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Qubit-channel metrology with very noisy initial states
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We consider an arbitrary qubit channel depending on a single parameter, which is to be estimated by a physical
process. Using the quantum Fisher information per channel invocation to quantify the estimation accuracy, we
consider various estimation protocols when the available initial states are mixed with very low purity r . We
compare a protocol using a single channel invocation on one out of n qubits prepared in a particular correlated
input state to the optimal protocol using uncorrelated input states, with the same initial-state purity. We show that,
to lowest order in initial-state purity, for a unital channel this correlated-state protocol enhances the estimation
accuracy by a factor between n − 1 and n, provided that nr2 � 1. We also show that to lowest order in initial-
state purity, a broad class of nonunital channels yields no gain regardless of the input state.
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I. INTRODUCTION

Quantum parameter estimation, or metrology, considers
using physical quantum systems as measuring devices. Typ-
ically a system is prepared in a known state and is then
subjected to an evolution of a known type but which depends
on an unknown parameter that is to be estimated. The pa-
rameter must subsequently be inferred from measurements on
the system. Classical statistics and quantum physics constrain
the success of such procedures; combining these has led to a
quantum estimation framework [1–9].

This has been applied to various situations, including esti-
mation of parameters in phase-shifts channels [5], depolariz-
ing channels [10–12], Pauli channels [13,14], and amplitude
damping channels [15]. A key issue is whether using states
only available to quantum systems (such as entangled states)
enhances the estimation accuracy compared to that for “clas-
sical” repeat and average strategies using uncorrelated states.
Sometimes this is true.

Most studies focus on the absolute optimal situations,
which require pure initial states. However, in some situations
such as solution-state nuclear magnetic resonance (NMR),
pure states are unavailable and the issue becomes whether
advantages arise when correlating mixed or noisy states that
would otherwise be used in an uncorrelated estimation pro-
tocol. This has been addressed for the phase-shift [16–19],
phase-flip [20], and depolarizing channels [21]. These studies
considered the situation where all available qubits are initially
in mixed states and focused on the enhancement of estimation
accuracy in terms of the quantum Fisher information. So far
there is no general result for all single-qubit channels and for
all initial state purities; each study yielded a distinct algebraic
expression that appears difficult to interpret for a general
degree of purity in the initial states. However it was observed
that this simplifies considerably for the qubit phase-flip and
depolarizing channels [20,21] when the initial-state purity is
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very low and, for a particular protocol which uses correlated
states, the accuracy can be enhanced by a factor equal to the
number of qubits available.

The question that this article addresses is whether, for
any single-qubit channel, there exists a parameter estimation
protocol that uses correlated states and provides such accuracy
enhancements when the purity of the available initial states is
extremely low. While this is partly motivated by the answers
from previous studies of specific channels, a physical motiva-
tion comes from NMR, where the available purity of the states
is very low. A generic model for this could be an ensemble of
identical molecules each with the same number of spin-1/2
nuclei and a channel acting on the same nuclear spin in each
molecule. Would there be a parameter estimation advantage to
correlating the spins within each molecule prior to the channel
action?

We note that the situation where some qubits are initially in
pure states and others are in mixed states has been studied and
also shows advantages for estimation [22]; we do not consider
this case here.

This article is organized as follows. Section II reviews the
general description of qubit system evolution and describes
the basic notions of parameter estimation. Section III reviews
quantum estimation theory and adapts this to situations where
the available initial states are very noisy. Section IV applies
this to a single-qubit protocol, which serves as a baseline
for comparison with a multiple qubit correlated-state protocol
that is described in Sec. V. This contains the main results of
this article; these are summarized in Sec. VI.

II. SINGLE PARAMETER QUBIT-CHANNEL
METROLOGY

We consider general single-qubit quantum channels. Prior
to evolution, the channel input state for a single qubit can be
represented as

ρ̂i = 1
2

(
Î + rσ̂ri

)
, (1)
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where Î is the identity operator, ri is the input state Bloch-
sphere direction, a three-dimensional real unit vector, and
σ̂ri = ri · σ̂ = rixσ̂x + riyσ̂y + rizσ̂z (throughout this article
we use the notation σ̂a := a · σ̂ , where a is any real three-
dimensional vector). Here r , which satisfies 0 � r � 1, is
called the purity of the state and quantifies the mixedness
or noisiness of the state. Under the channel ρ̂i �→ ρ̂f and,
again generically, ρ̂f = (Î + σ̂rf )/2, where rf is the final state
Bloch-sphere direction with |rf| � 1. For any channel [23],

rf = M (rri ) + d = rMri + d, (2)

where M is a 3 × 3 real Bloch-sphere matrix d and a real
Bloch-sphere shift vector. In Appendix A we show that |d| �
1 and |d| = 1 is only possible when M = 0.

By linearity, the channel maps Î �→ Î + σ̂d and also σ̂ri �→
Mri · σ̂ .

Qubit channels for which d = 0 are called unital; these
map Î �→ Î . Examples are unitary channels, Pauli channels,
and the depolarizing channel. Nonunital channels, for which
d �= 0, include the amplitude damping channel.

We consider channels which depend, via only M and d,

on a single parameter λ, which is independent of the channel
input state. The task will be to estimate the parameter by a
physical process in which one or more qubits, prepared in
known input states, undergo evolution via one or more identi-
cal copies of the channel. The channel actions are followed by
measurements, whose outcomes are used to infer the param-
eter. The goal will be to choose input states, measurements,
and statistical inference processes that minimize fluctuations
in the estimates they generate; we assume that the key cost of
such procedures is the number of channel invocations.

III. ENTANGLEMENT-ASSISTED METROLOGY
WITH NOISY INITIAL STATES

A standard formalism for assessing physical quantum esti-
mation uses the density operator ρ̂f (λ) for the (possibly mul-
tiple qubit) entire system immediately after the final channel
invocation. The estimate λest is inferred from measurement
outcomes via a known estimator function. We will require
that this estimator is unbiased, i.e., the mean of the esti-
mates equals the true parameter value. Then the classical
Cramér-Rao bound (CRB) bounds the variance in the estimate
via var (λest ) := 〈(λest − 〈λest〉)2〉 � 1/F (λ) regardless of the
choice of estimator [6,24] (the angle brackets indicating the
mean over all possible measurement outcomes). The classical
Fisher information

F (λ):=
∫ [

∂ ln p(x1, x2 . . . |λ)

∂λ

]2

p(x1, x2 . . . |λ) dx1dx2 . . . ,

(3)
is determined from the probability distribution
p(x1, x2, . . . , |λ) for the process measurement outcomes,
x1, x2, . . .. There is always an estimator which asymptotically
attains the lower bound [24].

In quantum estimation the choice of measurement affects
the probability distribution used to compute the classical
Fisher information. However, a further constraint is given
by the quantum Cramér-Rao bound (QCRB) F (λ) � H (λ),

where the quantum Fisher information (QFI) is

H (λ) = Tr [ρ̂f (λ)L̂2(λ)], (4)

and L̂(λ) is the symmetric logarithmic derivative (SLD) de-
fined via

∂ρ̂f (λ)

∂λ
= 1

2
[L̂(λ)ρ̂f (λ) + ρ̂f (λ)L̂(λ)]. (5)

The SLD and the QFI only depend on the premeasurement
system state and thus var (λest ) � 1/H (λ) offers a bound
that is independent of both the choice of measurement and
estimator [3,6,25–27].

The SLD can always be computed from a diagonal decom-
position ρ̂f (λ) = ∑

j pj (λ)|φj (λ)〉〈φj (λ)|, via [6,9]

L̂(λ) = 2
∑
j,k

〈φj | ˆ̇ρf |φk〉
pj + pk

|φj 〉〈φj |, (6)

where the dot indicates differentiation with respect to the
parameter. In some cases there are simpler algebraic methods
for computing the SLD [20]. Also, simple matrix algebra and
Eqs. (4) and (5) give

H (λ) = Tr

[
∂ρ̂f (λ)

∂λ
L̂(λ)

]
. (7)

It is always possible to saturate the QCRB by choosing a
projective measurement in the eigenbasis of the SLD but it
cannot be assured that this choice is independent of the un-
known parameter [6,26,28]. In such cases, there exist various
other measurement schemes that asymptotically saturate the
QCRB [29].

Thus the QFI quantifies the accuracy of possible physical
measurement procedures. Generally the task in any quantum
parameter estimation study has been to engineer a final sys-
tem state that maximizes the QFI, subject to various system
constraints and resources (i.e., number of channel invocations,
number of available systems, types of initial states available,
etc.) [3–6,8–10,12–15,17,18,20,21,25,30–34]. We will adopt
the common approach in which the only costly resource is the
number of channel invocations. We therefore aim to evaluate
estimation protocols via the QFI per channel invocation.

A protocol that uses multiple copies of the channel might
enhance the QFI. Indeed, an independent channel invocation
protocol which invokes the channel once on each of the m

systems prepared independently in the same input state, as
illustrated in Fig. 1(a), gives exactly an m-fold increase in the
QFI [25]. Here the QFI per channel invocation is the same as
a procedure in which the channel is invoked once on a single
system.

In contrast, entanglement-assisted metrology considers
protocols, illustrated in Fig. 1(b), where the available quantum
systems are prepared in an entangled or otherwise correlated
state and thereafter the channel is invoked on a subset of these
while the remaining ancillary systems function as spectators
in a noiseless environment. Such entanglement assistance can
enhance the QFI per channel invocation (versus uncorrelated
or independent protocols) [9,34–37]. A key issue in quantum
metrology is to establish when and to what extent entangle-
ment assisted protocols can assist parameter estimation.
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FIG. 1. Two quantum metrology protocols. (a) A classical in-
dependent channel invocation protocol in which the channel �̂(λ)
is invoked on m systems each in the same input state ρ̂0. (b)
An entanglement-assisted protocol using n systems, prepared in an
entangled or correlated state via a multisystem preparatory unitary
Ûprep and with the channel invoked once on each of m of these. The
lower n − m systems serve as ancillas.

We address this for parameter estimation for single-qubit
channels subject to the following considerations. First, we
assume that a fixed finite number of qubits n is available
and each is initially in the same initial state; generically
this can be expressed as ρ̂0 = (Î + rσ̂r0 )/2, where r0 is the
initial-state Bloch-sphere direction unit vector and r is the
purity. Second, we will assume that the purity is very small.
Specifically, as will be shown later, our analysis is valid
when r � 1/

√
n. Third, we assume that a single parameter-

independent preparatory unitary Ûprep is applied to the entire
system of qubits. This produces a channel input state ρ̂i :=
Ûprepρ̂

⊗n
0 Û

†
prep, where ρ̂⊗n

0 is the initial state for the system
of all n qubits. Fourth, we assume that after the preparatory
unitary the channel �̂(λ) is invoked once on a single qubit,
mapping the channel input state to a final premeasurement

state via ρ̂i
�̂(λ)�→ ρ̂f (λ). The entire process is illustrated in

Fig. 2(b). We term this a correlated-state protocol since for
low enough purity the states may be separable and the pres-
ence of entanglement is not assured (for details of separability
in previously studied specific cases see [20,21]).

We will compare such a correlated-state protocol to one in
which there is only a single qubit available and the channel
is invoked once, as illustrated in Fig. 2(a); we call the the
latter the single-qubit, single-channel (SQSC) protocol. This
yields the same QFI per channel invocation as an independent-
channel protocol and thus in terms of the QFI per channel
invocation, we are effectively comparing a correlated-state
protocol to an independent-channel protocol. Therefore we

ρ̂0 Γ̂

(a) (b) ρ̂0

ρ̂0

ρ̂0

Ûprep

Γ̂

FIG. 2. Single channel qubit metrology protocols. (a) The SQSC
protocol with a single channel invocation on a single qubit. (b)
An entanglement-assisted protocol using n qubits with the channel
invoked once on one of them.

ask whether, for given initial-state purity, there is an entan-
gling preparatory unitary so that the correlated-state protocol
of Fig. 2(b) yields a QFI exceeding than that of any SQSC
protocol, for the same initial-state purity, and, to lowest
nontrivial order in the initial-state purity, what gains such an
correlated-state protocol provides.

One physical motivation for this would be estimation of pa-
rameters associated with the evolution of single spins in room-
temperature, solution-state NMR. Each molecule contains n

distinct nuclear spins; intermolecular interactions average to
zero and can be ignored. The entire ensemble only serves
to amplify measurement signals and provide representative
sampling of measurement outcomes. Therefore preparatory
unitaries, channel actions, and measurements may be regarded
as restricted to within individual molecules. Typically [23]
r ≈ 10−4 and thus our analysis applies whenever the number
of nuclear spins within one molecule would be much less than
108. Most current room-temperature solution-state NMR lies
well within this realm.

Ultimately it may be of interest to compare correlated-state
protocols in which the channel is invoked more than once.
However, it is known that for the particular cases of the phase-
flip [20] and depolarizing channels [21] such correlated-state
protocols do not yield advantages for all parameter values
when there are two or more channel invocations. On the other
hand, when there is only one channel invocation, these pro-
tocols definitely are advantageous over all parameter values
for the phase-flip channel [20] and are probably so for the
depolarizing channel [21]. Thus, we only consider the situa-
tion where the channel is invoked once and assess whether the
remaining ancillary qubits assist in the parameter estimation.

Sometimes low purity situations can be assessed using ex-
pressions for the QFI that are valid for all purities [18,20,21].
Such exact expressions do not appear to be available for all
channels and protocols. We will present a series approach
for computing the QFI that is correct to the lowest nontrivial
orders in the purity.

Before doing this, we consider what the framework by
Escher et al. [32] for noisy quantum metrology describes
for this situation. The Escher framework considers a system
in an initial pure state ρ̂0. The channel plus noise acts on
this to produce a final premeasurement state, which can
be expressed [23] using a set of Kraus operators {�̂l} as
ρ̂f (λ) = ∑

l �̂l (λ)ρ̂0�̂
†
l (λ). Then the QFI is bounded [32]

according to

H � 4{Tr (Ĥ1ρ̂0) − [Tr (Ĥ2ρ̂0)]2}, (8)

where Ĥ1 := ∑
l

∂�̂
†
l

∂λ

∂�̂l

∂λ
and Ĥ2 := i

∑
l

∂�̂
†
l

∂λ
�̂l . For any

given channel plus noise there are multiple Kraus representa-
tions and that which minimizes the right-hand side of Eq. (8)
exactly yields the QFI [32]. The Escher framework does not
give an explicit method for finding the optimal Kraus repre-
sentation. Sometimes careful choices of Kraus operators yield
useful bounds on the QFI [32]. This framework can address
single-qubit channel parameter estimation with noisy initial
states by regarding the input state for each qubit as produced
from a pure state via a depolarizing channel. This gives Kraus
operators that combine the channel and initial depolariza-
tion Kraus operators and these can be used to compute the
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right-hand side of Eq. (8). As shown in Appendix B, applying
this to the example of a phase-flip channel acting on a single
qubit gives a bound that is in excess of the known QFI for this
channel acting on a noisy input state; in fact the bound does
not even refer to the initial-state purity. This is a consequence
of the choice of Kraus representation and there must clearly be
a more restrictive choice, but what that is is not apparent and
therefore the Escher framework is not immediately instructive
in cases where the noise appears in initial states.

A. Series computation of the QFI

If the initial-state purity is sufficiently low then we can ap-
proximate the QFI to lowest order in the purity by expressing
the QFI and its constituent ingredients as series in increasing
powers of the purity; this circumvents difficulties associated
with exact computation of the SLD.

To do so, the initial state can be expressed as

ρ̂⊗n
0 =

n∑
j=0

rj ρ̂
(j )
0 , (9)

where ρ̂
(j )
0 is an operator independent of the purity. The

preparatory unitary maps this to the input state ρ̂i :=
Ûprepρ̂

⊗n
0 Û

†
prep, and thus

ρ̂i =
n∑

j=0

rj ρ̂
(j )
i , (10)

where ρ̂
(j )
i = Û

†
prepρ̂

(j )
0 Ûprep is again independent of r .

Similarly the final state can be expressed as

ρ̂f (λ) =
n∑

j=0

rj ρ̂
(j )
f (λ), (11)

where ρ̂
(j )
f (λ) is completely determined by evaluating the

channel actions on ρ̂
(j )
i .

Given that the state for each qubit is ρ̂0 = (Î + rσ̂r0 )/2,
two lowest order initial-state terms for the n qubit system are

ρ̂
(0)
0 = 1

N
Î⊗n, (12a)

ρ̂
(1)
0 = 1

N

[
σ̂r0 ⊗ Î⊗(n−1) + Î ⊗ σ̂r0 ⊗ Î⊗(n−2)

+ · · · + Î⊗(n−1) ⊗ σ̂r0

]
, (12b)

where N = 2n. For any preparatory unitary ρ̂
(0)
i = Î⊗n/N

since ÛprepÎ Û
†
prep = Î . Higher order terms in ρ̂i depend on the

preparatory unitary. There are no simple general expressions
for the lowest order terms in the final state as certain channels,
such as the amplitude damping channel map the identity in a
nontrivial way.

Similarly the SLD and QFI can be expressed as power
series, possibly with infinitely many terms, in r . Thus

L̂(λ) =
∞∑

j=0

rj L̂(j )(λ), (13)

where L̂(j )(λ) is an operator independent of r , and

H =
∞∑

j=0

rj H (j ), (14)

where H (j ) is independent of r . The operators L̂(j )(λ) can be
evaluated by substituting from Eqs. (11) and (13) into Eq. (5).
The result must be true for all values of r and comparing terms
order by order gives

∂ρ̂
(k)
f

∂λ
= 1

2

k∑
j=0

(
L̂(k−j )ρ̂

(j )
f + ρ̂

(j )
f L̂(k−j )). (15)

Similarly substituting from Eqs. (11) and (13) into Eq. (7)
gives

H (j ) =
j∑

k=0

Tr

[
∂ρ̂

(j−k)
f

∂λ
L̂(k)

]
. (16)

This allows for an iterative calculation of the QFI in increasing
orders of the purity parameter; for sufficiently low purities, the
QFI can be approximated by truncation.

It is also useful to determine series expressions for the
eigenstates of the SLD in order to assess possible measure-
ments that saturate the quantum CRB. Denote the normalized
eigenstate of the SLD by |φ〉 and the associated eigenvalue by
μ. Again these can be expanded as power series in r , giving

|φ〉 =
∞∑

j=0

rj |φ(j )〉 (17)

and

μ =
∞∑

j=0

rjμ(j ). (18)

The normalization condition 〈φ|φ〉 = 1 must hold for all r and
implies that 〈φ(0)|φ(0)〉 = 1. Then order-by-order comparison
of terms in L̂|φ〉 = μ|φ〉 gives, for each k = 0, 1, . . . ,

k∑
j=0

L̂(k−j )|φ(j )〉 =
k∑

j=0

μ(k−j )|φ(j )〉. (19)

This yields an iterative scheme for determining the eigenstates
of the SLD and hence one possible projective measurement
which saturates the quantum CRB.

B. Unital channels

A unital channel maps Î
�→ Î and here ρ̂

(0)
f = Î⊗n/N .

Repeatedly using Eq. (15) results in

L̂(0) = 0, (20a)

L̂(1) = N
∂ρ̂

(1)
f

∂λ
. (20b)

Thus, for unital channels, Eq. (16) yields

H (0) = 0, (21a)

H (1) = 0, (21b)

H (2) = N Tr

⎡
⎣(

∂ρ̂
(1)
f

∂λ

)2
⎤
⎦. (21c)
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This immediately establishes the result, found earlier
[18,20,21] for the qubit phase-shift, phase-flip, and depolar-
izing channels, that the lowest order terms for the QFI are
second order in the purity, provided that the preparation step
consists of unitary operations only.

Additionally Eq. (19) allows for computation of the eigen-
states of the SLD via

L̂(0)|φ(0)〉 = μ(0)|φ(0)〉, (22a)

L̂(1)|φ(0)〉 + L̂(0)|φ(1)〉 = μ(0)|φ(1)〉 + μ(1)|φ(0)〉. (22b)

Since |φ(0)〉 �= 0, but L̂(0) = 0, the first gives μ(0) = 0,
leaving

L̂(1)|φ(0)〉 = μ(1)|φ(0)〉 = ∂ρ̂
(1)
f

∂λ
|φ(0)〉. (23)

Thus, to lowest order in the purity, a measurement that suffices
to saturate the quantum CRB is one which is done in the

eigenbasis of ∂ρ̂
(1)
f

∂λ
.

IV. SINGLE-QUBIT, SINGLE-CHANNEL PROTOCOLS

A baseline against which to compare any metrology proto-
col is the SQSC protocol illustrated in Fig. 2(a). The analysis
depends on whether the channel is unital or not and the results
will be described in terms of the Bloch-sphere mapping of
Eq. (2).

A. SQSC protocols for unital channels

For a single-qubit unital channel ρ̂
(1)
i := σ̂r0/2, giving

ρ̂
(1)
f = (Mr0) · σ̂/2. This and Eqs. (20) and (21) imply that,

to lowest order in the purity,

H = r2 r�
0 Ṁ�Ṁr0, (24)

where the dot indicates the derivative with respect to the
parameter. This forms a general result for SQSC protocols for
unital channels.

Further analysis, all to lowest order only in the purity, uses
the singular value decomposition for real matrices. Here Ṁ =
ASB, where A and B are each orthogonal 3 × 3 matrices and
S = s1P1 + s2P2 + s3P3 is a diagonal matrix with positive
entries arranged so that s1 � s2 � s3; here {Pi} are projectors
onto each of the three orthogonal directions associated with
unit vectors {ê1, ê2, ê3}. The orthogonality of A and projective
nature of Pi implies that

H = r2
3∑

i=1

s2
i r�

0 B�PiBr0. (25)

Now r�
0 B�PiBr0 � 0 and

∑3
i=1 r�

0 B�PiBr0 = 1 implies
that the optimal lowest order SQSC protocol QFI is

Hs opt = r2 s2
1 . (26)

This is attained with r0 = B�ê1, where ê1 is the unit vector
associated with the maximum singular value in S. Note that,
depending on the singular value decomposition, this might
depend on the parameter to be estimated.

One measurement which can saturate the quantum CRB
bound is a projective measurement onto the eigenbasis of

∂ρ̂
(1)
f

∂λ
. Here, for the optimal choice of input state, ∂ρ̂

(1)
f

∂λ
=

(ṀB�ê1) · σ̂/2 = (ASê1) · σ̂/2 and the resulting projective
measurement operators are

�̂± := 1
2 [Î ± (Aê1) · σ̂ ]. (27)

Whenever the direction of Aê1 depends on the parameter,
these projectors will also depend on the parameter to be
estimated and adaptive measurement schemes [29] must be
invoked to attain the QFI. But if the direction of Aê1 is
independent of the parameter, then the method described here
will yield a parameter-independent saturating measurement.

To summarize, with a unital channel subject to the SQSC
protocol, the optimal QFI to lowest order in the purity is
determined by finding the Bloch-sphere matrix M that repre-
sents the channel action and determining the singular value
decomposition Ṁ = ASB. The optimal QFI depends only
on the maximal singular value s1 and the protocol which
attains this is to prepare the input state along the Bloch-sphere
direction B�ê1, where ê1 is the direction associated with the
maximal singular value in S, and then subject the qubit to
the channel. One measurement that saturates the QCRB is a
projection onto the Bloch-sphere direction Aê1.

Example: Unitary phase shift. The unitary phase shift
about the z axis through angle λ is represented by ρ̂i �→ ρ̂f =
U †ρ̂iU , where U := e−iλσ̂z/2. In the basis {x̂, ŷ, ẑ},

M =

⎛
⎜⎝

cos λ − sin λ 0

sin λ cos λ 0

0 0 1

⎞
⎟⎠. (28)

Then

Ṁ =

⎛
⎜⎝

− sin λ − cos λ 0

cos λ − sin λ 0

0 0 0

⎞
⎟⎠, (29)

which gives S = diag (1, 1, 0) with various possibilities for
A and B. The vector associated with the maximal singular
value is any unit vector in the the xy plane. This gives an
optimal lowest order QFI of Hs opt = r2. The optimal QFI is
attained using a state with Bloch-sphere input direction in the
xy plane, for example B�x̂. The saturating measurement of
Eq. (27) is a projective measurement along the direction Ax̂.
It is not possible that both the choice of initial Bloch-sphere
direction and measurement direction can both be independent
of the parameter; this is consistent with exact calculations.

Example: Phase-flip channel. The phase-flip channel maps
ρ̂i �→ ρ̂f = (1 − λ)ρ̂i + λσ̂zρ̂iσ̂z. In the basis {x̂, ŷ, ẑ}, M =
diag (1 − 2λ, 1 − 2λ, 1) and Ṁ = diag (−2,−2, 0) so that
S = diag (2, 2, 0) with A = diag (−1,−1, 0) and B = I as
one possibility. This gives an optimal lowest order QFI is
Hs opt = 4r2, attained when the initial-state Bloch-sphere di-
rection is in the xy plane. This agrees with approximations
from the exact QFI [20]. The saturating measurement of
Eq. (27) is a projection along the direction r0 and is parameter
independent.

Example: Depolarizing channel. The depolarizing chan-
nel maps ρ̂i �→ ρ̂f = (1 − λ) Tr [ρ̂i]Î + λρ̂i and M = λI with
Ṁ = I. This indicates that the optimal lowest order QFI is
Hs opt = r2 and this is attained regardless of the choice of
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initial-state vector. This is consistent with approximations for
exact the QFI [21]. Again a saturating measurement from the
SLD is parameter independent.

B. SQSC protocols for nonunital channels

For the more general nonunital channel acting on a single-

qubit Î
�→ Î + σ̂d and thus

ρ̂
(0)
f = 1

2 (Î + σ̂d). (30)

The resulting analysis, again all to lowest order in the purity,
depends on whether d is parameter dependent. In Appendix C
we show that if d is parameter dependent, then the zeroth order
term in the QFI is generally nonzero and is

Hs opt =
⎧⎨
⎩ḋ · ḋ + 1

4(1 − d2)

[
∂d2

∂λ

]2

if d �= 1,

ḋ · ḋ if d = 1.

(31)

Here d := |d|. If d is parameter dependent then this is the
optimal lowest order QFI for nonunital SQSC protocols. A
key feature of such channels is that to lowest order in the
purity, the QFI is independent of r and this could be attained
by an input state with zero purity. A sufficient measurement
that would attain this is a projective measurement onto the
eigenbasis of the lowest order score operator L̂(0) and is thus
a measurement along the Bloch-sphere direction determined
by ḋ (if d = 1) or ḋ + ∂ ln (1−d2 )

∂λ
d (if d �= 1).

On the other hand, if d is parameter independent then
this will yield zero. Again as shown in Appendix C, if d is
independent of the parameter then the lowest order term in
the QFI is

H = r2 r�
0

[
Ṁ�Ṁ + d2

1 − d2
Ṁ�Pd̂Ṁ

]
r0, (32)

where Pd̂ is the projector onto the direction d̂. Note that if
d = 1 then M = 0 and there is no parameter dependence to
the channel at all. We can ignore this case. The entire operator
within braces is positive and a singular value decomposition
of this will eventually yield the optimal lowest order QFI
and initial Bloch-sphere direction. Note that, comparing with
Eq. (24), this indicates that channels with nonzero constant
Bloch-sphere shift vector will typically enhance the estima-
tion accuracy of the channel corresponding to the Bloch-
sphere matrix M alone by effectively increasing the purity of
the state.

Example: Generalized amplitude damping The generalized
amplitude damping channel maps ρ̂i �→ ρ̂f = ∑4

i=1 E
†
i ρ̂iEi ,

where

E1 = √
p

(
1 0
0

√
1 − λ

)
,

E2 = √
p

(
0

√
λ

0 0

)
,

E3 =
√

1 − p

(√
1 − λ 0
0 1

)
,

E4 =
√

1 − p

(
0 0√
λ 0

)
, (33)

with 0 � p � 1.

c

c

Ûc

c

c

Ûc

c

c

c

c

c

c

FIG. 3. The preparatory unitary for a general symmetric pairwise
correlated scheme considered in this article. The symbols within
the blue dashed frame represent a single iteration of Ûc; the boxes
indicate the two qubits on which the gate acts.

Then [23] M = diag (
√

1 − λ,
√

1 − λ, 1 − λ) and d =
λ(2p − 1)ẑ. This yields Hs opt = 1/[1 − λ2(2p − 1)2]. The
optimal measurement that saturates the quantum CRB bound
is a projective measurement along ẑ.

Compiling these results gives in a complete characteriza-
tion of the lowest order QFI terms for SQSC protocols for all
channels: Eq. (26) for unital channels, Eq. (31) for nonuni-
tal channels with a parameter-dependent Bloch-sphere shift
vector, and Eq. (32) for nonunital channels with a parameter-
independent shift.

V. SYMMETRIC PAIRWISE CORRELATED PROTOCOLS

The central question is whether there is an entanglement-
assisted protocol which can yield a larger QFI per channel
invocation than the optimal SQSC protocol with the same
purity. Previous results for parameter estimation for the phase-
shift, phase-flip, and depolarizing channel showed that this
is possible for a particular correlating preparatory unitary
[18,20,21]. We consider a generalization of this for any qubit
channel.

Specifically, we consider a protocol where the preparatory
unitary is constructed from the two-qubit unitary

Ûc := 1
2 (Î ⊗ Î + Î ⊗ σ̂c + σ̂c ⊗ Î − σ̂c ⊗ σ̂c ), (34)

where c is a unit vector, which determines the Bloch-sphere
control direction of this gate. The preparatory unitary is
defined to consist of a product of such unitaries, one for
each distinct pair of qubits, as illustrated in Fig. 3. This is
symmetrical under interchange of qubits and only involves
pairwise correlating unitaries; we term it a symmetric pairwise
correlated protocol. If c = ẑ this is the controlled-Z gate
used along with other single-qubit Hadamard gates in the
correlated-state protocols studied previously [20,21].

Aside from demonstrating gains in the past, protocols of
this type are interesting because the number of basic two-qubit
gates scales quadratically in the total number of qubits and
in many physical settings these gates are relatively easily
constructed. For example, in solution-state NMR implemen-
tations of quantum information processing they have been
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implemented experimentally since the outset of that field
[38–40].

Under this preparatory unitary, the two lowest order terms
in the input state to the channels are ρ̂

(0)
i = Î⊗n/N and ρ̂

(1)
i =

Ûprepρ̂
(1)
0 Û

†
prep; these will be sufficient for determining the

lowest order terms in the QFI. In Appendix D we show that

ρ̂
(1)
i = 1

N

(
σ̂r0 ⊗ σ̂⊗(n−1)

c + · · · + σ̂⊗(n−1)
c ⊗ σ̂r0

)
+ r0 · c

N
(σ̂c ⊗ Î⊗(n−1) + · · · + Î⊗(n−1) ⊗ σ̂c )

− n r0 · c
N

σ̂⊗n
c . (35)

Note that within the first parentheses, there are n different
terms, each containing a single factor of σ̂r0 . Similarly within
the second parentheses there are also n different terms, each
containing a single factor of σ̂c.

We assume that the channel is invoked once on a single
qubit. Again the analysis depends on whether the channel is
unital or not.

A. Symmetric pairwise correlated protocol for
unital channels with a single invocation

Assume that a unital channel acts once on the leftmost
qubit in the tensor product representation. Then the terms in
the first order term in the input state of Eq. (35) are mapped
by the channel as

σ̂r0 ⊗ σ̂⊗(n−1)
c �→ (Mr0) · σ̂ ⊗ σ̂⊗(n−1)

c ,

σ̂c ⊗ σ̂r0 ⊗ σ̂⊗(n−2)
c �→ (Mc) · σ̂ ⊗ σ̂r0 ⊗ σ̂⊗(n−2)

c ,

σ̂c ⊗ Î⊗(n−1) �→ (Mc) · σ̂ ⊗ Î⊗(n−1),

Î ⊗ σ̂c ⊗ Î⊗(n−2) �→ Î ⊗ σ̂c ⊗ Î⊗(n−2),

σ̂⊗(n)
c �→ (Mc) · σ̂ ⊗ σ̂⊗(n−1)

c , (36)

where M is the channel Bloch-sphere matrix. Thus

ˆ̇ρ (1)
f = 1

N

[
(Ṁr0) · σ̂ ⊗ σ̂⊗(n−1)

c

+ (Ṁc) · σ̂ ⊗ σ̂r0 ⊗ σ̂⊗(n−2)
c

+ · · · + (Ṁc) · σ̂ ⊗ σ̂⊗(n−2)
c ⊗ σ̂r0

]
+ r0 · c

N
(Ṁc) · σ̂ ⊗ Î⊗(n−1)

− nr0 · c
N

(Ṁc) · σ̂ ⊗ σ̂⊗(n−1)
c . (37)

This yields our main result (see Appendix E for a proof) for
unital channels: if the channel is invoked once on a single
qubit when the symmetric pairwise correlated protocol is used
then to the lowest order in the purity (remaining analysis is all
to lowest order)

H = r2r�
0 [(I − Pc )Ṁ�Ṁ (I − Pc ) + (2 − n)PcṀ

�ṀPc]r0

+ r2(n − 1)c�Ṁ�Ṁc, (38)

where I is the 3 × 3 identity matrix and Pc is the projector
onto the control direction vector c.

For a given channel there remains the task of choosing the
control direction vector and initial-state Bloch-sphere vector

so as to maximize the QFI of Eq. (38). The details depend on
the channel, but whenever a unital channel is invoked once it
is possible to bound the lowest nonzero term in the QFI. As
shown in Appendix F,

nr2s2
1 − r2s2

1

(
1 − s2

2

s2
1

)
� H � nr2s2

1 , (39)

where s1 � s2 � s3 � 0 are the singular values of Ṁ. The
upper bound can only be saturated when r0 and c are perpen-
dicular. The lower bound is attained for a particular choice of
perpendicular r0 and c (see Appendix F for details).

Equations (26) and (39) allow for comparison of the sym-
metric pairwise correlated protocol against the SQSC protocol
to lowest order for unital channels. Here[

n −
(

1 − s2
2

s2
1

)]
Hs opt � Hcorr opt � nHs opt, (40)

where Hcorr opt is the optimal QFI for the correlated protocol
over all choices of c and r0. Thus

n −
(

1 − s2
2

s2
1

)
� Hcorr opt

Hs opt
� n. (41)

Since s2 � s1 this means that for large n and to lowest order in
the purity, the symmetric pairwise correlated protocol roughly
gives an n-fold gain over the SQSC protocol for any unital
channel.

Sometimes a precise statement about the optimal QFI for
this correlated-state protocol can be made. If s1 = s2, as is
true for several commonly considered channels, the the two
bounds of Eq. (39) are identical and Hcorr opt = nHs opt. As
another example, if s2 = s3 = 0, the analysis of Appendix G
shows that Hcorr opt = (n − 1)Hs opt and this is attained when
c and r0 are perpendicular.

The realm of applicability of the bounds of Eqs. (39) and
(41) can be assessed via higher order terms in the QFI. In
Appendix H we show that if r0 and c are perpendicular, then
H (3) = 0 and that generally H (4) is of order n2. Thus the
fourth order contribution to the QFI scales as n2r4. Given that
the third order contribution is zero and that the second order
contribution scales as nr2, it is clear that approximating the
QFI via the lowest order nonzero contribution is valid only
when nr2 � 1.

B. Measurements for symmetric pairwise correlated
protocol for unital channels

The remaining issue with this optimal protocol is to find
a QRB saturating measurement. A projective measure in the
eigenbasis of ˆ̇ρ (1)

f suffices. For the optimal symmetric pairwise
correlated protocol,

ˆ̇ρ (1)
f = 1

N

[
(Ṁr0) · σ̂ ⊗ σ̂⊗(n−1)

c

+ (Ṁc) · σ̂ ⊗ σ̂r0 ⊗ σ̂⊗(n−2)
c + · · ·

+ (Ṁc) · σ̂ ⊗ σ̂⊗(n−2)
c ⊗ σ̂r0

]
. (42)

Sometimes this eigenbasis will depend on the parameter
value, thus suggesting a measurement that would require
knowledge of the parameter; this is a general issue which has
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ρ̂0

ρ̂0

ρ̂0

Ûprep

Γ̂

Ûprep

Measure Π±

Measure Π±

Measure Π±

FIG. 4. Symmetric pairwise correlated scheme followed by local
projective measurements. The measurements are chosen so that the
associated projection operators are �̂± = (Î ± σ̂r0 )/2, where r0 is
the initial state Bloch-sphere direction.

been addressed elsewhere [28,29]. Nonetheless the resulting
measurement will always saturate the QFI.

A separate issue is whether there exists a series of local,
single-qubit measurements that can yield the QFI. Whether
such a procedure exists immediately after channel invocation
is not clear. However, in Appendix I we show that if the
channel invocation is following by another invocation of the
preparatory unitary and this is followed by a local measure-
ment on each qubit with appropriate choices of Bloch-sphere
directions, then the resulting classical Fisher information
equals the lower bound of Eq. (39). This merely entails
another quadratic cost in terms of two-qubit gates. Figure 4
illustrates this scheme.

Specifically if, after the second invocation of the prepara-
tory unitary, a local projective measurement corresponding to
operators �̂± = (Î ± σ̂r0 )/2 is enacted on each qubit, where
the Bloch-sphere control and initial state vectors satisfy c =
B�ê1 and r0 = B�ê2 where ê1 and ê2 are orthogonal unit
vectors associated with the singular value decomposition of
Ṁ , then the classical Fisher information is

F = nr2s2
1 − r2s2

1

(
1 − s2

2

s2
1

)
. (43)

This is exactly the lower bound of Eq. (39).
Thus it is always possible to attain the gain with a factor of

at least n − 1 in estimation accuracy, using a local measure-
ment scheme preceded by the preparatory unitary. We assess
various important examples.

Example: Phase shift. For the phase-shift channel about the
z axis, s1 = s2 = 1, s3 = 0, and one possible choice of princi-
pal axis directions is ê1 = x̂, ê2 = ŷ, and ê3 = ẑ. By Eq. (39)
this gives an optimal QFI, Hcorr opt = nHs opt. Taking B = I

in the singular value decomposition, the choices c = ê1 and
r0 = ê2 attain this. Since s1 = s2, the measurement scheme
of Fig. 4 yields a classical Fisher information F = nHs opt

that saturates the optimal QFI with a parameter-independent
measurement.

Example: Phase flip. Here s1 = s2 = −2, s3 = 0 with ê3 =
ẑ and ê1 and ê2 any perpendicular unit vectors in the xy plane.
This gives an optimal QFI, Hcorr opt = nHs opt. This is attained
when c = ê1 and r0 = ê2. Again s1 = s2 and the measurement
scheme of Fig. 4 yields a classical Fisher information F =
nHs opt with a parameter-independent choice of measurement.
This agrees with lowest order approximations from exact
expressions for all purities [20].

Example: Depolarizing channel. Here s1 = s2 = s3 = 1,
giving an optimal QFI, an optimal QFI, Hcorr opt = nHs opt,

which is attained when c = ê1 and r0 = ê2 are any two
orthogonal vectors. Here also s1 = s2 and the measurement
scheme of Fig. 4 yields a classical Fisher information F =
nHs opt with a parameter-independent choice of measurement.
This agrees with lowest order approximations from exact
expressions for all purities [21].

C. Gains for symmetric pairwise correlated
protocol for unital channels

These examples illustrate the general approximately n-fold
gain offered by the symmetric pairwise correlated protocol
whenever n � 1/r2. This is reminiscent of the gains de-
scribed by the Heisenberg limit, where the QFI scales as n2,
over the standard quantum limit, where the QFI scales as n,
and n is the number of probes or channel invocations [5]. One
difference is that in the protocol of this article the channel
only acts once on one of the probes, whereas the typical
n-fold Heisenberg scaling gain involves multiple copies of the
channel or multiple systems subjected to the same channel.
Mathematically the gain in our protocol arises from the fact
that when the control and initial state Bloch-sphere vectors are
perpendicular the channel input state of Eq. (35) has n terms
on which channel can have a nontrivial effect while, in the
absence of the preparatory unitary, the initial state of Eq. (12)
only offers one term on which the channel has a nontrivial
effect. Somehow, the preparatory unitary of the symmetric
pairwise correlated protocol has produced correlations that
distribute information amongst the qubits so as to effectively
mimic action of the channel as though it has acted on every
qubit. It has also managed to do this in a way which works
for all unital channels although the control and initial state
Bloch-sphere directions will need to be adjusted depending
on the channel.

Gains of this type in quantum metrology are often
associated with the use of entangled states and it may be
asked whether this is responsible for the gains here. However,
as shown previously for the phase-shift [18], phase-flip
[20], and depolarizing channels [21], for the two-qubit case
the system state are separable whenever the purity satisfies
r <

√
2 − 1. This rules out entanglement as a source of the

gains presented in this article. On the other hand, the same
studies did show that for the two-qubit state, the quantum
discord is nonzero for all purities, r > 0, which encompass
those of this article. How these statements might apply
beyond two qubits is currently unclear.

D. Symmetric pairwise correlated protocol
for nonunital channels

For nonunital channels where d depends on the parameter,
the lowest nonzero term in the QFI is the zeroth order term.
The zeroth order term in the density operator in the symmetric
pairwise correlated-state protocol will be the same as that in
the SQSC protocol; this is evident from setting r = 0 in the
formalism. Thus for such channels, the lowest order term in
QFI in the symmetric pairwise correlated protocol is the same
as that for the SQSC protocol. To lowest order there is nothing
to gain from the correlated-state protocol for such cases.

A possible explanation for this is that, for such nonunital
channels, even the maximally mixed state would be fruitful for
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Single qubit channel:

ρ̂i =
1

2
Î + rσ̂r̂ i → 1

2
Î + σ̂rf

Channel described by Bloch-sphere map:

rf = rM r̂i + d

Singular values of Ṁ :

s1 s2 s3 0

Unital channel (d = 0):

Optimal SQSC protocol QFI:

Hs opt = r2s2
1

Optimal correlated protocol QFI satisfies:

n − 1 − s2
2

s2
1

Hcorr opt

Hs opt
n

Correlated protocol offers gain by a
factor of at least n − 1.

Non-unital channel with ḋ = 0:

Optimal SQSC protocol QFI:

Hs opt =
ḋ · ḋ +

1

4(1 − d2)

∂d2

∂λ

2

if d = 1

ḋ · ḋ if d = 1.

Optimal correlated protocol QFI satisfies:

Hcorr opt = Hs opt

Correlated protocol offers no gain.

FIG. 5. Summary of the key results for single-qubit channel parameter estimation. Results are all to lowest nonzero order in purity. The
correlated protocol refers to a symmetric pairwise correlated-state protocol with the channel invoked once on one of n qubits.

estimation as the channel maps Î
��→ Î + σ̂d and the parameter

could be estimated from the final system state. A maximally
mixed initial state would be unaffected by any preparatory
unitary and thus any correlated-state protocol would not make
a difference for estimation if this were the system’s initial
state. The lowest order analysis that we have used only retains
this maximally mixed term and therefore we might not have
expected any gains from the correlated-state protocol here.

VI. SUMMARY OF RESULTS

We summarize the main results for the single-qubit single-
channel (SQSC) protocol and the symmetric pairwise cor-
related protocols (see Figs. 2 and 3 and the associated de-
scriptions). These assume that all qubits are initially in the
state ρ̂0 = (Î + rσ̂r0 )/2 and the results apply whenever the
purity satisfies nr2 � 1. Figure 5 provides a schematic that
describes the main results in terms of the relevant quantum
Fisher information for single-qubit channels.

VII. CONCLUSION

We have compared quantum parameter estimation proto-
cols for qubit channels when the available states are mixed
with very low purity and where the channel is invoked once.
We have shown that for any unital channel, with initial-
state purity r , the particular n qubit correlated input state
generated by the symmetric pairwise correlated protocol pro-
vides a roughly n-fold increase in estimation accuracy over
protocols that use uncorrelated states provided that nr2 � 1.
These results agree with approximations from exact results

for the known special cases of the phase-shift [18], phase-flip
[20], and depolarizing channels [21]. We also presented a
measurement scheme that requires one more application of
the preparatory unitary followed by local single-qubit mea-
surements that yields a classical Fisher information which
saturates the lower bound in the QFI and this gives the roughly
n-fold gain in accuracy. This is parameter independent. There
still remains the issue of finding generic measurement choices
that are independent of the parameter and that yield a classical
Fisher information which exactly saturates the optimal QFI.

For nonunital channels with a parameter-dependent shift,
to lowest order in the purity, there is no improvement in
estimation accuracy using these particular parameters; this
provides a first glimpse into amplitude-damping channel pa-
rameter with nonpure initial states.

The formalism used here could be extended to situations
where the channel is invoked on more than one of the qubits.
The first order term in the channel input density operator
would still have the form of Eq. (35) but, for unital channels,
the channel actions would produce an expression analogous
to those of Eq. (37) with more than one factor of the Bloch-
sphere matrix appearing in each term. Differentiation would
then yield expressions for the QFI involving both the Bloch-
sphere matrix and its derivative. This would require modifying
the singular value analysis used in this article. Additionally,
it is already known for certain unital channels [20,21] that
these protocols only offer advantages over a subset of pos-
sible parameter values and thus the universal results will not
apply. Studies into restricted regions of the parameter space,
where these protocols could offer advantages would still be
warranted.
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The symmetric pairwise correlated-state protocol con-
sidered here generalizes those used previously and for
unital channels. This is some improvement over previ-
ous studies [18,20,21] in estimation with noisy states, but
even here the scheme awaits optimization over choices of
initial-state Bloch-sphere and control vector directions. It is
also possible that another type of preparation scheme might be
optimal. The structure of the lowest order terms in the density
operator in this formalism give some insight into the origin of
the increase in the QFI. After the preparatory unitary, every
qubit provides a term in the expression for the system state
such that the channel has a nontrivial action on this term. This
might be able to yield some insights into the origins of the
accuracy enhancement and possible ways to improve it.

Finally, we note that there have been many studies of
parameter estimation, typically of unitary parameters, in the
presence of noisy processes (for example [9,32,41,42]). Such
studies consider the situation where noise appears during or
after action of the channel whose parameter is to be estimated
and usually yield bounds on the QFI that depend on noise
parameters. For example, in [32] a general bound was de-
veloped and applied to optical phase estimation where noise
was introduced during the phase evolution. The framework
presented there resulted in a QFI which, when sufficient noise
is present, scales as the number of probes n and does not yield
an n-fold advantage over independent channel invocation pro-
tocols. However, although this study presents a general tech-
nique, these scaling results appear for the specific situation
where the state space for the system is infinite dimensional.
Our initial attempts to use the general framework presented
there for qubit systems where the noise is introduced at the
outset have not yielded instructive bounds. In part, this must
be due to the choice of representation of channel that also
includes initial noise. However, the framework of [32] omits
a specification of the optimal choice of such a channel. The
exact relationship between this framework and the situation
where noise is initially present in qubit channels warrants
further investigation.
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APPENDIX A: CHANNEL PARAMETRIZATION

Consider a channel whose effect is described by Eq. (2).
First, |rf| � 1 for all possible inputs and for r = 0 this
implies |d| � 1. We argue that if M �= 0, then |d| �= 1.

To do so, |rf|2 = r2r�
i M�Mri + |d|2 + rr�

i M�d + rd�Mri,
where � indicates the transpose. Assuming that |d| = 1,
taking the case where r = 1 and noting that the first
term is positive this implies that for any unit vector ri,

one of the terms d�Mri or r�
i M�d = (d�Mri )

�
must be

negative. Thus for any unit vector ri, d�Mri must be neg-

ative. Now the singular value decomposition implies that
M = ASB where A and B are orthogonal matrices and S is
diagonal with positive entries along the diagonal. Thus for
any ri, d�ASBri must be negative. Letting d′ := A�d and
r′

i := Bri gives that d�ASBri = ∑
j d ′

j sj r
′
j , where sj � 0 are

the singular values of M .
Thus, regardless d′ there will always be some choices of

r′
i such that this is positive. This implies that, regardless of of

d, there will be some choices of ri so that d�Mri is positive.
Thus, |d| = 1 is only possible when M = 0.

APPENDIX B: ESCHER FRAMEWORK FOR PHASE-FLIP
CHANNEL PARAMETER ESTIMATION WITH NOISY

INITIAL STATES

We consider estimating the parameter λ in a phase-flip
channel that acts on a single qubit according to ρ̂i �→ (1 −
λ)ρ̂i + λσ̂zρ̂iσ̂z. The initial state for an individual qubits
ρ̂0 = (Î + rσ̂r0 )/2 can be generated from a pure initial state
ρp = (Î + σ̂r0 )/2 by a depolarizing channel with depolar-
izing parameter r . Denote the Kraus operators that gen-
erate the product of n such mixed states from n pure
states by {�̂dj (r )}. The preparatory unitary Ûprep gener-
ates the channel input state ρ̂i = ∑

j Ûprep�̂dj ρ
⊗n
p �̂

†
dj Û

†
prep.

Then denote the Kraus operators for the channel by
{�̂chk (λ)}. Thus the final premeasurement state is ρ̂f =∑

j,k �̂chkÛprep�̂dj ρ
⊗n
p �̂

†
dj Û

†
prep�̂

†
chk . Together these give one

set of Kraus operators {�̂chk (λ)Ûprep�̂dj (r )} that map the
pure initial state to the final state produced by the channel.
It follows that the operators used in the Escher framework are

Ĥ1 =
∑
j,k

∂

∂λ
(�̂chk (λ)Ûprep�̂dj (r ))†

× ∂

∂λ
(�̂chk (λ)Ûprep�̂dj (r ))

=
∑
j,k

�̂
†
dj Û

†
prep

∂�̂
†
chk

∂λ

∂�̂chk

∂λ
Ûprep�̂dj . (B1)

Then straightforward algebra gives

Tr (Ĥ1ρp) = Tr

(∑
k

∂�̂
†
chk

∂λ

∂�̂chk

∂λ
ρ̂i

)
, (B2)

where ρ̂i is the channel input state generated by the prepara-
tory unitary from the noisy initial states. Similarly

Tr (Ĥ2ρp) = i Tr

(∑
k

∂�̂
†
chk

∂λ
�̂chkρ̂i

)
. (B3)

Now one possible Kraus representation for a single-qubit
phase-flip channel is �̂ch 1 = √

1 − λ Î and �̂ch 2 = √
λ σ̂z.

This yields, for a single-qubit channel,

∑
k

∂�̂
†
chk

∂λ

∂�̂chk

∂λ
= 1

4λ(1 − λ)
Î , (B4a)

∑
k

∂�̂
†
chk

∂λ
�̂chk = 0. (B4b)
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Consider now the situation where only one qubit is present
and the phase-flip channel is invoked once. Then Eqs. (8)
and (B4) bound the QFI via H � 1/λ(1 − λ) and this does
not even refer to the initial-state purity. However, the known
optimal single-qubit QFI [20] for the phase-flip channel acting
on a single qubit with purity r is H = 4r2/[1 − (1 − 2λ)2r2].
Straightforward algebra shows that the bound given by the
Escher framework and the particular choice of Kraus rep-
resentation is strictly larger than the known optimal QFI
whenever r < 1.

APPENDIX C: QFI FOR SQSC PROTOCOLS
FOR NONUNITAL CHANNELS

Regardless of whether d depends on the parameter or
not, the lowest order version of Eq. (15) gives ˆ̇ρ (0)

f =
[L̂(0)ρ̂

(0)
f + ρ̂

(0)
f L̂(0)]/2. The algebraic method offered in [20]

gives

L̂(0) = 1

2

∂ ln (1 − d2)

∂λ
Î +

[
ḋ − 1

2

∂ ln (1 − d2)

∂λ
d
]

· σ̂

(C1)

when d := |d| �= 1 and

L̂(0) = σ̂d (C2)

if d = 1.
Direct substitution into the lowest order version of Eq. (16)

yields the result of Eq. (31).
If d is parameter independent then ˆ̇ρ (0)

f = 0 and L̂(0) =
0 and, as before, H (0) = H (1) = 0. The next order term is
attained via Eq. (15), which with Eq. (30) gives

ˆ̇ρ (1)
f = 1

2

[
L̂(1)ρ̂

(0)
f + ρ̂

(0)
f L̂(1)

]
= 1

2 L̂(1) + 1
4

[
L̂(1)σ̂d + σ̂dL̂

(1)
]
. (C3)

If d �= 1, then the solution to this, which can be verified by
direct substitution, is

L̂(1) = 2 − d2

1 − d2
ˆ̇ρ (2)
f − 1

1 − d2

[
ˆ̇ρ (1)
f σ̂d + σ̂d ˆ̇ρ (1)

f

]
+ 1

1 − d2

[
σ̂d ˆ̇ρ (1)

f σ̂d
]
. (C4)

The remaining case where d is a parameter-independent unit
vector requires M = 0 and this leaves no parameter depen-
dence. We can ignore this. Equations (14) and (C4) give that if
d is parameter independent, then to lowest order in the purity,

H = r2 2 − d2

1 − d2
Tr

[(
ˆ̇ρ (1)
f

)2] − r2 2

1 − d2
Tr

[(
ˆ̇ρ (1)
f

)2
σ̂d

]
+ r2 1

1 − d2
Tr

[
σ̂d ˆ̇ρ (1)

f σ̂d ˆ̇ρ (1)
f

]
. (C5)

Then ρ̂
(1)
f = (Mr0) · σ̂/2 gives

H = r2 r�
0 Ṁ�Ṁr0 + r2

1 − d2
(d�Ṁr0)2, (C6)

and this yields the result of Eq. (32).

APPENDIX D: CHANNEL INPUT STATES

Computing the effects of the preparatory unitary on the
entails algebra of Pauli operators. Explicit multiplication show
that, for any vectors a and b,

σ̂aσ̂b = a · bÎ + i(a × b) · σ̂ . (D1)

The effects of the preparatory unitary can be determined by
via the action of Ûc on pairwise products of operators. We
will show that

Ûc(σ̂a ⊗ Î )Û †
c = σ̂a ⊗ σ̂c

+ (a · c) (σ̂c ⊗ Î − σ̂c ⊗ σ̂c ). (D2)

To demonstrate (D2), consider first (σ̂a ⊗ Î )Û †
c . Noting

that Û
†
c = Ûc, repeatedly using (D1) and the fact that c is a

unit vector gives

(σ̂a ⊗ Î )Û †
c = 1

2 [a · c Î ⊗ (Î − σ̂c ) + σ̂a ⊗ (Î + σ̂c )

+ iσ̂a×c ⊗ (Î − σ̂c )]. (D3)

Then multiplying this separately by each term in Ûc gives

1
2 Î ⊗ Î (σ̂a ⊗ Î )Û †

c = 1
4 [a · c Î ⊗ (Î − σ̂c )

+ σ̂a ⊗ (Î + σ̂c )

+ iσ̂a×c ⊗ (Î − σ̂c )], (D4a)
1
2 Î ⊗ σ̂c(σ̂a ⊗ Î )Û †

c = 1
4 [−a · c Î ⊗ (Î − σ̂c )

+ σ̂a ⊗ (Î + σ̂c )

− iσ̂a×c ⊗ (Î − σ̂c )], (D4b)
1
2 σ̂c ⊗ Î (σ̂a ⊗ Î )Û †

c = 1
4 [a · c (Î ⊗ Î + Î ⊗ σ̂c

+ 2σ̂c ⊗ Î − 2σ̂c ⊗ σ̂c )

− σ̂a ⊗ (Î − σ̂c )

× iσ̂c×a ⊗ (Î + σ̂c )], (D4c)

− 1
2 σ̂c ⊗ σ̂c(σ̂a ⊗ Î )Û †

c = 1
4 [a · c (−Î ⊗ Î − Î ⊗ σ̂c

+ 2σ̂c ⊗ Î − 2σ̂c ⊗ σ̂c )

− σ̂a ⊗ (Î − σ̂c )

− iσ̂c×a ⊗ (Î + σ̂c )]. (D4d)

Adding (D4a)–(D4d) gives (D2).
Now consider ρ̂

(1)
i = Ûprepρ̂

(1)
0 Û

†
prep, where ρ̂

(1)
0 =

[σ̂r0 ⊗ Î⊗(n−1) + · · · + Î⊗(n−1) ⊗ σ̂r0 ]/N . Since the
preparatory unitary is symmetric under interchange pair
of qubits it suffices to evaluate Ûprepσ̂r0 ⊗ Î⊗(n−1)Û

†
prep. The

Ûc factors in Ûprep and Û
†
prep commute among each other and

all of those that do not involve the leftmost qubit commute
with the factors of the identity. Therefore, for each such pair
of qubits a factor of Ûc multiplies a factor of Û

†
c , leaving the

identity. Thus we need only consider the factors of Ûc in Ûprep

that involve the leftmost qubit. This process can be illustrated
with a three qubit system. Invoking (D2) gives that the Ûc

acting on the leftmost and center qubits produces

σ̂r0 ⊗ Î ⊗ Î �→ σ̂r0 ⊗ σ̂c ⊗ Î + (r0 · c)σ̂c ⊗ Î ⊗ Î
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TABLE I. Traces of square of terms from Eq. (37). The multi-
plicity indicates the number of times each type of terms occurs in the

product ( ˆ̇ρ (1)
f )

2
.

Term Multiplicity Contribution

1st 1 r�
0 Ṁ�Ṁr0/N

2nd or 3rd n − 1 c�Ṁ�Ṁc/N
4th 1 r�

0 PcṀ
�ṀPcr0/N

5th 1 n2 r�
0 PcṀ

�ṀPcr0/N

− (r0 · c)σ̂c ⊗ σ̂c ⊗ Î . (D5)

Now, noting that Ûc commutes with terms of the form σ̂c ⊗ Î

and σ̂c ⊗ σ̂c, consider the factor Ûc acting on the leftmost and
rightmost qubits. This leaves the second and third terms in
Eq. (D5) unaltered since it commutes with them. However,
according to (D2) it acts on the first term of (D5) to produce

σ̂r0 ⊗ σ̂c ⊗ Î �→ σ̂r0 ⊗ σ̂c ⊗ σ̂c + (r0 · c)σ̂c ⊗ σ̂c ⊗ Î

− (r0 · c)σ̂c ⊗ σ̂c ⊗ σ̂c. (D6)

Thus substituting this into the first term of (D5) reveals that
under all factors of Ûc the terms σ̂c ⊗ σ̂c ⊗ Î cancel. Thus,
under the preparatory unitary,

σ̂r0 ⊗ Î ⊗ Î �→ σ̂r0 ⊗ σ̂c ⊗ σ̂c + (r0 · c)σ̂c ⊗ Î ⊗ Î

− (r0 · c)σ̂c ⊗ σ̂c ⊗ σ̂c. (D7)

This pattern continues and, for arbitrary numbers of qubits,

Ûprep
(
σ̂r0 ⊗ Î⊗(n−1)) Û †

prep = σ̂r0 ⊗ σ̂⊗(n−1)
c

+(r0 · c) σ̂c ⊗ Î⊗(n−1)

−(r0 · c) σ̂⊗n
c . (D8)

This determines the term Ûprepσ̂r0 ⊗ Î⊗(n−1)Û
†
prep. This result,

the symmetry of Ûprep under interchange of qubits, the form of
ρ̂

(1)
0 and its symmetry under interchange of qubits, then give

the first order channel input term of (35).

APPENDIX E: LOWEST ORDER SYMMETRIC PAIRWISE
CORRELATED PROTOCOL QFI

To prove the result of Eq. (38), note that it emerges from
H = r2H (2) + O(r3) and the trace operation of Eq. (21),
which requires computing the trace of the square of the entire
right-hand side of Eq. (37). This results in a sum of the trace of
each term squared together with the traces of all “cross terms”;
we evaluate and list these separately. In both cases a useful
tool is that Tr [σ̂aσ̂b] = 2 a�b for any vectors a and b. Also
note that the result will contain terms of the form (r0 · c)Ṁc
and this can be expressed as ṀPc r0 where Pc is the projection
operator onto c.

Then the squared terms of Eq. (37) are listed in Table I.
Similarly consider the “cross terms” of Eq. (37) are listed

in Table II.
Adding these gives

H (2) = N Tr

⎡
⎣(

∂ρ̂
(1)
f

∂λ

)2
⎤
⎦ = r�

0 [Ṁ�Ṁ + (3 − n)PcṀ
�ṀPc

TABLE II. Traces of cross-term products from Eq. (37). The
multiplicity indicates the number of times each type of terms occurs

in the product ( ˆ̇ρ (1)
f )

2
.

Term Multiplicity Contribution

1st and 2nd or 3rd 2(n − 1) r�
0 PcṀ

�Ṁr0/N

1st and 4th 1 0
1st and 5th 2 −n r�

0 PcṀ
�Ṁr0/N

2nd and 3rd (n − 1)(n − 2) r�
0 PcṀ

�ṀPcr0/N

2nd or 3rd and 4th n − 1 0
2nd or 3rd and 5th 2(n − 1) −n r�

0 PcṀ
�ṀPcr0/N

4th and 5th 1 0

− 2PcṀ
�Ṁ]r0 + (n − 1)c�Ṁ�Ṁc. (E1)

Note that r�
0 PcṀ

�Ṁr0 = r�
0 Ṁ�ṀPcr0 and thus a sym-

metric expression is

H (2) = r�
0 [Ṁ�Ṁ + (3 − n)PcṀ

�ṀPc

−PcṀ
�Ṁ − Ṁ�ṀPc]r0 + (n − 1)c�Ṁ�Ṁc.

(E2)

Algebra then gives the stated result.

APPENDIX F: BOUND ON THE LOWEST ORDER TERM
IN THE QFI FOR UNITAL CHANNELS

The singular value decomposition is Ṁ = ASB, with S =∑
i siPi arranged so that s1 � s2 � s3 � 0 and where Pi is a

projector onto the unit vector êi and each of these is one of x̂,
ŷ, and ẑ. Then Eq. (38) becomes

H = r2
∑

i

s2
i

{
r�

0 (I − Pc )B�PiB(I − Pc )r0

+ (n − 1)c�Pic − (n − 2)r�
0 PcB

�PiBPcr0
}
. (F1)

The lower bound of Eq. (39) can be established by the par-
ticular choice of c = B�ê1 and r0 = B�ê2. The upper bound
can be established by noting that, since s2

1 � s2
2 � s2

3 � 0,

Hr2 � s2
1

∑
i

{
r�

0 (I − Pc )B�PiB(I − Pc )r0

+ (n − 1)c�B�PiBc

− (n − 2)r�
0 PcB

�PiBPcr0
}
. (F2)

Then the facts that
∑

i Pi = I , and c, r0 are unit vectors and
Pc, I − Pc are projectors give

H � r2s2
1 [n − (n − 1)r�

0 Pcr0]. (F3)

The left side attains a maximum of ns2
1 when c and r0 are per-

pendicular. This proves the result for the upper bound. It also
implies that for the upper bound to be saturated the initial state
Bloch-sphere vector direction and control direction must be
perpendicular. But it does not guarantee that the upper bound
can be saturated and, if not, it makes no statement about the di-
rections of these vectors in order to attain the maximum QFI.
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APPENDIX G: OPTIMAL QFI FOR s2 = s3 = 0

To prove the result that the optimal choice of control and
initial-state directions is one where they are perpendicu-
lar, consider any fixed choice of c. Then within Eq. (F1)
there appears the term W := r�

0 (I − Pc )P1(I − Pc )r0 + (n −
1)c�P1c − (n − 2)r�

0 PcP1Pcr0 and we will show that this is
maximized when r0 and c are perpendicular. Note that c and
ê1 span a plane. Then r0 can be decomposed into a vector
perpendicular to the plane r⊥

0 and a vector parallel to the plane
r‖

0. Neither of these necessarily has unit norm. Also let φ be
the angle from ê1 to c and θ be the angle from c to r‖

0. As these
three vectors lie in the same plane the angles can be chosen so
that the from ê1 to r‖

0 is θ + φ. Then vector algebra gives

P1Pcr0 = r
‖
0 cos θ cos φ ê1ê1, (G1a)

P1(I − Pc )r0 = −r
‖
0 sin θ sin φ, (G1b)

where r
‖
0 is the magnitude of r‖

0.Then

r�
0 PcP1Pcr0 = (r‖

0 )2 cos2 θ cos2 φ,

r�
0 (I − Pc )P1(I − Pc )r0 = (r‖

0 )2 sin2 θ sin2 φ. (G2a)

Separately c�P1c = cos2 φ. Thus

W = (r‖
0 )2[sin2 θ sin2 φ + (2 − n) cos2 θ cos2 φ]

+ (n − 1) cos2 φ

= (r‖
0 )2{cos2 θ [(3 − n) cos2 φ − 1] − cos2 φ}

+ (n − 1) cos2 φ. (G3)

For a given channel and choice of control direction c, the
variable φ is fixed and this must be optimized with respect
to r0, i.e., with respect to θ and r

‖
0 . Here, noting that for

n � 2, the term (3 − n) cos2 φ − 1 � 0. This implies that the

factor multiplying (r‖
0 )

2
is never positive. So the maximum for

W1 is attained when r
‖
0 = 0. This gives W1 = (n − 1) cos2 φ

and this attains a maximum of n − 1 when c is perpendicular
to ê1.

APPENDIX H: HIGHER ORDER QFI TERMS
FOR UNITAL CHANNELS

Equation (16) and that facts that ρ̂
(0)
f = Î⊗n/N and L̂(0) =

0 imply that, to determine the third and fourth order terms in
the QFI, we will need both ρ̂

(j )
f and L̂(j ) for j = 1, 2, 3. Then

Eqs. (15) and (20) and ρ̂
(0)
f = Î⊗n/N give

∂ρ̂
(2)
f

∂λ
= 1

N
L̂(2) + N

2

{
∂ρ̂

(1)
f

∂λ
, ρ̂

(1)
f

}
, (H1)

where {, } indicates the anticommutator. Thus

L̂(2) = N
∂ρ̂

(2)
f

∂λ
− N2

2

∂

∂λ

[
ρ̂

(1)
f

]2
. (H2)

Repeating this process gives

∂ρ̂
(3)
f

∂λ
= 1

N
L̂(3) + N

2

∂

∂λ

{
ρ̂

(2)
f , ρ̂

(1)
f

}

− N2

4

{
∂

∂λ

[
ρ̂

(1)
f

]2
, ρ̂

(1)
f

}
. (H3)

Thus

L̂(3) = N
∂ρ̂

(3)
f

∂λ
− N2

2

∂

∂λ

{
ρ̂

(2)
f , ρ̂

(1)
f

}
+ N3

4

{
∂

∂λ

[
ρ̂

(1)
f

]2
, ρ̂

(1)
f

}
. (H4)

Then Eqs. (16) and (20), the fact that ρ̂
(0)
f = Î⊗n/N and

the preceding expressions for the SLD terms give

H (3) = Tr

[
L̂(1) ∂ρ̂

(2)
f

∂λ
+ L̂(2) ∂ρ̂

(1)
f

∂λ

]

= 2N Tr

[
∂ρ̂

(1)
f

∂λ

∂ρ̂
(2)
f

∂λ

]

− N2

2
Tr

[
∂
(
ρ̂

(1)
f

)2

∂λ

∂ρ̂
(1)
f

∂λ

]
. (H5)

Thus

H (3) = 2N Tr

[
∂ρ̂

(1)
f

∂λ

∂ρ̂
(2)
f

∂λ

]
− N2 Tr

[
∂
(
ρ̂

(1)
f

)2

∂λ
ρ̂

(1)
f

]
.

(H6)

The fourth order term in the QFI can be obtained in a
similar fashion, eventually giving

H (4) = N Tr

⎡
⎣2

∂ρ̂
(1)
f

∂λ

∂ρ̂
(3)
f

∂λ
+

(
∂ρ̂

(2)
f

∂λ

)2
⎤
⎦

− N2

2
Tr

[
∂ρ̂

(1)
f

∂λ

∂

∂λ

{
ρ̂

(1)
f , ρ̂

(2)
f

} + ∂ρ̂
(2)
f

∂λ

∂
(
ρ̂

(1)
f

)2

∂λ

]

+ N3

4
Tr

[
∂ρ̂

(1)
f

∂λ

{
∂

∂λ

[
ρ̂

(1)
f

]2
, ρ̂

(1)
f

}]
. (H7)

Further algebra yields

H (4) = N Tr

⎡
⎣2

∂ρ̂
(1)
f

∂λ

∂ρ̂
(3)
f

∂λ
+

(
∂ρ̂

(2)
f

∂λ

)2
⎤
⎦

−N2 Tr

⎡
⎣(

∂ρ̂
(1)
f

∂λ

)2

ρ̂
(2)
f + ∂ρ̂

(2)
f

∂λ

∂
(
ρ̂

(1)
f

)2

∂λ

⎤
⎦

+ N3

4
Tr

⎡
⎣(

∂
(
ρ̂

(1)
f

)2

∂λ

)2
⎤
⎦. (H8)

The second and third order terms in the channel input
state can be determined by repeatedly using Eq. (D2) and the
additional result

Ûc(σ̂a ⊗ σ̂b)Û †
c = (a × c) · σ̂ ⊗ (b × c) · σ̂

+ (a · c) Î ⊗ σ̂b + (b · c) σ̂a ⊗ Î

+ (a · c)(b · c)(σ̂c ⊗ σ̂c
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− σ̂c ⊗ Î − Î ⊗ σ̂c ). (H9)

To prove this, note that Ûc(σ̂a ⊗ σ̂b)Û †
c =

Ûc(σ̂a ⊗ Î )ÛcÛ
†
c (Î ⊗ σ̂b)Û †

c since ÛcÛ
†
c = Î . Then invoking

(D2) twice and using (D1) repeatedly gives (H9).
We apply these to determine the second and third order

terms in the channel input density operator provided that the
initial state Bloch-sphere direction and the control direction
are perpendicular. Equation (35) implies that

ρ̂
(1)
i = 1

N

(
σ̂r0 ⊗ σ̂⊗(n−1)

c + · · · + σ̂⊗(n−1)
c ⊗ σ̂r0

)
(H10)

and this contains all terms with a single factor of σ̂r0 and n − 1
factors of σ̂c.

The second order term in the initial state is

ρ̂
(2)
0 = 1

N

[
σ̂r0 ⊗ σ̂r0 ⊗ Î⊗(n−2) + · · · + Î⊗(n−2) ⊗ σ̂r0 ⊗ σ̂r0

]
,

(H11)

where every possible permutation including exactly two fac-
tors of σ̂r0 appears with the brackets. Then consider the effect
of the preparatory unitary on σ̂r0 ⊗ σ̂r0 ⊗ Î⊗(n−2). We label the
qubits from left to right as 1, 2, 3, . . . , n. Then Ûc acting on
any pair of qubits in the range 3, 4, . . . , n has no effect on this
term. Now consider Ûc acting on qubits 1 and 3. Since r0 is
perpendicular to c, Eq. (D2) shows that this produces σ̂r0 ⊗
σ̂r0 ⊗ σ̂c ⊗ Î⊗(n−3). Now consider the subsequent action of
Ûc on qubits 2 and 3. According to Eq. (H9) this results in
σ̂r0 ⊗ σ̂r0 ⊗ Î⊗(n−2). Thus the only factor of Ûc that will have
a nontrivial effect on this terms is that acting on qubits 1 and 2.
Equation (H9) shows that this gives σ̂r0×c ⊗ σ̂r0×c ⊗ Î⊗(n−2).
Thus, if r0 is perpendicular to c, the second order channel
input term is

ρ̂
(2)
i = 1

N

[
σ̂r0×c ⊗ σ̂r0×c ⊗ Î⊗(n−2)

+ · · · + Î⊗(n−2) ⊗ σ̂r0×c ⊗ σ̂r0×c
]
, (H12)

which contains terms with every possible arrangement of two
factors of σ̂r0×c.

The third order initial state term is

ρ̂
(3)
0 = 1

N

[
σ̂r0 ⊗ σ̂r0 ⊗ σ̂r0 ⊗ Î⊗(n−3)

+ · · · + Î⊗(n−3) ⊗ σ̂r0 ⊗ σ̂r0 ⊗ σ̂r0

]
(H13)

and this contains terms with every possible arrangement of
three factors of σ̂r0 . The effects of the preparatory unitary
on this can be determined by considering σ̂r0 ⊗ σ̂r0 ⊗ σ̂r0 ⊗
Î⊗(n−3). Then by the argument for the second order term
the factors of Ûc acting on all pairs of qubits from 2 to n

produce σ̂r0 ⊗ σ̂r0×c ⊗ σ̂r0×c ⊗ Î⊗(n−3). It remains to consider
the effect of each Ûc which involves qubit 1. By Eq. (D2)
the effect of Ûc for qubits 1 and 4, Ûc for qubits 1 and 5 up
to Ûc for qubits 1 and n is to produce σ̂r0 ⊗ σ̂r0×c ⊗ σ̂r0×c ⊗
σ̂⊗(n−3)

c . Now the effect of Ûc for qubits 1 and 3 on this is
to produce σ̂r0×c ⊗ σ̂r0×c ⊗ σ̂(r0×c)×c ⊗ σ̂⊗(n−3)

c which is the
same as −σ̂r0×c ⊗ σ̂r0×c ⊗ σ̂r0 ⊗ σ̂⊗(n−3)

c . Finally, the effect of
Ûc for qubits 1 and 2 on this is to produce −σ̂r0 ⊗ σ̂r0 ⊗ σ̂r0 ⊗
σ̂⊗(n−3)

c . Thus we obtain the third order term in the channel

input state,

ρ̂
(3)
i = − 1

N

[
σ̂r0 ⊗ σ̂r0 ⊗ σ̂r0 ⊗ σ̂⊗(n−3)

c

+ · · · + σ̂⊗(n−3)
c ⊗ σ̂r0 ⊗ σ̂r0 ⊗ σ̂r0

]
, (H14)

where this contains all terms with three factors of σ̂r0 .
We now consider the situation where the channel acts on

once on the leftmost qubit and aim to compute the third and
fourth orders terms in the QFI via Eqs. (H6) and (H8). The
key tools are that Tr [σ̂a] = 0, Tr [σ̂aσ̂b] = 2a · b and that the
trace of a product state is the product of the partial traces of
the factors. These immediately imply that all terms in H (3)

and H (4) that contain a factor of ρ̂
(2)
f or ∂ρ̂

(2)
f

∂λ
multiplied by

factors that contain ρ̂
(1)
f or its derivative trace to zero, since

these always contain factors of Tr [σ̂r0×c], Tr [σ̂r0×cσ̂r0 ], or

Tr [σ̂r0×cσ̂c]. Similarly the product ∂ρ̂
(1)
f

∂λ

∂ρ̂
(3)
f

∂λ
contains at least

one factor of σ̂r0 and this also traces to zero. Thus, in this
scenario,

H (3) = −N2 Tr

[
∂
(
ρ̂

(1)
f

)2

∂λ
ρ̂

(1)
f

]
, (H15a)

H (4) = N Tr

⎡
⎣(

∂ρ̂
(2)
f

∂λ

)2
⎤
⎦

+ N3

4
Tr

⎡
⎣(

∂
(
ρ̂

(1)
f

)2

∂λ

)2
⎤
⎦. (H15b)

Now consider ∂ (ρ̂ (1)
f )

2

∂λ
ρ̂

(1)
f . Within the rightmost n − 1 fac-

tors there will always be at least one factor of σ̂c or σ̂r0 . Thus
this traces to zero and Eq. (H15a) gives that if r0 and c are
perpendicular then H (3) = 0.

In order to compute H (4), we first consider ( ∂ρ̂
(2)
f

∂λ
)
2
. Here

∂ρ̂
(2)
f

∂λ
= 1

N

[
Ṁ (r0 × c) · σ̂ ⊗ σ̂r0×c ⊗ Î⊗(n−2)

+ Ṁ (r0 × c) · σ̂ ⊗ Î ⊗ σ̂r0×c ⊗ Î⊗(n−3)

+ · · · + Ṁ (r0 × c) · σ̂ ⊗ Î⊗(n−2) ⊗ σ̂r0×c
]
.

After squaring, the cross terms from this each contain at least
one factor of σ̂r0×c and do not contribute to the trace. The
n − 1 squared terms are all (r0 × c)�Ṁ�Ṁ (r0 × c)Î⊗n/N2.
Thus

Tr

⎡
⎣(

∂ρ̂
(2)
f

∂λ

)2
⎤
⎦ = n − 1

N
(r0 × c)�Ṁ�Ṁ (r0 × c). (H16)

The remaining term involves

ρ̂
(1)
f = 1

N

[
(Mr0) · σ̂ ⊗ σ̂⊗(n−1)

c

+ (Mc) · σ̂ ⊗ σ̂r0 ⊗ σ̂⊗(n−2)
c

+ · · · + (Mc) · σ̂ ⊗ σ̂⊗(n−2)
c ⊗ σ̂r0

]
. (H17)
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Thus for n � 3,(
ρ̂

(1)
f

)2 = 1

N2

[
r�

0 M�Mr0 Î⊗n + (n − 1)c�M�Mc Î⊗n + (n − 1)c�M�Mc
(
Î ⊗ σ̂r0×c ⊗ σ̂r0×c ⊗ Î⊗(n−3)

+ · · · Î⊗(n−2) ⊗ σ̂r0×c ⊗ σ̂r0×c
) + (Mr0 × Mc) · σ̂ ⊗ σ̂r0×c ⊗ Î⊗(n−2)

+ · · · + (Mr0 × Mc) · σ̂ ⊗ Î⊗(n−2) ⊗ σ̂r0×c
]
. (H18)

After differentiating and squaring, only the squares contribute to the trace. Thus

Tr

⎡
⎣(

∂
(
ρ̂

(1)
f

)2

∂λ

)2
⎤
⎦ = 1

N3

[
r�

0
∂ (M�M )

∂λ
r0 + (n − 1) c� ∂ (M�M )

∂λ
c
]2

+ 4(n − 1)

N3

∣∣∣∣ ∂

∂λ
(Mr0 × Mc)

∣∣∣∣
2

+ 2(n − 1)(n − 2)

N3

[
c� ∂ (M�M )

∂λ
c
]2

, (H19)

where |a|2 := a · a. Thus

H (4) = (n − 1) (r0 × c)�Ṁ�Ṁ (r0 × c)
1

4

[
r�

0
∂ (M�M )

∂λ
r0 + (n − 1) c� ∂ (M�M )

∂λ
c
]2

+ (n − 1)

∣∣∣∣ ∂

∂λ
(Mr0 × Mc)

∣∣∣∣
2

+ (n − 1)(n − 2)

2

[
c� ∂ (M�M )

∂λ
c
]2

. (H20)

This scales as n2. For example, for the depolarizing channel,
M = λI and thus

H (4) = (n − 1) + λ2n(3n − 2). (H21)

APPENDIX I: MEASUREMENTS THAT
SATURATE THE QFI

Suppose that the single channel invocation is followed
by application of Û

†
prep = Ûprep and, after this each qubit is

measured in a particular basis. We will consider the situation
where r0 and c are perpendicular and show that for a partic-
ular set of single-qubit measurements, the resulting classical
Fisher information gives the bounds of Eq. (39). For r0 and
c perpendicular, prior to channel invocation the state of the
system is, to first order in the purity,

ρ̂i = ρ̂
(0)
i + rρ̂

(1)
i , (I1)

where ρ̂
(0)
i = Î⊗n/N and

ρ̂
(1)
i = 1

N

(
σ̂r0 ⊗ σ̂⊗(n−1)

c + · · · + σ̂⊗(n−1)
c ⊗ σ̂r0

)
. (I2)

Here the sum contains every possible term with only one
factor of σ̂r0 .

Under a unital channel, Î remains invariant and thus a
single channel invocation on the leftmost qubit results in the
state

ρ̂f = ρ̂
(0)
f + rρ̂

(1)
f , (I3)

where ρ̂
(0)
f = Î⊗n/N and

ρ̂
(1)
f = 1

N

(
σ̂a ⊗ σ̂⊗(n−1)

c + σ̂b ⊗ σ̂r0 ⊗ σ̂⊗(n−2)
c

+ · · · + σ̂b ⊗ σ̂⊗(n−2)
c ⊗ σ̂r0

)
. (I4)

Here, for convenience, a := Mr0 and b := Mc.

The premeasurement state of the system is then ρ̂m :=
Û

†
prepρ̂fÛprep and

ρ̂m = ρ̂ (0)
m + rρ̂ (1)

m , (I5)

where ρ̂ (i)
m := Û

†
prepρ̂

(i)
f Ûprep. Then

ρ̂ (0)
m = 1

N
Î⊗n, (I6)

since Ûprep is unitary.
In order to determine ρ̂ (1)

m , note that Ûprep is a product of
one Ûc for each pair of qubits. We will determine ρ̂ (1)

m in two
steps: (a) evaluate the effect of every factor of Ûc that does not
include the leftmost qubit and (b) evaluate the effect of every
factor of Ûc that does contain the leftmost qubit.

First, consider the effect of every factor of Ûc that does
not include the leftmost qubit. We need to consider two
types of terms in ρ̂

(1)
f . One type is σ̂a ⊗ σ̂⊗(n−1)

c and this
stays invariant. The other type contains a single factor of σ̂r0

in the rightmost n − 1 factors of the tensor product. As an
example consider σ̂b ⊗ σ̂r0 ⊗ σ̂⊗(n−2)

c . Determining the effect
of the factors of Ûc requires only determining the effect of the
factors that involve the second qubit from the left. Then using
Eq. (H9) and the fact that r0 and c are perpendicular gives

Ûcσ̂r0 ⊗ σ̂cÛ
†
c = σ̂r0 ⊗ Î . (I7)

Repeatedly using this gives that every factor of Ûc that does
not include the leftmost qubit maps

σ̂b ⊗ σ̂r0 ⊗ σ̂⊗(n−2)
c �→ σ̂b ⊗ σ̂r0 ⊗ Î⊗(n−2). (I8)

Thus every factor of Ûc that does not include the leftmost
qubit maps

ρ̂
(1)
f �→ 1

N

(
σ̂a ⊗ σ̂⊗(n−1)

c + σ̂b ⊗ σ̂r0 ⊗ Î⊗(n−2)

+ · · · + σ̂b ⊗ Î⊗(n−2) ⊗ σ̂r0

)
. (I9)
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Second, consider the remaining factors of Ûc that each
include the leftmost qubit. In order to assess these, we use
Eq. (H9) to give

Ûcσ̂a ⊗ σ̂cÛ
†
c = σ̂a ⊗ Î

+ (a · c)(σ̂c ⊗ σ̂c − σ̂c ⊗ Î ), (I10)

Ûcσ̂b ⊗ σ̂r0Û
†
c = (b × c) · σ̂ ⊗ (r0 × c) · σ̂

+ (b · c) Î ⊗ σ̂r0 , (I11)

Ûcσ̂b ⊗ Î Û †
c = σ̂b ⊗ σ̂c

+ (b · c)(σ̂c ⊗ Î − σ̂c ⊗ σ̂c ). (I12)

Repeatedly applying these gives that under Ûc acting on every
pair that includes the leftmost qubit,

σ̂a ⊗ σ̂⊗(n−1)
c �→ σ̂a ⊗ Î⊗(n−1) + (a · c)σ̂⊗n

c

− (a · c)σ̂c ⊗ Î⊗(n−1). (I13)

The remaining terms can be evaluated by considering σ̂b ⊗
σ̂r0 ⊗ Î⊗(n−2). Again applying the results of Eq. (H9) gives

σ̂b ⊗ σ̂r0 ⊗ Î⊗(n−2) �→ (b × c) · σ̂ ⊗ (r0 × c) · σ̂ ⊗ σ̂⊗(n−2)
c

× (b · c)Î ⊗ σ̂r0 ⊗ Î⊗(n−2). (I14)

Extending these results to all the permutations in Eq. (I9)
then gives

ρ̂ (1)
m = 1

N

[
σ̂a ⊗ Î⊗(n−1)(a · c)

(
σ̂⊗n

c − σ̂c ⊗ Î⊗(n−1))
× (b × c) · σ̂ ⊗ (r0 × c) · σ̂ ⊗ σ̂⊗(n−2)

c

+ · · · + (b × c) · σ̂ ⊗ σ̂⊗(n−2)
c ⊗ (r0 × c) · σ̂

× (b · c)
(
Î ⊗ σ̂r0 ⊗ Î⊗(n−2)

+ · · · + Î⊗(n−1) ⊗ σ̂r0

)]
. (I15)

Now consider measurement for each qubit along the Bloch-
sphere direction r0. The corresponding single-qubit projection
operators are

�̂± := 1
2

(
Î ± σ̂r0

)
(I16)

and we denote the associated measurement outcomes by +
or −. Since ρ̂ (1)

m is invariant under interchange between any
of the rightmost n − 1, the probabilities of the measurement
outcomes depend on: (a) whether the outcome for the leftmost
qubit is + or − and (b) the number k of + outcomes amongst
the rightmost n − 1 qubits. To this end let p(+, k) be the
probability that the measurement outcome for the leftmost
qubit is + and k of the outcomes amongst the rightmost n − 1
qubits are +. Similarly let p(−, k) be the probability that the

measurement outcome for the leftmost qubit is − and k of the
outcomes among the rightmost n − 1 qubits are +.

A simplifying aspect of computing these probabilities is
the fact that if r0 and c are perpendicular, then Tr (�̂±σ̂c ) = 0.

Thus only the first and last series of terms on the right-hand
side of Eq. (I15) contribute to the probabilities. Now consider
p(+, k). One way of attaining this outcome is a + for the
leftmost qubit, followed by + outcomes for the next k qubits
and finally − outcomes for the rightmost n − 1 − k qubits.
The probability with which this occurs is

1

2n
Tr

[(
Î + σ̂r0

) ⊗ · · · ⊗ (
Î + σ̂r0

)
⊗(

Î − σ̂r0

) ⊗ · · · ⊗ (
Î − σ̂r0

)
ρ̂m

]
, (I17)

where there are k + 1 factors with the + sign and n − k − 1
with the − sign. Using Eqs. (I6) and (I15) then gives that this
returns

1

N
[1 + r (r0 · a) + r (r0 · c)(2k − n + 1)]. (I18)

This, the fact that there are
(
n−1
k

)
ways to attain k outcomes of

+ among the rightmost n − 1 qubits and the definitions of a
and b, give

p(+, k) = 1

N

(
n − 1

k

)
[1 + rr�

0 Mr0

+ rc�Mc(2k − n + 1)]. (I19)

Similarly

p(−, k) = 1

N

(
n − 1

k

)
[1 − rr�

0 Mr0

+ rc�Mc(2k − n + 1)]. (I20)

The classical Fisher information in this case is

F (λ) =
n−1∑
k=0

[
1

p(+, k)

(
∂p(+, k)

∂λ

)2

+ 1

p(−, k)

(
∂p(−, k)

∂λ

)2
]
. (I21)

Substituting and retaining only the lowest order nonzero terms
in the purity gives

F (λ) = r2[(r�
0 Ṁr0)2 + (n − 1)(c�Ṁc)2]. (I22)

Now consider the choices for r0 and c that resulted in the
bounds of Eq. (39). Following the notation of Appendix F,
choosing c = B�ê1 and r0 = B�ê2, gives

F (λ) = r2(n − 1)s2
1 + r2s2

2 . (I23)

Thus this particular set of Bloch-sphere direction and mea-
surement choices saturates the lower bound of the QFI.
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013010 (2015).

012123-17

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1103/PhysRevA.63.042304
https://doi.org/10.1103/PhysRevA.63.042304
https://doi.org/10.1103/PhysRevA.63.042304
https://doi.org/10.1103/PhysRevA.63.042304
https://doi.org/10.1103/PhysRevA.66.022308
https://doi.org/10.1103/PhysRevA.66.022308
https://doi.org/10.1103/PhysRevA.66.022308
https://doi.org/10.1103/PhysRevA.66.022308
https://doi.org/10.1088/1751-8113/44/20/205306
https://doi.org/10.1088/1751-8113/44/20/205306
https://doi.org/10.1088/1751-8113/44/20/205306
https://doi.org/10.1088/1751-8113/44/20/205306
https://doi.org/10.1088/0305-4470/36/29/314
https://doi.org/10.1088/0305-4470/36/29/314
https://doi.org/10.1088/0305-4470/36/29/314
https://doi.org/10.1088/0305-4470/36/29/314
https://doi.org/10.1109/TIT.2008.929940
https://doi.org/10.1109/TIT.2008.929940
https://doi.org/10.1109/TIT.2008.929940
https://doi.org/10.1109/TIT.2008.929940
https://doi.org/10.1103/PhysRevA.70.012317
https://doi.org/10.1103/PhysRevA.70.012317
https://doi.org/10.1103/PhysRevA.70.012317
https://doi.org/10.1103/PhysRevA.70.012317
https://doi.org/10.1103/PhysRevA.72.042327
https://doi.org/10.1103/PhysRevA.72.042327
https://doi.org/10.1103/PhysRevA.72.042327
https://doi.org/10.1103/PhysRevA.72.042327
https://doi.org/10.1103/PhysRevA.83.063836
https://doi.org/10.1103/PhysRevA.83.063836
https://doi.org/10.1103/PhysRevA.83.063836
https://doi.org/10.1103/PhysRevA.83.063836
https://doi.org/10.1103/PhysRevX.1.021022
https://doi.org/10.1103/PhysRevX.1.021022
https://doi.org/10.1103/PhysRevX.1.021022
https://doi.org/10.1103/PhysRevX.1.021022
https://doi.org/10.1103/PhysRevA.88.040102
https://doi.org/10.1103/PhysRevA.88.040102
https://doi.org/10.1103/PhysRevA.88.040102
https://doi.org/10.1103/PhysRevA.88.040102
https://doi.org/10.1103/PhysRevA.87.032301
https://doi.org/10.1103/PhysRevA.87.032301
https://doi.org/10.1103/PhysRevA.87.032301
https://doi.org/10.1103/PhysRevA.87.032301
https://doi.org/10.1103/PhysRevA.92.032324
https://doi.org/10.1103/PhysRevA.92.032324
https://doi.org/10.1103/PhysRevA.92.032324
https://doi.org/10.1103/PhysRevA.92.032324
https://doi.org/10.1103/PhysRevA.93.040304
https://doi.org/10.1103/PhysRevA.93.040304
https://doi.org/10.1103/PhysRevA.93.040304
https://doi.org/10.1103/PhysRevA.93.040304
http://arxiv.org/abs/arXiv:1001.3971
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1088/0305-4470/33/24/306
https://doi.org/10.1088/0305-4470/33/24/306
https://doi.org/10.1088/0305-4470/33/24/306
https://doi.org/10.1088/0305-4470/33/24/306
https://doi.org/10.1103/PhysRevA.69.022303
https://doi.org/10.1103/PhysRevA.69.022303
https://doi.org/10.1103/PhysRevA.69.022303
https://doi.org/10.1103/PhysRevA.69.022303
https://doi.org/10.1103/PhysRevA.72.052334
https://doi.org/10.1103/PhysRevA.72.052334
https://doi.org/10.1103/PhysRevA.72.052334
https://doi.org/10.1103/PhysRevA.72.052334
https://doi.org/10.1038/nphys1958
https://doi.org/10.1038/nphys1958
https://doi.org/10.1038/nphys1958
https://doi.org/10.1038/nphys1958
https://doi.org/10.1103/PhysRevA.85.042112
https://doi.org/10.1103/PhysRevA.85.042112
https://doi.org/10.1103/PhysRevA.85.042112
https://doi.org/10.1103/PhysRevA.85.042112
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevA.94.012101
https://doi.org/10.1103/PhysRevA.94.012101
https://doi.org/10.1103/PhysRevA.94.012101
https://doi.org/10.1103/PhysRevA.94.012101
https://doi.org/10.1103/PhysRevLett.94.020502
https://doi.org/10.1103/PhysRevLett.94.020502
https://doi.org/10.1103/PhysRevLett.94.020502
https://doi.org/10.1103/PhysRevLett.94.020502
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
https://doi.org/10.1007/s11128-004-3668-x
https://doi.org/10.1007/s11128-004-3668-x
https://doi.org/10.1007/s11128-004-3668-x
https://doi.org/10.1007/s11128-004-3668-x
https://doi.org/10.1016/j.pnmrs.2010.11.001
https://doi.org/10.1016/j.pnmrs.2010.11.001
https://doi.org/10.1016/j.pnmrs.2010.11.001
https://doi.org/10.1016/j.pnmrs.2010.11.001
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1088/1367-2630/17/1/013010
https://doi.org/10.1088/1367-2630/17/1/013010
https://doi.org/10.1088/1367-2630/17/1/013010
https://doi.org/10.1088/1367-2630/17/1/013010



