Note that for accuracy defined as ε = 2−m, quantum arith-
metics scales as O{poly[log2(1/ε)]}. Furthermore, we assume
the following statement as a fact.

Fact 5. Some basic functions such as inverse, trigonomet-
ric functions, square root, and inverse trigonometric func-
tions can be calculated to accuracy ε, that is, we can per-
form a transformation |a〉|0〉 → |a〉| f̃ (a)〉 such that |f̃ (a) −
f (a)| � ε, where f (a) is the objective function, using
O{poly[log2(1/ε)]} quantum arithmetics.

A similar title is found in Ref. [21]. However, their
purpose was to map a continuous-space wave function
|ψ〉 = ∫

dxψ (x)|x〉 to a discrete-space wave function |ψd〉 =∑
j ψ (j/N )|j 〉. In the context of this paper, it can be viewed

as analog-to-analog conversion.

III. QDAC

It is actually straightforward to create an analog-encoded
state from a digital-encoded state just by adding an ancilla
qubit and performing a controlled rotation with the data
register. In fact, this QDAC procedure has implicitly used in
existing works. For example, HHL [4] has utilized the above
protocol to multiply the inverse of eigenvalues of a Hermitian
matrix A to an analog-encoded state vector. We state this
QDAC operation formally as a theorem below.

Theorem 1. QDAC with ancilla. There exists a quantum al-
gorithm that performs m-bit QDAC using O(poly(log2(1/ε)))
single- and two-qubit gates and one U

†
D , where ε = 2−m, with

probability
∑N

j=1 d2
j /N .

Proof. The procedure of the algorithm is as follows. As-
sume that we are provided with a digital-encoded state given
by Eq. (3).

(i) Compute ϕj = 2
π

cos−1 dj by quantum arithmetics,

1√
N

N∑
j=1

|j 〉|dj 〉|0〉⊗m → 1√
N

N∑
j=1

|j 〉|dj 〉|ϕj 〉, (5)

where ϕj denotes m-bit strings ϕ
(1)
j · · ·ϕ(m)

j such that ϕj =∑m
k=1 ϕ

(k)
j 2−k .

(ii) Adding an ancilla qubit |0〉a , perform a controlled
rotation Ry (πϕj ) = eiπϕj Y/2 on the ancilla,

1√
N

N∑
j=1

|j 〉|dj 〉|ϕj 〉|0〉a

→ 1√
N

N∑
j=1

|j 〉|dj 〉|ϕj 〉
(
dj |0〉a +

√
1 − d2

j |1〉a
)
. (6)

(iii) Measure the ancilla in the computational basis. With
probability

∑N
j=1 d2

j /N , we obtain

C

N∑
j=1

dj |j 〉|dj 〉|ϕj 〉|0〉a, (7)

where C =
√

1/(
∑N

j=1 d2
j ).

(iv) Uncompute ϕj [step (i)] and apply U
†
D . We now have

an analog-encoded state,

C

N∑
j=1

dj |j 〉. (8)

Now we analyze the complexity. On step (i), cos−1 dj

can be calculated with quantum arithmetics using
O{poly[log2(1/ε)]} gates by Fact 5. Step (ii) uses m =
log2(1/ε) controlled rotations. Therefore, the overall com-
plexity for steps (i), (ii), and (iv) is O{poly[log2(1/ε)]} and
one U

†
D . The success probability of step (iii) is

∑N
j=1 d2

j /N . �
The success probability of the above procedure can be

rewritten in terms of the mean μ and the variance v of
the data since 1

N

∑N
j=1 d2

j = v + μ2. Note that when v +
μ2 � 1 and the success probability is relatively small, the
amplitude-amplification technique can be utilized to shorten
the expected running time quadratically from O[1/(v + μ2)]
to O[1/

√
(v + μ2)].

When one modifies step (i) to give ϕj = cos−1[f (dj )], we
readily obtain the following.

Corollary 1. Generalized QDAC. There exists a
quantum algorithm that performs the transformation

1√
N

∑N
j=1 |j 〉|dj 〉 → C ′ ∑N

j=1 f̃ (dj )|j 〉|0〉 such that

|f̃ (dj ) − f (dj )| � ε, where f : [0, 1) → [0, 1) is a function
satisfying Fact 5, using O{poly[log2(1/ε)]} single- and two-
qubit gates, with probability

∑N
j=1 f̃ (dj )2/N = (NC ′)−1.
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H H 0 =
2

FIG. 2. Quantum circuit of the SWAP test [23].

If we choose f (x) = tanh(x), Corollary 1 provides an
alternative way to implement a sigmoid function other than
the one proposed in Ref. [22].

IV. QADC

First, we propose an absolute-QADC algorithm. Note that
the absolute QADC may easily be constructed with the real
QADC and the imaginary QADC presented as Theorems 3
and 4. However, we expect that the absolute-QADC algorithm
that we present here would provide you with some intuition in
the construction of the algorithm. We use the SWAP test [23],
which is a special case of the Hadamard test, to extract the ab-
solute value of amplitudes. The usual SWAP test, as described
in Fig. 2, measures an absolute value of an inner product
of arbitrary two states |ψ〉 and |ξ 〉 as p0, the probability of
getting |0〉 from an ancilla qubit. If we input |k〉, which is a
computational basis state, and an analog-encoded state to the
SWAP test, we can extract a data xk . The amplitude estimation
[19] of p0 can be utilized to encode the data digitally. An
important trick used in the algorithm presented below is that
this process can be parallelized.

Theorem 2. Absolute QADC. There exists an m-bit
absolute-QADC algorithm that runs using O(1/ε) controlled-
UA gates and O[(log2

2 N )/ε] single- and two-qubit gates with
output state fidelity 1 − O[poly(ε)], where ε = 2−m.

Proof. First we provide the algorithm. [See Fig. 3 for steps
(i)–(iv).]

(i) Prepare address qubits, 1√
N

∑N
k=1 |k〉ad.

(ii) Perform controlled-NOT from the address qubits to
initialized ancilla qubits, which will be referred as qubits A,
to get 1√

N

∑N
k=1 |k〉ad|k〉A.

(iii) Prepare the analog-encoded state in data qubits,∑
j cj |j 〉data.
(iv) Using another ancilla qubit (we will call it qubit B),

perform a SWAP test [23] without measurement between data

FIG. 3. Quantum circuit through steps (i) to (iv) of absolute
QADC in the main text.

FIG. 4. Definition of gate G in absolute QADC.

qubit and qubits A (Fig. 3). We have

∑
k

|k〉ad

2
√

N

⎡
⎣

⎛
⎝∑

j

cj |j 〉data|k〉A + |k〉data

∑
j

cj |j 〉A

⎞
⎠|0〉B

+
⎛
⎝∑

j

cj |j 〉data|k〉A − |k〉data

∑
j

cj |j 〉A

⎞
⎠|1〉B

⎤
⎦ (9)

≡ 1√
N

∑
k

|k〉ad|�k〉data,A,B. (10)

Figure 3 shows the quantum circuit from step (i) to step (iv).
We define V to be the combined unitary transformation of
steps (iii) and (iv). This step extracts an absolute value rk

of amplitude ck , each corresponding to an address |k〉ad. The
similar idea is also used in Ref. [24].

(v) Construct a gate,

G = V (CNOT)ad→AS0(CNOT)ad→AV †ZB, (11)

where S0 is a conditional phase-shift gate; S0 = I −
2(|0〉〈0|)data,A,B and ZB is a Pauli Z gate only acting on qubit
B (Fig. 4). The act of G can be written as

G
1√
N

∑
k

|k〉ad|�k〉data,A,B = 1√
N

∑
k

|k〉ad(Gk|�k〉data,A,B ),

(12)

where

Gk = V SkV
†ZB, (13)

and

Sk = I − 2(|0〉〈0|)data,B ⊗ (|k〉〈k|)A. (14)

Each |�k〉data,A,B is decomposed into two of eigenstates
|�k+〉data,A,B and |�k−〉data,A,B of Gk , with each, respectively,
corresponding to eigenvalue λk± = e±i2πθk , where sin(πθk ) =√

1
2 (1 + r2

k ) and θk ∈ [1/4, 1/2). The decomposition is
|�k〉data,A,B = −i√

2
(eiπθk |�k+〉data,A,B − e−iπθk |�k−〉data,A,B ).

See the Appendix for a detailed description.
(vi) Introducing the register qubits, run the phase estima-

tion of G as depicted in Fig. 5. Then we have

1√
2N

∑
k

|k〉ad(|θ k〉reg′ |�k+〉data,A,B

+ |1 − θ k〉reg′ |�k−〉data,A,B )

≡ 1√
N

∑
k

|k〉ad|�k,AE〉reg′,data,A,B, (15)
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FIG. 5. Step (vi) of the absolute-QADC algorithm. The phase
estimation is performed to encode the analog-encoded value xj into
qubit bit strings. IQFT: inverse quantum Fourier transformation [25].

where |θ k〉reg′ and |1 − θ k〉reg′ are m-bit strings that store θk

and 1 − θk as binary data, and

|�k,AE〉reg′,data,A,B

= 1√
2

(|θ k〉reg′ |�k+〉data,A,B + |1 − θ k〉reg′ |�k−〉data,A,B ).

(16)

(vii) On another register, using digital quantum arith-
metics, calculate rk =

√
2 sin2 πθk − 1. Note that sin πθk =

sin π (1 − θk ), and rk is uniquely recovered since rk ∈ [0, 1].
Then, finally, we get

1√
N

N∑
k=0

|k〉ad|r̃k〉reg|�k,AE〉reg′,data,A,B. (17)

(viii) Uncompute the data, A, B, and reg′ qubits. We obtain

1√
N

N∑
k=0

|k〉ad|r̃k〉reg|0〉reg′,data,A,B, (18)

which is a digital-encoded state.
Here we analyze the complexity of the above algorithm.

For steps (i) to (iv), we used O(log2 N ) single- and two-
qubit gates. In step (v), the phase estimation, we need to
use O(1/ε) of controlled-UA and O(log2

2 N/ε) of single-
and two-qubit gates. Step (vi), quantum arithmetics, takes
O{poly[log2(1/ε)]} by Fact 5. Therefore, the overall com-
plexity is O(1/ε) of controlled-UA and O(log2

2 N/ε) of
single- and two-qubit gates. The fidelity of the output state
is 1 − O[poly(ε)] by Fact 2. �

Next we show the real QADC.
Theorem 3. Real QADC. There exists an m-bit real-QADC

algorithm that runs using O(1/ε) controlled-UA gates and
O[(log2

2 N )/ε] single- and two-qubit gates with output state
fidelity 1 − O[poly(ε)], where ε = 2−m.

Proof. We provide the algorithm. [See Fig. 3 for steps (i)–
(iii).] The algorithm presented here is a slightly modified one
from the previous algorithm for QADC.

(i) Prepare address qubits, 1√
N

∑N
k=1 |k〉ad.

(ii) Prepare the analog-encoded state in data qubits,∑
j xj |j 〉data.

FIG. 6. A quantum circuit through steps (i) to (iii) of real QADC
in the main text.

(iii) Using another ancilla qubit (we will call it qubit B),
perform a Hadamard test as described in Fig. 6. We have

∑
k

|k〉ad

2
√

N

⎡
⎣

⎛
⎝∑

j

xj |j 〉data + |k〉
⎞
⎠|0〉B

+
⎛
⎝∑

j

xj |j 〉data − |k〉
⎞
⎠|1〉B

⎤
⎦ (19)

≡ 1√
N

∑
k

|k〉ad|�k〉data,B . (20)

This step extracts the real part xk of a complex amplitude ck ,
each corresponding to an address |k〉ad. Figure 6 shows the
quantum circuit from step (i) to (iii). We define W to be the
combined unitary transformation of steps (ii) and (iii).

(iv) Construct a gate,

G′ = WS ′
0W

†ZB, (21)

where S ′
0 is a conditional phase-shift gate; S ′

0 = I −
2(|0〉〈0|)data,B and ZB is a Pauli Z gate only acting on qubit B
(Fig. 4). The act of G′ can be written as

G′ 1√
N

∑
k

|k〉ad|�k〉data,B = 1√
N

∑
k

|k〉ad(G′
k|�k〉data,B ),

(22)

where

G′
k = (1 − 2|�k〉data,B〈�k|data,B )ZB. (23)

Each |�k〉data,B is decomposed into two eigenstates |�k+〉data,B
and |�k−〉data,B of Gk , with each, respectively, corresponding

to eigenvalue λk± = e±i2πθk , where sin(πθk ) =
√

1
2 (1 + xk )

and θk ∈ [1/4, 1/2). The decomposition is |�k〉data,B =
−i√

2
(eiπθk |�k+〉data,B − e−iπθk |�k−〉data,B ). The detail of this

transformation is similar to the one described in the Appendix
and is thus omitted.

(v) Introducing the register qubits, run the phase estimation
of G′. Then we have

1√
2N

∑
k

|k〉ad(|θ k〉reg′ |�k+〉data,B + |1 − θ k〉reg′ |�k−〉data,B )

≡ 1√
N

∑
k

|k〉ad|�k,AE〉reg′,data,B, (24)
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FIG. 7. A quantum circuit element for imaginary QADC. The
imaginary QADC can be performed by replacing W in the real
QADC by this circuit.

where |θ k〉reg′ and |1 − θ k〉reg′ are m-bit strings that store θk

and 1 − θk as binary data, and

|�k,AE〉reg′,data,B

= 1√
2

(|θ k〉reg′ |�k+〉data,B + |1 − θ k〉reg′ |�k−〉data,B ).

(25)

(vi) On another register, using digital quantum arithmetics,
calculate xk = 2 sin2 πθk − 1. Note that sin πθk = sin π (1 −
θk ). Then, finally, we get

1√
N

N∑
k=0

|k〉ad|x̃k〉reg|�k,AE〉reg′,data,B . (26)

(vii) Uncompute the data, A, B, and reg′ qubits. We obtain

1√
N

N∑
k=0

|k〉ad|x̃k〉reg|0〉reg′,data,B, (27)

which is a digital-encoded state.
The runtime of this algorithm is as same as the absolute

QADC. �
The imaginary QADC can be constructed in the same

manner as the real QADC. In this case, we replace the gate
W with the one described in Fig. 7. Therefore, we have the
following.

Theorem 4. Imaginary QADC. There exists an m-
bit imaginary-QADC algorithm that runs using O(1/ε)
controlled-UA gates and O[(log2

2 N )/ε] single- and two-
qubit gates with output state fidelity 1 − O[poly(ε)], where
ε = 2−m.

V. APPLICATIONS

A. Classical data loading

As stated in Sec. I, there are some algorithms, such as
quantum SDP solvers [11,12], that require an oracle which
encodes N classical data into a quantum state, given by
Eq. (3), in time O[poly(log2 N )].

QADC can be utilized for this purpose. Assume that
a binary-tree structure required in Fact 1 is already
constructed on the classical side. Combined with the
analog-encoding unitary UA of Fact 1, the m-bit digital-
encoded state 1√

N

∑N
j=1 |j 〉|dj 〉 can be prepared with

O[log2
2 Npoly(log2 log2 N )/ε] quantum gates.

Recently, another method for digital encoding was pro-
posed [26]. They proposed a protocol that directly encodes
binary classical data into qubits.

B. Nonlinear transformation of amplitude

The transformation performed on the probability ampli-
tudes cj of a quantum state

∑N
j=1 cj |j 〉, without measure-

ments, is always linear owing to the unitarity of the quantum
dynamics. Even with (projective) measurement, the transfor-
mation is restricted to the form of cj /C, where C is some
constant that is determined by the normalization condition.
Therefore, a transformation of the form f (cj ) with an arbi-
trary function f cannot be done without encoding them in
digital form using QADC. We state the fact that this form of
nonlinear transformation of amplitude can be performed using
QADC and QDAC as the following theorem.

Theorem 5. Let data {cj }Nj=1, analog-encoding unitary

UA({cj }Nj=1), and analog-encoded state
∑N

j=1 cj |j 〉 be given.
For any function f : C → [−1, 1] that satisfies Fact 5,
there exists a probabilistic quantum algorithm that performs
transformation

∑N
j=1 cj |j 〉 → C ′ ∑N

j=1 f̃ (cj )|j 〉, such that
|f̃ (cj ) − f (cj )| � ε, with O(1/ε) controlled-UA gates and
O[(log2

2 N )/ε] single- and two-qubit gates. The probability
of success is

∑N
j=1 f̃ (cj )2/N and the output state fidelity is

1 − O[poly(ε)].
Proof. By running the QADC algorithm from The-

orem 3 and Theorem 4 in parallel, we get a state
1√
N

∑N
j=1 |j 〉|x̃j 〉| ỹj 〉 using O(1/ε) controlled-UA gates and

O[(log2
2 N )/ε] single- and two-qubit gates with state fi-

delity 1 − O[poly(ε)]. Then, performing the modified QDAC
from Corollary 1, we get C ′ ∑N

j=1 f̃ (xj , yj )|j 〉|xj 〉| yj 〉 with
O{poly[log2(1/ε)]} single- and two-qubit gates and with
probability

∑N
j=1 f̃ (cj )2/N . Finally, application of inverse

QADC leaves us the desired state. �
The most useful application of this would be to deal with a

“quantum big data.” For example, using UA on two registers,
we can prepare

UA|0〉 ⊗ UA|0〉 =
∑
i,j

cicj |i〉|j 〉. (28)

UA is not restricted to the loading of classical data {cj }, but
can also be a time-evolution operator e−iH t , where H is some
Hamiltonian which can efficiently be simulated on a quantum
computer. Notice that the tensor product structure of quantum
mechanics has calculated the product ci, cj and the combined
system has N2 of amplitudes. This nonlinearity is employed
in quantum circuit learning [27] for machine-learning appli-
cation. The direct digital encoding of these N2 dimensional
data on a quantum state might be impractical since the calcu-
lation of the product {cicj }Ni,j=1 takes O(N2) time and space
classically. In comparison, the construction of the quantum
state given by Eq. (28) requires only O(N log2 N ) classical
and O[log2 Npoly(log2 log2 N )] quantum operations. Tensor
product structure is useful to introduce nonlinearity to the data
in the form of Eq. (28); however, it cannot be used to introduce
general and more complex transformations stated in the above
theorem.
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Applying QADC on this combined state yields a state∑
i,j

|i〉|j 〉|cicj 〉. (29)

Note that this transformation can also be performed in time
O[poly(log2 N )]. Then applying the nonlinear QDAC proce-
dure and the inverse of QADC, one gets∑

i,j

f (cicj )|i〉|j 〉|0〉, (30)

which has nonlinearly transformed probability amplitudes. A
further extension is discussed in the next section.

C. Quantum amplitude perceptron

When one chooses f (x) = tanh(x) or the ReLU function,
which are frequently used in neural networks, it can readily
mimic the perceptron, which is a building block of neural
networks. We denote such an activation function by σ (x). In a
neural network, a transformation of the form σ (w · x), where
w and x are a weight vector and a data vector, is utilized to
learn some task. The training of the network is done by tuning
the weight w to give some specific output. To mimic this,
first we apply a parametrized unitary transformation U (θ ),
which corresponds to the weight w, on an analog-encoded
state

∑N
i=1 xi |i〉, yielding a state

∑N
i=1

∑N
j=1 uij (θ )xj |i〉. Note

that the amplitude xi can be a resultant amplitude after the
tensor product multiplication described in the previous sec-
tion. Then, use the procedure of Theorem 5 with the activation
function σ , which produces,

C ′ ∑
i

σ

⎡
⎣∑

j

uij (θ )xj

⎤
⎦|i〉. (31)

The full tomography of this state would require use of an
exponential time, but if one is interested in the constant
number of perceptron outputs, performing a SWAP test [23]
with chosen basis {|k〉} is enough to extract them. The state
given by Eq. (31) can be further transformed by some unitary
gates to determine the readout weight of the output.

For machine learning, it is necessary to optimize the pa-
rameter θ . Although the gradient of the output with respect to
θ cannot be extracted due to the complex form of Eq. (31),
gradient-free methods can be utilized, just the same as men-
tioned in Ref. [22].

Finally, we note here that if one can somehow deter-
mine the value of

∑
i (σ {[∑j uij (θ )xj ]2})2, the amplitude-

amplification technique can be employed to make the QDAC
procedure deterministic. This would enable us to implement a
multilayer neural network on a quantum computer determin-
istically.

VI. CONCLUSION

We have formulated QDAC and QADC, and described
algorithms to implement them on quantum computers. Al-
though QDAC protocols have implicitly been utilized in ex-
isting algorithms, we have generalized it to facilitate complex
nonlinear functions. We have also presented an algorithm
that performs QADC. It was shown that a combination of

QADC and QDAC provides us with almost arbitrary nonlinear
transformations of amplitudes of a quantum state. The pos-
sible application of this nonlinear transformation is to make
a quantum amplitude perceptron, which can be employed
to construct more sophisticated quantum machine-learning
algorithms.
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APPENDIX: EIGENVALUES AND EIGENSTATES OF Gk

Here we calculate the eigenvalues and eigenstates of Gk

defined in Eq. (22). We consider Gk acting on the state

|�k〉data,A,B = V |0〉data|k〉A|0〉B

= 1

2

⎡
⎣

⎛
⎝∑

j

cj |j 〉data|k〉A + |k〉data

∑
j

cj |j 〉A

⎞
⎠|0〉B

+
⎛
⎝∑

j

cj |j 〉data|k〉A − |k〉data

∑
j

cj |j 〉A

⎞
⎠|1〉B

⎤
⎦.

(A1)

First, we define two normalized states,

|�k0〉 = 1

2αk

⎛
⎝∑

j

cj |j 〉data|k〉A + |k〉data

∑
j

cj |j 〉A

⎞
⎠|0〉B,

(A2)

|�k1〉 = 1

2βk

⎛
⎝∑

j

cj |j 〉data|k〉A − |k〉data

∑
j

cj |j 〉A

⎞
⎠|1〉B,

(A3)

where

αk =
√

1
2

(
1 + r2

k

)
, (A4)

βk =
√

1
2

(
1 − r2

k

)
. (A5)

We define θk ∈ [1/4, 1/2) by

sin πθk = αk. (A6)

Then, |�k〉data,A,B can be rewritten as

|�k〉data,A,B = αk|�k0〉 + βk|�k1〉. (A7)

We denote ZB , V SkV
†, and Gk acting on the sub-

space spanned by {|�k0〉, |�k1〉} as Z̃B , ˜V SkV †, and G̃k ,
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respectively. The first two can be written as

Z̃B = |�k0〉〈�k0| − |�k1〉〈�k1|, (A8)

˜V SkV † = (
1 − 2α2

k

)|�k0〉〈�k0| + (
1 − 2β2

k

)|�k1〉〈�k1|
− 2αkβk (|�k1〉〈�k0| + |�k0〉〈�k1|). (A9)

Therefore, G̃k is

G̃k = ˜V SkV †Z̃B

= (
1 − 2α2

k

)|�k0〉〈�k0| − (
1 − 2β2

k

)|�k1〉〈�k1|
− 2αkβk (|�k1〉〈�k0| − |�k0〉〈�k1|). (A10)

Two eigenvalues of G̃k are

λk± = e±i2πθk , (A11)

and eigenvectors |�k±〉 each corresponding to λk± are

|�k±〉 = 1√
2

(|�k0〉 ± i|�k1〉). (A12)

|�k〉 can be decomposed into |�k±〉 as

|�k〉 = −i√
2

(
eiπθk |�k+〉 − e−iπθk |�k−〉). (A13)
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