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Quantum phase transitions in the dimerized extended Bose-Hubbard model
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We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-
Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the
emphasis on the determination of the ground-state phase diagram and shows that, besides dimerized Mott and
density-wave insulating phases, an intermediate symmetry-protected topological Haldane insulator emerges at
weak Coulomb interactions for filling factor one, which disappears, however, when the dimerization becomes too
large. Analyzing the critical behavior of the model, we prove that the phase boundaries of the Haldane phase to
Mott insulator and density-wave states belong to the Gaussian and Ising universality classes with central charges
c = 1 and c = 1/2, respectively, and merge in a tricritical point. Interestingly we can demonstrate a direct Ising
quantum phase transition between the dimerized Mott and density-wave phases above the tricritical point. The
corresponding transition line terminates at a critical end point that belongs to the universality class of the dilute
Ising model with c = 7/10. At even stronger Coulomb interactions the transition becomes first order.
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I. INTRODUCTION

Over the past years, ultracold atoms in optical lattices have
become a fascinating tool to explore strongly correlated many-
body systems and thereby provide also valuable insights into
complex phenomena in solid-state systems [1–3]. Ultracold-
atom-based quantum simulators have already been used, e.g.,
to observe the transition from a superfluid (SF) to a Mott
insulator (MI) phase for bosons [4], to realize the crossover
between Bose-Einstein condensation and Bardeen-Cooper-
Schrieffer pairing [5], or to modulate the range of interactions
in quantum systems [6,7].

One of the targeted model systems for ultracold atoms is
the Bose-Hubbard model (BHM), which has been intensively
studied from a theoretical point of view. Quite recently, trig-
gered by the observation of a symmetry-protected-topological
(SPT) Haldane phase in the spin-1 Heisenberg chain [8–10],
the related Haldane insulator (HI) phase in the extended
BHM (EBHM) with longer-range repulsion [11] has attracted
significant attention.

Including a bond dimerization, which can also be realized
in optical lattices [12], the physical properties of the spin-
1 chain change drastically, e.g., the Haldane phase shrinks
rapidly when the dimerization increases and eventually even
disappears [13,14]. In this work, we explore the effect of
the bond dimerization δ in the EBHM using the density-
matrix renormalization group (DMRG) technique [15,16].
We especially demonstrate that a direct continuous transition
takes place between the dimerized MI and density-wave (DW)
phases, instead of the first-order transition observed in the
pure EBHM (δ = 0).

The paper is structured as follows: Section II introduces
the EBHM with bond dimerization, as well as the numerical
techniques for its investigation. The physical quantities of
interest will be defined in Sec. III. Section IV presents the

ground-state phase diagram of the dimerized EBHM for ρ =
1 and classifies the phase boundaries. Some results for band
filling factor ρ = 1/2 can be found in Appendix A. Section V
summarizes our results and gives a brief outlook.

II. MODEL AND METHOD

As outlined above, we consider the EBHM with an addi-
tional explicit bond dimerization δ,

Ĥ = ĤEBHM − t
∑

j

δ(−1) j (b̂†
j+1b̂ j + H.c.), (1)

where the EBHM Hamiltonian is given by

ĤEBHM = − t
∑

j

(b̂†
j+1b̂ j + H.c.) + U

∑
j

n̂ j (n̂ j − 1)/2

+ V
∑

j

n̂ j n̂ j+1. (2)

Here b̂†
j (b̂ j) creates (annihilates) a boson at site j of a

one-dimensional lattice, and n̂ j = b̂†
j b̂ j is the corresponding

particle number operator. The transfer amplitude t enables the
bosons to hop between neighboring lattice sites, whereas the
on-site (nearest-neighbor) Coulomb repulsion U (V ) tends to
localize the particles by establishing an MI (a DW) ground
state, at least when the number of bosons N equals the number
of lattice sites L, i.e., ρ = N/L = 1. In this case, a finite
dimerization should also promote an insulating state but now
with alternating strong and weak bonds.

The ground-state phase diagram of the pure BHM, where
V = 0 and δ = 0, has only two phases, an SF and an MI
[17], which are separated by a Kosterlitz-Thouless phase
transition at t/U � 0.305 for ρ = 1 [18]. Adding now V and
restricting the maximum number of bosons per site nb to
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be two, the EBHM can be approximately mapped onto the
spin-1 XXZ model with single-ion anisotropy, whereby the
bosonic operators b̂†

j , b̂ j , and n̂ j will be replaced by the spin-1

operators Ŝ+
j , Ŝ−

j , and Ŝz
j + 1, respectively [19]. As a result,

an SPT Haldane insulator appears between the MI and DW
phases for intermediate couplings [11,20], which resembles
the gapped Haldane phase of the quantum spin-1 Heisenberg
chain [8]. We note that the HI phase continues to exist if one
includes higher boson numbers nb > 2 [21,22]. In the DMRG
calculations, a finite maximum number of bosons per site
nb must be used. All results for ρ = 1 in the main text are
obtained with nb = 4.

To explore the effects of the dimerization in the full
model (1), we employ the matrix-product-state–based infinite
DMRG (iDMRG) technique [23]. The iDMRG provides us
with unbiased numerical data directly in the thermodynamic
limit. Hence the phase boundaries can be obtained without any
finite-size scaling procedure. On the other hand, we determine
the critical behavior by tracking the central charge along
the quantum phase transition (QPT) lines through the use
of the more standard DMRG technique for finite systems
with periodic boundary conditions (PBC). The quantum phase
transition itself is characterized by various excitation gaps
obtained by combining DMRG and infinite matrix-product-
state representation at the boundaries of the system [24,25].

III. SYSTEM CHARACTERIZATION

Now we present the physical quantities of interest and
explain how they can be simulated within the (i)DMRG
framework.

A. Entanglement spectrum, central charge,
and correlation length

To determine SPT states in the model (1), we discuss
the so-called entanglement spectrum εα [26], which can be
extracted from the Schmidt decomposition. Dividing the sys-
tem with L sites into two subblocks, H = H� ⊗ HL−�, and
considering the reduced density matrix ρ� = TrL−�[ρ] of a
sub-block of (arbitrary) length � < L, the entanglement spec-
trum is given by the singular values λα of ρ� as εα = −2 ln λα .
If we split the system into two semi-infinite pieces during
the iDMRG simulations, the entanglement levels εα show
a characteristic degeneracy in the SPT phase, as has been
demonstrated for the Haldane phase of the spin-1 chain [10].

The entanglement spectrum also yields valuable informa-
tion about the criticality of the system. For the von Neumann
entanglement entropy, SL(�) = −∑

α λ2
α ln λ2

α , field theory
predicts that

SL(�) = c

3
ln

[
L

π
sin

(
π�

L

)]
+ s1 (3)

in a critical system with PBC [27]. In Eq. (3), c is the central
charge and s1 is a nonuniversal constant. Employing a doubled
unit cell, in view of the explicit dimerization, the central
charge can be calculated very efficiently from the relation [28]

c∗(L) = 3[SL(L/2 − 2) − SL(L/2)]

ln{cos[π/(L/2)]} . (4)

In addition, within an iDMRG calculation, the correlation
length ξχ can be obtained from the second-largest eigenvalue
of the transfer matrix for some bond dimension χ [16,23].
While the physical correlation length diverges when the sys-
tem becomes critical, ξχ stays finite during the numerical
simulations due to the finite bond dimension. Nevertheless, ξχ

can be utilized to determine the phase transition point because
it develops a pronounced maximum with increasing χ near
the critical point. Putting these criteria together, the QPT can
be determined with high precision.

B. Excitation gaps

To determine the criticality of the QPTs one can simulate
various excitation gaps of the model (1), just as for the EBHM
[11,20,21]. For instance, in the EBHM, the single-particle gap

�sp = E0(N + 1) + E0(N − 1) − 2E0(N ) (5)

closes at the MI-HI transition, and the neutral gap

�n = E1(N ) − E0(N ) (6)

vanishes at the MI-HI and HI-DW transitions, where �n

closes linearly in the latter case, indicating a critical exponent
ν = 1 of the Ising universality class. In Eqs. (5) and (6),
E0 (E1) denotes the ground-state energy (energy of the first
excited state) of the finite L-site system with fixed boson
number.

C. Density-wave order parameter

By analogy with the charge-density-wave order parameter
of the fermionic Hubbard-type models [29,30], a (dimerized)
DW state in the model (1) can be characterized by a nonvan-
ishing expectation value of the operator

m̂DW = 1

L

∑
j

(−1) j (n̂ j − 1). (7)

Most importantly, analyzing 〈m̂DW〉 close to the Ising or the
tricritical Ising transitions points provides the critical expo-
nent β [30].

IV. NUMERICAL RESULTS FOR ρ = 1

A. Ground-state phase diagram

Figure 1 presents the ground-state phase diagram of the
EBHM with an explicit bond dimerization δ = 0.25 and nb =
4 obtained by iDMRG. For the considered weak dimerization,
we observe, just as for the EBHM (δ = 0), an HI between the
MI and DW states, but now these phases exhibit a finite bond
dimerization, i.e., actually we have D-HI, D-MI, and D-DW
states. For weak onsite and nearest-neighbor repulsions, an SF
phase appears. Additionally, there may be a region of phase
separation for U/t < 2, as observed in the model without
dimerization [31]. Here, however, we restrict ourselves to the
parameter regime U/t � 2 in order to concentrate on the study
of D-MI, D-HI, and D-DW phases and the transitions between
them.

Also the universality classes of the QPT between the D-HI
and the D-MI (D-HI and D-DW) phases are the same as for
the EBHM, where they are characterized by a central charge
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FIG. 1. IDMRG ground-state phase diagram of the dimerized
EBHM (1) for U/t � 2 with δ = 0.25 and nb = 4. Here the blue
dashed line gives the D-MI � D-HI phase boundary; the red solid
line denotes the continuous Ising phase transition. Both lines merge
at the tricritical point located inside the small rectangle which is
enlarged in Fig. 4(c) (see also the discussions in the text). The
QPT is continuous (first order) below (above) the critical end point
(V/t,U/t )ce marked by the star symbol [there we obtain for the
central charge c∗(L) � 0.7 from Eq. (4) as L → ∞ on the D-MI�D-
DW transition line, see inset]. In the weak (V,U )-coupling regime an
SF phase is formed.

c = 1 (c = 1/2). The relevant difference is that now the transi-
tion between the D-MI and D-DW phases is continuous below
a critical end point (V/t,U/t )ce [which roughly is (11.4, 6.08)
for δ = 0.25]. The continuous transition also belongs to the
Ising universality class, except for the critical end point, which
belongs to the universality class of the dilute Ising model with
c = 7/10. This will be confirmed numerically below.

B. D-HI�D-MI and D-HI�D-DW quantum phase transitions

We now investigate the nature of the SPT D-HI state and its
phase boundaries in more detail. Figure 2(a) displays the be-
havior of the central charge c∗(L) as a function of V/t at fixed
U/t = 4, which is obtained by evaluating Eq. (4) by DMRG
for up to L = 96 sites with PBC. Increasing the system size,
two peaks develop, which indicates the D-MI�D-HI and D-
HI�D-DW transitions. For L = 96, we find c∗ � 1.000 (c∗ �
0.503) at Vc1/t � 2.65 (Vc2/t � 3.24), which points toward
a Gaussian (an Ising) QPT. The corresponding entanglement
spectrum εα [Fig. 2(b)] underlines that a nontrivial topological
phase is realized for Vc1 < V < Vc2, because the entanglement
levels show the characteristic degeneracy demonstrated previ-
ously for the Haldane phase of the spin-1 chain [10].

Figure 2(c) clearly shows the different behavior of the
excitation gaps in the diverse insulator phases, as well as at
their phase boundaries: The single-particle gap �sp is finite
throughout the phase diagram, except for the D-HI�D-MI
QPT, whereas the neutral gap �n closes both at the D-MI�D-
HI and D-HI�D-DW QPTs. At the D-HI�D-DW transition
�n closes linearly, which reflects the critical exponent ν = 1
of the Ising universality class. Nevertheless, the D-HI phase
and its phase boundaries display the same behavior as for the

 0

 0.5

 1
D-MI D-HI D-DW

(a)

U / t = 4

c* (L
)

V / t

L=32
L=48
L=64
L=96

0

2.0

4.0

6.0

8.0

(b)

ε α

V / t

ε0
ε1
ε2
ε3

 0

 0.5

 1

 1.5

 2

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

(c)

Δ 
/ t

V / t

Δsp
Δn

FIG. 2. Central charge (a), entanglement spectrum (b), and ex-
citation gaps (c) of the dimerized EBHM (1) as a function of V/t
at fixed U/t = 4, where ρ = 1 and nb = 4. A central charge c = 1
(c = 1/2) indicates the D-HI�D-MI (D-HI�D-DW) transition. The
D-HI phase is marked in gray.

nondimerized EBHM. Note that the D-HI phase disappears at
the tricritical point (V/t,U/t )tr [which is located at (4.1,6.9)
for δ = 0.25], where the central charge becomes 1.

C. D-MI�D-DW Ising transition

The most significant effect of the dimerization is the direct
Ising transition between the D-MI and D-DW phases which
could not be observed in the pure EBHM. Figure 3(a) displays
the central charge c∗(L), obtained from Eq. (4) by DMRG.
Obviously, in the vicinity of the D-MI�D-DW transition,
a peak develops which gets sharper if the system size L is
increased. Fixing U/t = 9, we find c∗ � 0.526 at Vc � 4.99,
indicating that the QPT belongs to the Ising universality class.
Since the D-HI phase is absent, the entanglement spectrum εα

is no longer degenerate [in the remaining D-MI and D-DW
phases, cf. Fig. 3(b)]. Figure 3(c) gives the excitation gaps
for U/t = 9. Again, the single-particle gap �sp stays finite,
and the neutral gap �n closes at the D-MI�D-DW transition
point linearly, i.e., ν = 1 (Ising universality class).

As already pointed out, the continuous Ising transition
line between D-MI and D-DW phases terminates at the
tricritical Ising transition point. The inset of Fig. 1 shows how
a pronounced maximum develops in the central charge c∗ on
the D-MI�D-DW transition line as L increases. We obtain
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FIG. 3. Central charge (a), entanglement spectrum (b), and exci-
tation gaps (c) of the model (1) as a function of V/t for fixed U/t = 9
with ρ = 1 and nb = 4. The data indicate a D-MI�D-DW transition
with c = 1/2.

c∗ � 0.699 at the critical end point (V/t,U/t )ce �
(6.083, 11.4), in agreement with the prediction of field
theory for the universality class of the dilute Ising model,
c = 7/10.

D. Tricritical regime

To investigate the surroundings of the tricritical point
where the D-HI phase vanishes, and determine the value
of (V/t,U/t )tr with maximum precision, we calculated the
correlation length ξχ varying V/t , at fixed U/t , above and
below the tricritical point. Here a single-peak, respectively,
two-peak structure, would be expected. From Fig. 4(a) it
seems, however, that in the immediate vicinity of the tricritical
point a three-peak structure appears. That is, the DW order
parameter 〈m̂DW〉 becomes finite not only for V > Vc3 but
also for Vc1 < V < Vc2 [see Fig. 4(b)], where Vc1 < Vc2 < Vc3

denote the positions of three peaks. Plotting the position of
these peaks when U/t is changed, we obtain the strongly
zoomed-in phase diagram depicted in Fig. 4(c). According to
this figure, the D-DW phase penetrates between the D-MI and
the D-HI phase near the tricritical point (V/t,U/t )tr. Since
this re-entrance behavior of the D-DW phase is found numeri-
cally in a very limited parameter range only, and Vc2 still shifts
in the direction of Vc1 as χ increases [see Fig. 4(a)], it would
be highly desirable to explore this region or behavior more
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FIG. 4. (a) Three-peak structure of the correlation length ξχ of
the dimerized EBHM with δ = 0.25 and U/t = 6.65. χ gives the
bond dimension used in iDMRG. (b) Corresponding behavior of
the DW order parameter 〈mDW〉. Note that 〈mDW〉 is finite not only
for V/t � 4.00 but also for 3.974 � V/t � 3.977. The dotted lines
denote the QPT points with χ = 400. (c) Zoomed-in phase diagram
in the immediate vicinity of the tricritical point. The dashed line
illustrates the parameter scan performed in panels (a) and (b). Note
that the parameter region of panel (c) is equal to the size of the
rectangle in Fig. 1.

thoroughly, e.g., accompanying our iDMRG calculations by
field theory, which is beyond the scope of this work, however.

V. SUMMARY AND CONCLUSIONS

In this work we explored the ground-state phase diagram of
the extended Bose-Hubbard model with bond dimerization for
filling factor ρ = 1 by means of various density-matrix renor-
malization group techniques. Most notably, we prove the ex-
istence a of a symmetry-protected-topological (dimerized) HI
which separates—at sufficiently weak Coulomb interactions
and dimerization—MI and DW states. In addition, we demon-
strate a direct Ising transition line between the MI and DW
phases for larger Coulomb interactions, which terminates at a
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tricritical Ising point (end point) with central charge c = 7/10,
where it becomes first order.

The phase diagram of the nondimerized model for ρ = 1
can be understood by analogy to the spin-1 XXZ chain
with single-ion anisotropy, with the MI, HI, and DW phases
corresponding to the large-D, Haldane, and Néel phases,
respectively. In particular, it follows that the HI phase is a
symmetry-protected-topological phase, which is protected by
a modified bond-centered inversion symmetry [10]. Since this
symmetry is respected by the explicit dimerization, the dis-
tinction between MI and HI survives in the dimerized model.
For weak Coulomb repulsions U and V , the system realizes an
SF phase, just as for filling factor ρ = 1/2, where no MI exists
at all in the absence of dimerization. If the onsite repulsion
U is sufficiently large in the latter case, adding a small bond
dimerization opens an energy gap so that the system passes
into a symmetry-protected-topological dimerized MI phase
(see Appendix A).

We wish to stress that it is extremely difficult to obtain
numerical results with sufficient accuracy in the immediate
vicinity of the tricritical point. In consequence, it remains
an open question whether the observed intervening dimerized
DW will survive the limit of infinite bond dimensions in the
infinite density-matrix renormalization group simulation, or
the tricritical point will be simply shifted to somewhat greater
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FIG. 5. (a) Ground-state phase diagram of the dimerized EBHM
with ρ = 1/2 and nb = 2. Data obtained by iDMRG. The dotted lines
denote the QPT point with same value of δ in the spin-1/2 chain
(A1). (b) Central charge c∗(L) as a function of V/t at fixed U/t =
6, calculated [along the dashed line in panel (a)] by finite-system
DMRG with PBC.

values of the Coulomb interactions. In order to clarify this
issue, an elaborate bosonization-based field theory would be
very helpful. Recently, a field theory analysis was carried out
in the dimerized spin-1 XXZ chain [32], where the re-entrance
behavior of the dimerized Néel phase might also occur.

Equally interesting would be an experimental realization
of the dimerized extended Bose-Hubbard model by ultracold
atomic gases in optical lattices in order to prove or disprove
our theoretical predictions regarding the criticality and non-
trivial topological properties.
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APPENDIX: CASE ρ = 1/2

At vanishing dimerization and a boson filling factor ρ =
1/2, a Kosterlitz-Thouless transition occurs between the SF
and DW phases, in close analogy to the metal-insulator tran-
sition of the fermionic extended Hubbard model at quarter
filling [34,35]. At finite bond dimerization δ one expects
that the SF phase gives way to an SPT D-MI phase [36].
Then a continuous Ising phase transition might occur between
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FIG. 6. Entanglement spectrum (a), single-particle gap (b), and
neutral gap (c) in the dimerized EBHM with δ = 0.5 and nb = 2 at
U/t = 6. The dashed line marks the Ising QPT point at Vc/t � 6.351.

012122-5



SUGIMOTO, EJIMA, LANGE, AND FEHSKE PHYSICAL REVIEW A 99, 012122 (2019)

the SPT D-MI and the D-DW (just as in the charge sector
of the quarter-filled extended Hubbard model with explicit
dimerization [37,38]). It is well known that the model (1) with
ρ = 1/2 can be mapped onto the spin-1/2 dimerized XXZ
model if we take the limit U 	 t , V and consider only the
two lowest Fock states per site |0〉 and |1〉. In this case, one
may replace b̂†

j , b̂ j , and n̂ j by spin-1/2 operators Ŝ+
j , Ŝ−

j ,

and Ŝz
j + 1/2, respectively [39], so that the Hamiltonian (1)

becomes

Ĥ = − t
∑

j

[1 + δ(−1) j](Ŝ+
j Ŝ−

j+1 + Ŝ−
j Ŝ+

j+1)

+ V
∑

j

Ŝz
j Ŝ

z
j+1. (A1)

By taking this limit and δ → ±1, the ground state in the D-MI
phase can be adiabatically connected to a fully dimerized state
with “singlets” at every second bond, which implies that the
D-MI is an SPT phase protected by inversion symmetry about
the strong bonds. This is in contrast to the D-HI for ρ = 1,
which is protected by inversion about both strong and weak
bonds, and the D-MI for ρ = 1, which is a topologically trivial
phase.

Figure 5(a) displays the ground-state phase diagram for
a maximum number of bosons per site nb = 2 and different
bond dimerizations δ = 0.25, 0.50, and 0.75. Only D-MI and
D-DW phases appear. The phase boundaries for different δ

approximately coincide for strong nearest-neighbor interac-
tions V/t > 8. In the limit V → ∞, the ground state in the
D-DW phase becomes a product state with alternating empty
and single-occupied sites. The lowest-lying excited state then
consists of a single double-occupied site with energy U and
two domain walls with energies −2(t + δ) and −2(t − δ).
Accordingly, the D-DW state should break down at U/t =
4 for all dimerizations. For smaller U/t , phase separation
should occur since the D-MI phase is prohibited by the
strong nearest-neighbor repulsion. The critical value U/t =
4 roughly agrees with our numerical results for V/t � 10.
However, in the parameter region studied, the D-DW borders
only on the D-MI and no phase separation is observed.

The universality class of the QPT between the D-MI and
the D-DW is deduced from the central charge c∗(L) [Eq. (4)]
by DMRG with PBC. The observed value c∗ � 0.5 indicates
that the transition belongs to the Ising universality class in two
dimensions.

Other static properties of the dimerized EBHM are given
by Fig. 6 for a bond dimerization δ = 0.5 and U/t = 6. Since
the D-MI with doubled unit cell is a nontrivial SPT phase,
the D-MI entanglement spectrum exhibits the characteristic
degeneracy, which is lifted in the D-DW phase. Figure 6(b)
gives the single-particle gap for the same parameter set, which
has a minimum at the Ising transition point. As in the case of
ρ = 1, the neutral gap �n closes linearly at the Ising transition
point [see Fig. 6(c)], yielding the critical exponent ν = 1 of
the Ising universality class.
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