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We present analytic solutions of the Klein-Gordon equation for an electron of momentum p in N crossed
laser beams Aj (ϕj ) with phases ϕj = ωj t − kj · r + δj . The solutions are of the form �p = eipx

�p (r,t ). The
determination of the distortion factor �p is pursued within a method of “auxiliary variables,” which uses the
ϕj as variables, �p (r,t ) ≡ �p (ϕ1, . . . , ϕN ). The equation for �p (ϕ1, . . . , ϕN ) is a linear second-order partial
differential equation and it does not appear to be soluble analytically exactly. However, the second-order
derivative terms are multiplied by coeffients that are small with respect to those of the first-order derivatives, if
(A) the angles between all beams are small or (B) for all beams we have ωj/mc2 � 1. In the second case, their
neglect would be quite justified for frequencies up into the x-ray range. With this approximation the equation
would reduce to a first-order derivatives “reduced equation.” Mathematically, however, this cannot be done
without further analysis. This is because we are in a situation typical of singular perturbations theory, in which the
exact, perturbed solution might not be connected continuously to the unperturbed one. Nevertheless, on the basis
of exactly soluble models (see the Appendix), we argue that the approximation is justified in our case and proceed
to solve it. It turns out that the reduced equation can be solved exactly for certain crossed-beam geometries of
interest. We consider first the case of laser pulses of arbitrary shape. The most general geometry we solve is
that in which all beams have coplanar propagation directions and the fields are linearly polarized perpendicular
to the propagation plane, except possibly for two that can be oblique and elliptically polarized. For two beams
(N = 2) this covers the most general case possible. As an application, we calculate the closed-form solution for
Gaussian-pulse crossed beams. Next, we treat the case of monochromatic beams as a limit of the laser-pulse case
and derive closed-form solutions for some geometries, including standing waves. We then discuss the effect of
the passage of crossed beams over an electronic wave packet and show that its momentum distribution is not
modified and no pair production is possible (in the reduced equation approximation). We also show that the final
wave packet displays the classical ponderomotive Lorentz shift, if low relativistic momenta are involved. The
Appendix deals with soluble models of the exact equation for �p which have the salient features of the original.
For these models, the reduced equation solution is indeed a valid approximation to the exact one, if conditions
similar to (A) or (B) above are met.
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I. INTRODUCTION

Relativistic solutions for an electron in a plane-wave
radiation field have been found long ago for the Klein-Gordon
(KG) equation by Gordon [1] and for the Dirac equation by
Volkov [2]. These are single beam solutions (SBS), pertaining
to radiation propagating in a given direction. They have
proven to be seminal for the research on superintense lasers
interacting with electrons and atoms (see [3,4]), and have
been used either as asymptotic states in S-matrix calculations
(see [3]) or as basis states in Dirac representation theory
(see [5,6]).

There has also been long-standing interest in solutions
for an electron in crossed beams and approximate results
have been found for special configurations. Most of the
work has been nonrelativistic, with retardation included.
Thus crossed-beam solutions (CBS) have been found for
an electron in a superposition of classical monochromatic
plane waves by Rosenberg and Zhou [7] (see also [8]) and

in a quantized multimode photon field by Guo et al. [9,10].
Work has also been done on the Dirac problem. The field
was treated as a classical superposition of monochromatic
plane waves at weak intensities [7] or as a superposition of
quantized radiation modes propagating in the same direction
[11]. The CBS work was in part motivated by standing-waves
phenomena such as the Kapitza-Dirac effect (see [8]), atomic
stabilization (see [12,13]), and attempts to suppress the
Lorentz drift [14]. Renewed interest originates in the search
for improved geometries for pair production in intense fields
(see [15–17]). The need for solutions corresponding to tightly
focused, high-intensity laser beams was emphasized in [18].
Besides, confocal laser beams are at the core of large facilities
like NIF [19] and next generation facilities like ELI [20].

In this paper we derive CBS for a KG particle in an intense
classical laser field, extending the well-known SBS [1]. This
should be relevant also for a physical electron under these
conditions because spin plays a minor role in intense laser-
electron scattering; see Ehlotzky et al. [3], Secs. 3 and 5.
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II. BASIC EQUATIONS: METHOD
OF AUXILIARY VARIABLES

We write the KG equation for a field A (A, i 0) as[(
P − e

c
A

)2

+ m2c2

]
� = 0. (1)

Here and in the following, four-vectors are denoted
by q(q, iq0) and scalar products by (q · q ′) = q · q′ −
q0q

′
0. We seek solutions describing the distortion by

the radiation of an electron plane wave exp i(p · x),
where p is a free-particle momentum four-vector, which
can be of the form p±(p, iE±/c) with energy E± =
±
√

m2c4 + c2p2; p2
± + m2c2 = 0. The solutions are sought

as �p(r, t ) = eip·x Fp(r, t ), where Fp(r, t ) is the distortion
factor. Inserting �p into Eq. (1) leads to the partial differential
equation (PDE):

−1

2

4∑
μ=1

∂2Fp

∂x2
μ

− i

4∑
μ=1

(
pμ − e

c
Aμ

)
∂Fp

∂xμ

+
(

−e

c
A · p + e2

2c2
A2

)
Fp = 0, (2)

where we have taken into account the Lorentz condition:∑
μ ∂Aμ/∂xμ = div A = 0.

The physical situation we want to consider is the following.
Initially, say at t → −∞, we have a free electron wave packet
(wp), extended over an essentially finite region of space and
spreading in time. The approaching radiation, also of finite
spatial extension, has not yet overlapped the electron wp, i.e.,
the fields Ak vanish over the extension of the wp. This means
that the individual momentum components of the wp are not
yet distorted and, hence, Fp(r, t ) → 1 at t → −∞ and finite
distances. As time passes, the field overlaps the wp and even-
tually disappears to infinity, leaving at t → +∞ a modified
free wp behind, whose structure we want to determine.

Equation (2) being of second order, to ensure the unicity of
the solution we need an initial condition also for (∂Fp/∂t ).
We require that the change in Fp be induced only by the
incoming radiation field and not by any other causes. We
therefore impose as a second condition that (∂Fp/∂t ) should
vanish at t → −∞ (when there is no field): (∂Fp/∂t ) → 0.
Thus we have the two initial conditions for Fp:

Fp(r, t ) → 1, (∂Fp/∂t ) → 0 for t → −∞ at finite r.

(3)

This defines an initial value (Cauchy) problem for the deter-
mination of Fp, which has a unique solution. The conditions
in Eq. (3) ensure that, in the absence of driving fields, Eq. (2)
admits only the free particle solution Fp(r, t ) ≡ 1.

We shall represent the radiation field as a superposition of
N beams propagating in discrete directions:

A(ϕ1, ϕ2, . . . , ϕN ) =
N∑

j=1

Aj (ϕj ), (4)

where ϕj are the phases ϕj ≡ −κj · x + δj = ωj t − kj · r +
δj , with the possible dephasings δj . We have introduced
here the four vectors x(r, ict ) and κj (kj , iωj/c), with kj ≡

nj (ωj/c), κ2
j = 0, and kj · Aj = 0. The fields can be linearly

polarized, of the type Aj (ϕj ) = Aj0(ϕj ) sin ϕj , or elliptically
polarized of the type Aj (ϕj ) = A(1)

j (ϕj ) + A(2)
j (ϕj + δj ),

where A(1)
j (ϕj ) and A(2)

j (ϕj + δj ) are linearly polarized and
perpendicular to kj . They can be either laser pulses, in which
case the amplitudes Aj0(ϕj ) have finite spatial and temporal
extension [Aj0(ϕj ) → 0 for ϕj → ±∞], or monochromatic
plane waves, in which case Aj0 are constants. We shall
consider first the case of laser pulses and derive the monochro-
matic case as a limit of the former.

The choice for the fields, Eq. (4), is a simplification. It
does not take into account the fact that the radiation is limited
also in directions perpendicular to the propagation directions
kj . To correct for this, one would need to use a full Fourier
expansion for the total A in plane waves of continuously
variable wave vectors k.

For fields like Eq. (4), the coefficients of Eq. (2) depend on
x(r, ict ) only via the phases {ϕj }. This suggests trying to use
the latter as auxiliary variables for solving the problem. Writ-
ing the solutions we seek as Fp(r, t ) ≡ �p(ϕ1, ϕ2, . . . , ϕN ),
the original � becomes

�p ≡ eip·x
�p(ϕ1, ϕ2, . . . , ϕN ), (5)

and Eq. (2) for the distortion factor:∑
1�k <

∑
j�N

λjk

∂2
�p

∂ϕj∂ϕk

− i

N∑
j=1

Xj (ϕ1, . . . , ϕN )
∂�p

∂ϕj

= f 〈ϕ1, . . . , ϕN 〉�p. (6)

Here we have denoted

λjk ≡ −(κj · κk ) = (1 − nj · nk )
ωjωk

c2
, (7)

Xj (ϕ1, . . . , ϕN ) ≡ − κj ·
(

p − e

c
A

)

= aj + e

c
kj ·

N∑
k=1

Ak (ϕk ), (8)

aj ≡ − κj · p = ωj

c

(
E

c
− nj · p

)
, (9)

f 〈ϕ1, . . . , ϕN 〉 ≡ e

c
A(ϕ) · p− e2

2c2
A2(ϕ)

=
N∑

j=1

[
e

c
[Aj (ϕj ) · p] − e2

2c2
A2

j (ϕj )

]

− e2

c2

∑
1�k <

∑
j�N

Aj (ϕj ) · Ak (ϕk ). (10)

Note that the matrix λjk has positive elements and no diagonal
ones, as κ2

j = 0. The coefficients − iXj are purely imaginary
and are proportional to ωj/c, as seen from Eqs. (8) and (9).

Equations (6)–(10) obviously apply also to the SBS
(Gordon) case for N = 1. There is a substantial difference,
however, between the SBS and CBS cases. The SBS equation
does not contain second-order derivatives in Eq. (6) and has
only one term in the sum over the j, X1(ϕ1). Obviously, this
greatly simplifies the integration.
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There are two alternatives appearing in the calculation,
depending on the charge of the particle: electron (e < 0),
for which we choose E ≡ E+ > 0 and thus aj ≡ a+

j > 0 in
Eq. (9), or positron (e > 0), for which E ≡ E− < 0 and aj ≡
a−

j < 0. These correspond to the two types of solutions �±
p =

eip±·x
�

±
p . The upper and lower indices ± will be generally

ignored.
Equation (6) contains, indeed, only the auxiliary variables

{ϕj } and has no residual dependence on (r, t ). Thus, for fields
of the type of Eq. (4), it is possible to find solutions Fp(r, t ) ≡
�p(ϕ1, ϕ2, . . . , ϕN ) depending only on the {ϕj }. However, if
we want to solve the problem uniquely in the new variables,
we need to formulate some conditions equivalent to Eq. (3).
These conditions need to be of the boundary conditions (bc)
type, as the variables {ϕj } are on equal footing. Note that, in
general, the auxiliary variables {ϕj } are redundant and one
cannot establish a one-to-one correspondence between them
and the (r, t ).

The initial conditions in Eq. (3) refer to the area of con-
figuration space where t is large and negative (eventually
t → −∞) and r is finite (the extension of the wp). According
to the definition of auxiliary variables ϕj , this corresponds in
the {ϕj } space to a domain Dϕ where all ϕj are very large and
negative, where there are no fields as all Aj (ϕj ) → 0. In Dϕ,

according to Eq. (3), we should have

�p(ϕ1, ϕ2, . . . , ϕN ) → 1, ∂Fp/∂ϕj → 0 for all j. (11)

Note that ∂Fp(r, t )/∂t ≡ ∑N
j=1 (∂Fp/∂ϕj )ωj . Then, in the

absence of driving fields, Eq. (6) admits for a free particle
only the solution �p = 1.

With Eq. (11) satisfied, it appears that �p is uniquely de-
fined, which would validate the method of auxiliary variables
as independent of its configuration space counterpart. The
advantage of the method is that, instead of having to solve
Eq. (2) with the field A allowed to propagate in a continuum
of directions, we need to solve only the simpler Eq. (6), in
which it is restricted to N definite directions. Once the so-
lution �p(ϕ1, ϕ2, . . . , ϕN ) has been found, the corresponding
solution �p(r, t ) is obtained by simply replacing the auxiliary
variables by their values ϕj = ωj t − kj · r + δj .

Returning to Eq. (6), this is a second-order PDE with
complex coefficients for the complex-valued function �p of
the real variables ϕj . There is a large textbook literature on
such equations for N = 2 and real-valued solutions. In this
case Eq. (6) is classified as hyperbolic, and Eq. (11) ensures
the unicity of its solution, because it allows one to determine
unambiguously the two arbitrary functions contained in the
general form of the solution; e.g., see [21], Chap. 4.1, and our
Appendix. For N > 2, less is known, e.g., [21,22].

It does not appear possible to solve the equation exactly.
In this respect, we signal a remarkable feature of Eq. (6),
which appears as a consequence of introducing the auxiliary
variables. This is that the second derivative terms it contains
can be, in cases of physical interest, much smaller than
the first derivative ones. This is because the λjk in Eq. (6)
are proportional to (ωjωk/c

2)(1 − nj · nk ), while the Xj are
proportional to (ωj/c) and f (ϕ1; . . . ; ϕN ) is independent of
the ωj . Two cases should be considered. (A) If the angles
between the beams nj · nk are small, the λjk terms could be

neglected with respect to the sum over the Xj whatever the
frequencies ωj . (B) If ωj/mc2 � 1 for all j , the λjk terms
could again be neglected, whatever the angles between the
beams nj · nk . (This case can be controlled by the variation of
a single parameter ω, if the frequencies are kept in a constant
ratio as ωj = cjω. Thereby the λjk become proportional to
ω2, the Xj to ω, while f is independent of ω.) We would
then be left with a reduced equation, linear in the first-order
derivatives, which can be written as

N∑
j=1

Xj (ϕ1, . . . , ϕN )
∂�p

∂ϕj

= i f 〈ϕ1, . . . , ϕN 〉�p. (12)

Here we have denoted by �p the approximate form of �p

satisfying it (�p 	 �p ). Coupled to the fact that Eq. (12)
contains the nonrelativistic limit of the problem, this would
be a quite valid approximation for ωj up into the x-ray range.
An improved �p could then be obtained by perturbation
theory [23].

However, there is the mathematical difficulty that we are
dealing here with a case of “singular perturbation,” as the
perturbing terms in Eq. (6) contain higher- (second-) order
derivatives than the unperturbed ones (first order). This creates
difficulties with satisfying the initial conditions, as, in general,
the solution of the unperturbed equation cannot satisfy all
initial or boundary conditions required of the higher-order
equation, and therefore cannot be an adequate approximation.
Implicitly, the solution of the reduced equation cannot be used
as a starting point of a regular perturbation scheme.

The approach to such a situation is given by “singular
perturbation theory” (SPT). In SPT the exact equation is split
into an unperturbed part, containing the first-order derivatives
[e.g., Eq. (12)] and a perturbation, containing the second-order
derivatives. The unperturbed, “reduced” equation is assumed
to be soluble. A parameter ε is introduced to characterize
the smallness of the second-order derivatives. [In case (A)
above, this would be a common measure for the small an-
gles of the beams, whereas in case (B) it would be the
frequency parameter ω introduced above.] A procedure of
successive approximations is developed in the parameter ε,
to determine step by step the corrections in powers of ε to
the unperturbed solution. The procedure is more intricate than
regular perturbation theory, as one tries to correct at each
step of the approximation for the unsatisfied initial conditions.
This is achieved by introducing a system of “boundary layer
functions” that are determined stepwise. An SPT expansion
�̃p in ε is thus constructed to approximate the solution �p,
which satisfies the exact equation and the initial condition to
a desired order in ε. This formal expansion �̃p needs to be
validated, i.e., to show that it is convergent in some sense
and that it tends uniformly in the coordinates to the exact
solution as ε ↓ 0, i.e., �̃p → �p. It depends on the nature of
the equation and on the initial or boundary conditions if this is
possible. When possible, �̃p is an asymptotic approximation
to the exact solution.

Although SPT for two-variable PDE (the case almost
exclusively studied) is a well developed area of research, e.g.,
see [24,25], mathematical aspects we need here are lacking.
For the two-variable hyperbolic PDE, which comes close to
our interests, Geel [26] (see also [27]) has made important
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contributions. He has proven the validity of SPT for equations
similar to our Eq. (6), but for real-valued functions, see [26],
Chaps. V, VI and also [24], Chaps. 9 and 10. However, our �p

is complex. Besides, whereas case (A) mentioned above fits
into the cases studied by Geel, case (B) does not, and extra
considerations would be needed. Nevertheless, the extension
of his proofs to the complex domain may be possible. This
would prove rigorously the validity of our reduced-equation
approximation in Eq. (12) for two variables. We shall not
attempt to do this here. Instead, we shall give plausibility ar-
guments to justify the fact, by analyzing the exact solutions of
two-dimensional PDE models which have the salient features
of Eq. (6); see the Appendix. We show there that the solution
of the reduced equation (the analog of �p) lies, indeed, at
sufficiently small ε, within O(ε) of the exact solution (the
analog of �p), uniformly in the variables ϕ1, ϕ2. This supports
our claim that the reduced-equation approximation should be
an adequate approximation also for Eq. (6). Based on these
considerations, we proceed to its solution.

The reduced Eq. (12) is a first-order quasilinear partial
derivatives equation for �p of the variables ϕj ; e.g., see [28],
Chap. II, Sec. III, and Chap. V, Sec. I, and [29], Sec. 3. It is
shown that the integration of Eq. (12) is equivalent to that of
the system of N differential (“characteristic”) equations:

dϕ1

X1
= · · · = dϕN

XN

= d�p

i f 〈ϕ1, ϕ2, . . . , ϕN 〉�p

. (13)

This is a system for the N + 1 variables ϕ1, . . . , ϕN , �p,

written in a symmetric form which allows the treatment of
the variables on equal footing. The system has a maximum
of N functionally independent “first integrals,” i.e., functions
g(ϕ1, ϕ2, . . . , ϕN,�p ) that reduce to constants along any
solution {ϕ1, ϕ2, . . . , ϕN,�p} of Eq. (13): gj (ϕ1, ϕ2, . . . , ϕN,

�p ) = Cj , with j = 1, 2, . . . , N. The solutions of the system
Eq. (13), called “characteristics,” can be obtained by solving
the N equations gj (ϕ1, ϕ2, . . . , ϕN,�p ) = Cj in terms of
one of the variables (e.g., ϕ1) and the constants Cj . This
gives the general solution of the differential system. The
“general integral” of the partial derivatives equation, Eq. (12),
is obtained by taking an arbitrary function G(g1, g2, . . . , gN )
of the N first integrals g1, g2, . . . , gN of Eq. (13),
assumed functionally independent, and equating it to zero
G[g1(ϕ1, ϕ2, . . . , ϕN,�p ), . . . , gN (ϕ1, ϕ2, . . . , ϕN,�p )] =
0. Solving this for �p gives the most general solution of
Eq. (12). The function G(g1, g2, . . . , gN ) convenient to
the problem is determined with the help of the first initial
condition in Eq. (3).

III. CBS FOR LASER-PULSE BEAMS

In some physically relevant cases it is possible to solve
the reduced equation, Eq. (12), exactly. The prime difficulty
is finding the first integrals of the associated characteristic
system, Eq. (13). These depend critically on the geometrical
configuration of the laser pulses Aj (ϕj ), i.e., their directions
of the propagation and their polarizations, which determine
the form of the Xj . Whereas SBS pertain to a single geometry,
with crossed beams there are infinite possibilities.

The most general case for which we could find all the first
integrals and obtain the exact solution is the following.

(A) All N beams have their propagation vectors kj in the
same plane, with the fields linearly polarized perpendicular to
it, except possibly for two, which are allowed to be oblique
to the plane and elliptically polarized. Let us denote the
oblique fields by k = 1, 2, and the perpendicular ones by k =
3, . . . , N (N � 3). If the oblique fields A1(ϕ1) and A2(ϕ2) are
elliptically polarized, they can be described each as superpo-
sitions of two dephased linearly polarized ones, as A1(ϕ1) =
A(1)

1 (ϕ1) + A(2)
1 (ϕ1 + δ1), with both A(1)

1 , A(2)
1 perpendicular

to their direction of propagation n1, and similarly A2(ϕ2) =
A(1)

2 (ϕ2) + A(2)
2 (ϕ2 + δ2), with both A(1)

2 , A(2)
2 perpendicular

to n2. For k = 1, 2, we have, because of transversality, nk ·
Ak = 0. For k = 3, . . . , N and all j, we have by assumption
nj · Ak = 0. The Xj of Eq. (8) are then given by

X1(ϕ2) = a1 + e

c
k1 · A2(ϕ2),

X2(ϕ1) = a2 + e

c
k2 · A1(ϕ1), (14)

Xj (ϕ1, ϕ2) = aj + e

c
kj · [A1(ϕ1) + A2(ϕ2)]

(j = 3, . . . , N ). (15)

We now proceed to the integration of the characteristic
system Eq. (13), i.e., the determination of its first integrals
gj (ϕ1, ϕ2, . . . , ϕN,�p ). The equation obtained combining
dϕ1 and dϕ2 in Eq. (13) gives the first integral:

g1(ϕ1, ϕ2) ≡
∫ ϕ2

q2

X1(ξ )dξ −
∫ ϕ1

q1

X2(ξ )dξ = C1. (16)

Equation (16) expresses the fact that the function g1(ϕ1, ϕ2)
reduces to a constant C1 for any solution {ϕ1, ϕ2, . . . , ϕN,�}
of Eq. (13). Here, q1, q2 are arbitrary constants; their choice
affects only the value of C1. The equation g1(ϕ1, ϕ2) = C1

defines ϕ2 as an implicit function of ϕ1. Let us denote this
by u:

ϕ2 = u(ϕ1, C1). (17)

Next, we consider the equation obtained combining dϕ1 and
dϕj in Eq. (14):

X1(ϕ2)dϕj − Xj (ϕ1, ϕ2)dϕ1 = 0 (j = 3, . . . , N ). (18)

For the solutions we are interested in, ϕ2 is connected to ϕ1

via Eq. (17). Inserting ϕ2 into Eq. (18) gives

X1(u(ϕ1, C1))dϕj − Xj (ϕ1, u(ϕ1, C1))dϕ1 = 0

(j = 3, . . . , N ). (19)

Integrating for all j with respect to ϕ1, we find the N − 2 first
integrals:

gj−1(ϕ1, ϕj , C1) ≡ ϕj − sj (ϕ1, C1) = Cj−1

(j = 3, . . . , N ), (20)

where

sj (ϕ1, C1) ≡
∫ ϕ1

qj

Xj (ξ, u(ξ, C1))
X1(u(ξ, C1))

dξ (j = 3, . . . , N ).

(21)
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Equations (17) and (20) define the variables ϕ2, . . . , ϕN in terms of ϕ1 and the constants C1, . . . , CN−1. Introducing the
ϕ2, . . . , ϕN into the equation connecting dϕ1 and d� in Eq. (13)

i f 〈ϕ1, ϕ2, . . . , ϕN 〉 dϕ1

X1(ϕ2)
= d�p

�p

, (22)

the left-hand side depends only on ϕ1 and the constants C1, . . . , CN−1, while the right-hand side only on �p. We find thus for
the N th first integral:

gN (ϕ1,�p, C1, . . . , CN−1) ≡ �p− exp i

∫ ϕ1

ϕ0
1

1

X1(u(ζ, C1))
f 〈ζ, u(ζ, C1), . . . , sj (ζ, C1) + Cj−1, . . .〉dζ = CN, (23)

where ϕ0
1 is a constant and the variables ϕj (3 � j � N ) of f (ϕ1, ϕ2, . . . , ϕN ) are replaced by sj + Cj−1. We need to have the

explicit dependence of the first integrals g1, g2, . . . , gN , on the variables ϕ1, ϕ2, . . . , ϕN,�p. These are expressed by Eqs. (16),
(20), and (23), which, however, contain also the integration constants C1, C2, . . . , CN . The constants can now be expressed in
terms of the combination of variables they represent, i.e., C1 by Eq. (16) and Cj−1 (for 3 � j � N ) by Eq. (20). For gN , for
example, we get from Eq. (23):

gN (ϕ1, ϕ2, . . . , ϕN,�p )

≡ �p − exp i

∫ ϕ1

ϕ0
1

1

X1(u(ζ, g1(ϕ1, ϕ2)))
f 〈ζ, u(ζ, g1(ϕ1, ϕ2)), . . . , ϕj + vj (ζ, ϕ1, g1(ϕ1, ϕ2)), . . .〉dζ, (24)

where we have denoted

vj (ζ, ϕ1, g1) ≡ sj (ζ, g1) − sj (ϕ1, g1) =
∫ ζ

ϕ1

Xj (ξ, u(ξ, g1))
X1(u(ξ, g1))

dξ, (25)

and similarly for the other gj . They are functionally independent (have nonvanishing Jacobian), as required.
To apply the general theory further, we consider an arbitrary function G of the g1, g2, . . . , gN and solve the equation

G(g1, g2, . . . , gN ) = 0 for the variable �p. As �p is contained solely in gN, we solve first the equation for gN , to get
gN = H (g1, . . . , gN−1), where H is another arbitrary function. Inserting here gN from Eq. (24), we immediately have the
expression of �p in terms of the unknown function H (g1, . . . , gN−1). Now, �p also depends on the unspecified lower integration
limit ϕ0

1 in gN . In this respect, we note that a modification of ϕ0
1 results in a term depending on the first integrals g1, . . . , gN−1,

which can be absorbed in H (g1, . . . , gN−1). At this point we take ϕ0
1 → −∞ in Eq. (24) as the integral is convergent. With this,

if ϕ1 → −∞, gN → �p − 1 = H (g1, g2, . . . , gN ). By taking H ≡ 0, we satisfy the first initial condition Eq. (3), as should be.
Thus we have finally for geometry (A)

�p(ϕ1, ϕ2, . . . , ϕN ) = exp i

∫ ϕ1

−∞

1

X1(u(ζ, g1(ϕ1, ϕ2)))
f 〈ζ, u(ζ, g1(ϕ1, ϕ2)), . . . , ϕj + vj (ζ, ϕ1, g1(ϕ1, ϕ2)), . . .〉dζ, (26)

with vj defined by Eq. (25). Here, the variables ϕj of f 〈ϕ1, ϕ2, . . . , ϕN 〉 are to be replaced for j � 3 by ϕj + vj . The fact that
Eq. (26) satisfies Eq. (12) can be checked by direct calculation.

We note that geometry (A) covers the most general configuration for two elliptically (or linearly) polarized beams. The result
is obtained from Eq. (26) by considering only the two beams allowed to be oblique to the propagation plane (k = 1, 2) and
ignoring the rest (k � 3). Thus, with Eq. (10) for f and Eqs. (16), (17) for u,

�p(ϕ1, ϕ2) = exp i

∫ ϕ1

−∞

1

X1(u(ζ, g1(ϕ1, ϕ2)))

〈[
e

c
[A1(ζ ) · p] − e2

2c2
A2

1(ζ )

]
+
[
e

c
A2(u(ζ, g1(ϕ1, ϕ2))) · p − e2

2c2
A2

2(u(ζ, g1(ϕ1, ϕ2)))
]

− e2

c2
A1(ζ ) · A2(u(ζ, g1(ϕ1, ϕ2)))

〉
dζ. (27)

We shall now consider a special case of geometry (A),
namely:

(B) only one field (possibly elliptically polarized) is oblique
to the plane of the beams, say k = 1, the rest k = 2, . . . , N

being perpendicular. Equations (14) and (15) become

X1 = a1, Xj (ϕ1) = aj + e

c
kj · A1(ϕ1) (j = 2, . . . , N ).

(28)

To apply Eq. (26) to this case, we need the following ingredi-
ents; see Eqs. (16), (17), and (25):

g1(ϕ1, ϕ2) ≡ a1ϕ2 −
∫ ϕ1

q1

X2(ξ )dξ = C1, (29)

u(ϕ1, C1) ≡ 1

a1

[∫ ϕ1

q1

X2(ξ )dξ + C1

]
, (30)
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u(ζ, g1(ϕ1, ϕ2)) = ϕ2 + 1

a1

∫ ζ

ϕ1

X2(ξ )dξ, (31)

ϕj + vj (ζ ) = ϕj + 1

a1

∫ ζ

ϕ1

Xj (ξ )dξ (j = 3, . . . , N ).

(32)

We have adjusted the notation so as to take into account that
Xj (ξ ) and vj (ξ ) in Eqs. (28) and (32) do not depend on
ϕ2, like in Eqs. (15) and (25). Note that, by taking j = 2 in
Eq. (32), it becomes equal to the expression in Eq. (31) for u.
We can write therefore Eq. (26) as

�p(ϕ1, ϕ2, . . . , ϕN )

= exp
i

a1

∫ ϕ1

−∞
f

〈
ζ, . . . , ϕj + 1

a1

∫ ζ

ϕ1

Xj (ξ )dξ, . . .

〉
dζ,

(33)

where subscript j now runs from 2 to N . In fact, this is the
same as

�p(ϕ1, ϕ2, . . . , ϕN )

= exp
i

a1

∫ ϕ1

−∞
f

〈
. . . , ϕj + 1

a1

∫ ζ

ϕ1

Xj (ξ )dξ, . . .

〉
dζ,

(34)

where j runs from 1 to N, because X1 is a constant, X1 = a1.

Changing here the integration variable ζ = a1ζ
′ + ϕ1 gives

�p(ϕ1, ϕ2, . . . , ϕN )

= exp i

∫ 0

−∞
f

〈
. . . , ϕj + 1

a1

∫ a1ζ
′+ϕ1

ϕ1

Xj (ξ )dξ, . . .

〉
dζ ′.

(35)

Concerning the lower limit of the integration over ζ ′ in
Eq. (35), recall that the lower limit in Eq. (33) resulted from
taking ϕ0

1 → −∞ in Eq. (26). In terms of ϕ0
1 , the lower limit

in Eq. (35) would have been (aj/a1)(ϕ0
1 − ϕ1) + ϕj . Allowing

here ϕ0
1 → −∞ (at finite ϕ1, ϕj ), gives −∞.

Equations (34) and (35) give the solution for geometry
(B). We want to write the solution in an alternative way,
introducing the explicit expression of f , Eq. (10). Upon
inserting the latter into Eq. (34), we get, for the first sum of
f in Eq. (10), the expression

exp i
1

a1

⎧⎨⎩
N∑

j=1

∫ ϕ1

−∞
Dj

(
ϕj + 1

a1

∫ ζ

ϕ1

Xj (ξ )dξ

)
dζ

⎫⎬⎭, (36)

where we have denoted

Dj (ϕ) ≡ e

c
[Aj (ϕ) · p] − e2

2c2
A2

j (ϕ). (37)

In term j of Eq. (36) we change the integration variable, from
ζ to ζ ′:

ζ ′ = ϕj + 1

a1

∫ ζ

ϕ1

Xj (ξ )dξ. (38)

Thereby Eq. (36) becomes

exp i

⎧⎨⎩
N∑

j=1

∫ ϕj

−∞
Dj (ζ ′)

dζ ′

Xj (ζ )

⎫⎬⎭. (39)

Here, under the integrals, we have Xj (ζ ) from Eq. (28), and
ζ ′ and ζ are related by Eq. (38).

The double sum in Eq. (10) we write in the form it appears
in Eq. (35). Combining with Eq. (39), we obtain the alternative
result for geometry (B):

�p(ϕ1, ϕ2, . . . , ϕN ) = exp i

⎧⎨⎩
N∑

j=1

∫ ϕj

−∞

[
e

c
[Aj (ζ ′) · p] − e2

2c2
A2

j (ζ ′)
]

dζ ′

Xj (ζ )

− e2

c2

∑
1�k <

∑
j�N

∫ 0

−∞
Aj

(
ϕj + 1

a1

∫ a1ζ
′+ϕ1

ϕ1

Xj (ξ )dξ

)
· Ak

(
ϕk + 1

a1

∫ a1ζ
′+ϕ1

ϕ1

Xk (ξ )dξ

)
dζ ′

⎫⎬⎭. (40)

We shall now specialize the beam geometry still further, to the following.
(C) All fields are perpendicular to the plane of the beams (linear polarization only), i.e., nj · Ak = 0, for all j and k, and all

the Xj in Eq. (28) reduce to constants: Xj = aj . The result for �p can immediately be obtained from Eq. (40). This gives for
geometry (C)

�p = exp i

⎧⎨⎩
N∑

j=1

1

aj

∫ ϕj

−∞

[
e

c
[Aj (ζ ′′) · p] − e2

2c2
A2

j (ζ ′′)
]
dζ ′′ − e2

c2

∑
1�k <

∑
j�N

∫ 0

−∞
Aj (aj ζ

′ + ϕj ) · Ak (akζ
′ + ϕk )dζ ′

⎫⎬⎭. (41)

Note that, in geometry (C), Aj · Ak = ±AjAk .
Thus, beside the additive contribution of the individual

beams contained in the first sum of the exponential, the CBS
contains also the specific interference terms in the double
sum. In the SBS case N = 1, Eq. (41) reduces to the Gor-
don solution [1]. Of course, the results for geometries (B)

and (C) can be derived directly, without passing through
geometry (A).

Equation (41) also covers the case of parallel beams,
propagating in the same or opposite sense, of linear or elliptic
polarizations. Here, too, we have nj · Ak = 0, for all j and k,

although the fields Ai may not be parallel as in geometry (C).
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This includes the case of standing waves, to be discussed in
more detail in Sec. V.

Low intensities. The distinction between various geome-
tries is a high intensity one, as at low intensities the Xj

reduce to constants, Xj 	 aj , independent of geometry. The
calculations for this case formally coincide with those for
geometry (C) and Eq. (41) applies. Thus, at high intensity,
Eq. (41) is valid only for geometry (C), but at low intensities
it covers all geometries.

IV. CBS FOR GAUSSIAN-PULSE BEAMS
IN GEOMETRY (C)

As an example of application of Eq. (41) for geometry (C),
let us consider CBS for Gaussian-pulse beams of linear po-
larization of the form Aj (ϕj ) = Aj0fj (ϕj ) sin ϕj , fj (ϕj ) ≡
exp (−αjϕ

2
j ), and ϕj = ωj t − kj · r + δj . In this case the

result for �p can be obtained in analytical closed form as

�p 	 eip·x�p

= exp i

⎧⎨⎩p · x +
N∑

j=1

[
e

c
(Aj0 · p)Sj − e2

2c2
A2

j0Tj

]

− e2

c2

∑
1�j<

∑
k�N

(Aj0 · Ak0)Ujk

⎫⎬⎭, (42)

Sj ≡ e−sj
[
I

(1)
j cos ϕj + I

(2)
j sin ϕj

]
, (43)

Tj ≡ Jj + 1

2
e−2sj

[
I

(3)
j cos 2ϕj + I

(4)
j sin 2ϕj

]
, (44)

Ujk ≡ 1

2
e−sjk

[
I

(1)
jk cos(ϕj − ϕk ) + I

(2)
jk sin(ϕj − ϕk )

+ I
(3)
jk cos(ϕj + ϕk ) + I

(4)
jk sin(ϕj + ϕk )

]
. (45)

Let us explain the notation. We first define the following
integrals:

I(s

c)〈q, r, a〉 ≡
∫ ∞

0
exp(−qζ 2 + rζ )

(
i sin aζ

cos aζ

)
dζ, (46)

where the subscripts
(
s

c

)
refer to i sin aζ or cos aζ on the right-

hand side. Equation (46) was calculated as

I(s

c)〈q, r, a〉 = 1

4

√
π

q
[ez2

(1 − erf z) ∓ c.c.], (47)

see [30], 3.897, where

z = − r + ia

2
√

q
(48)

and the subscripts
(
s

c

)
of I correspond to the ∓ signs on the

right-hand side. Here, erf z is the “error function,” see [31],
Chap. 7, also called “probability integral” �(z), see [30],
8.250.1; erf z ≡ �(z). This is a tabulated function.

The I
(k)
j appearing in Eqs. (43) and (44) are defined in

terms of Eqs. (46)–(48) as

I
(1)
j = +iIs〈qj , rj , a = aj 〉,

I
(2)
j = Ic〈qj , rj , a = aj 〉 (for Sj );

I
(3)
j = −Ic〈2qj , 2rj , a = 2aj 〉,

I
(4)
j = iIs〈2qj , 2rj , a = 2aj 〉 (for Tj ), (49)

where qj , rj stand for

qj = αjaj
2, rj = 2αjajϕj . (50)

The I
(k)
jk appearing in Eq. (45) are

I
(1)
jk = Ic〈qjk, rjk, a = aj − ak〉,

I
(2)
jk = −iIs〈qjk, rjk, a = aj − ak〉,

I
(3)
jk = −Ic〈qjk, rjk, a = aj + ak〉,

I
(4)
jk = iIs〈qjk, rjk, a = aj + ak〉 (for Ujk ), (51)

where qjk, rjk stand for

qjk = αja
2
j + αka

2
k , rjk = 2(αjajϕj + αkakϕk ). (52)

The sj and sjk in Eqs. (43)–(45) are given by

sj = αjϕ
2
j , sjk = αjϕ

2
j + αkϕ

2
k . (53)

Jj in Eq. (44) can be expressed as (use [31], Eqs. 7.7.6. and
7.4.1)

Jj ≡ 1

2aj

∫ ϕj

−∞
e−2αj ζ

2
dζ = 1

4aj

√
π

2αj

[1 + erf (
√

2αj ϕj )].

(54)

Note that Jj originates in the term A2
j (ζ ′′) of Eq. (41), which

contains sin2 ζ ′′ = (1/2) − (1/2) cos 2ζ ′′. Jj represents the
contribution of the (1/2) term. Although the variable z in
Eq. (48) is complex, Sj , Tj , Ujk in Eqs. (43)–(45) are real.

We are interested in the behavior of the quantities
Sj , Tj , Ujk and of �p at ϕj → ∓∞ for the following rea-
sons. At ϕj → −∞ we check the initial conditions, Eq. (3),
and at ϕj → +∞, we want to find the final form of �p

in configuration space (recall that ϕj → ∓∞ corresponds to
t → ∓∞ at finite distances). We give only the results. At
ϕj → −∞ the functions Sj , Tj , Ujk all vanish and �p → 1,

as should be. At ϕj → +∞, Sj vanishes and so does Ujk ,
but not Tj . The latter tends to a p-dependent constant. With
�p = eiχp , we find

�p → eiχ∞
p ,

χ∞
p ≡ − e2

4c2

N∑
j=1

1

aj

A2
j0

(
π

2αj

)1/2

×
[

1 − exp

(
− 1

2αj

)]
< 0. (55)

Thus �∞
p reduces to a constant phase factor.

V. CBS FOR MONOCHROMATIC PLANE WAVES
IN GEOMETRY (C)

We consider next the case of a superposition of monochro-
matic plane waves of linear polarization, Aj (ϕj ) = Aj0 sin ϕj

with constant amplitudes Aj0, in geometry (C). As the direct
application of Eq. (41) leads to ambiguities on the integration
limits, we shall obtain the monochromatic case as the limit
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of a realistic laser pulse for which the envelope broadens
indefinitely and tends to a constant. It can be shown that the
limit is independent of the specific form of the envelope. In the
following, we shall take the limit of the Gaussian-pulse CBS,
already calculated in Eqs. (42)–(45). To this end, we shall
let the shape parameters αj → 0, while keeping the other
variables p, Aj0 fixed.

In Eqs. (42)–(45) the parameters αj are contained in the
quantities q, r, s; see Eqs. (50), (52), and (53). Let us first
analyze the behavior of the integrals I(s

c), Eq. (46), as αj → 0.
For the integrals appearing in Sj , Tj , the variable z in Eq. (48)
tends to infinity along the negative imaginary axis, zS →
−i /(2

√
αj ), zT → −i /

√
2 αj , respectively. In the case of

Ujk , we have zU → −ia/2
√

qjk , with either a = aj + ak > 0
or a = aj − ak; the latter quantity can be positive or negative
but, for the moment, let us assume that it is different from
zero. Thus zU tends to large imaginary (positive or negative)
values, depending on the sign of a. We need, in all cases, the
asymptotic behavior of Eq. (47). This is given by

ez2
[1 − erf z] ∼ 1√

π z
, for |z| → ∞, |arg z| <

3π

4
, (56)

see [31], 7.2.2 and 7.12,1. With this, we find that the I(s

c)
contained in Sj behave in the limit as Is ∼ i/aj and Ic ∼ 0,

those contained in Tj behave as Is ∼ i/2aj and Ic ∼ 0, and
those contained in Ujk as Is ∼ i/a and Ic ∼ 0. For Tj , we
need also the limit of Jj , Eq. (54). The first term of Jj is a
constant cj , independent of ϕj . For the second term, we need
erf z for small values of z, erf z 	 2z/

√
π ; see [31], 7.6.1; this

yields ϕj/2aj . Thus, in the αj → 0 limit,

Sj 	 − 1

aj

cos ϕj , Tj 	 cj + ϕj

2aj

− 1

4aj

sin 2ϕj ,

Ujk 	 1

2

[
sin(ϕj − ϕk )

aj − ak

− sin(ϕj + ϕk )

aj + ak

]
. (57)

We now return to the expression of �p 	 eip·x �p in
Eq. (42). The terms ϕj/2aj = (−κj · x + δj )/2aj of Tj we
combine with the p · x at the exponent of eip·x to form the
term p̃ · x, where p̃ is the four-vector:

p̃μ ≡ pμ − e2

4c2

N∑
j=1

A2
j0

κjμ

(κj · p)
. (58)

We omit further the terms with the constants cj and δj

as they contribute irrelevant constant phases to �p. By in-
serting Eq. (57) in Eq. (42), we find for geometry (C) the
result

�p 	 exp i

⎧⎨⎩p̃ · x +
N∑

j=1

1

aj

[
−e

c
(Aj0 · p) cos ϕj + e2

8c2
A2

j0 sin 2ϕj

]

− e2

2c2

∑
1�k <

∑
j�N

(Aj0 · Ak0)

[
sin(ϕj − ϕk )

aj − ak

− sin(ϕj + ϕk )

aj + ak

]⎫⎬⎭. (59)

A somewhat similar result was obtained by Rosenberg and
Zhou in [7], Appendix B, using an approximation in which
they treated the mixed-mode term on the second line of our
Eq. (59) perturbatively [see their Eqs. (B6)–(B9)]. Being a
low-field approximation, their result does not contain any ref-
erence to the geometry of the beams (see end of our Sec. III).

Note that, from Eq. (58), we have

p̃2 +
⎛⎝m2c2 + e2

2c2

N∑
j=1

A2
j0

⎞⎠
= 1

8

(
e2

c2

)2 ∑
1�k <

∑
j�N

A2
j0A2

k0 fjk, (60)

with fjk = −λjk/ajak; see Eqs. (7) and (9). For both E±
cases, fjk < 0. It follows that now it is not possible to
define an exact “effective mass” m̃ (such that p̃2 + m̃2c2 = 0,

with m̃ depending only on the field amplitudes), because

the right-hand side of Eq. (60) depends on p via fjk . For
p � mc, fjk 	 (1/m2c2) and these terms can become large
at high intensities. For the relevance of the effective mass,
see [32].

Equation (59) is well defined only if aj − ak �= 0. For
configurations p, Aj (ϕj ) for which aj = ak, Eq. (59) contains
a singularity at the exponent. This could be a matter of
concern, as the role of the CBS, Eq. (59), is to form electron
wave packets by integration over p [see Eq. (63) below], just
as in the case of SBS. However, a closer analysis reveals
that there are no difficulties, as the singularities along the
hypersurfaces aj = ak are integrable in p space.

Let us now specialize Eq. (59) to the case of an elec-
tron in standing waves of linear polarization. Taking k ≡
k1= −k2, ω ≡ ω1 = ω2, and A0 ≡ A10 = − A20, the phases
become ϕ1 = (ωt − k · r), ϕ2 = (ωt + k · r) and the total
field is A = −2A0 cos ωt sin k · r. We find

�p 	 exp i

{
p̃ · x − 2

e

c

(A0 · p)

(ωE/c2)2 − (k · p)2
[(k · p) cos ωt cos k · r + (ωE/c2) sin ωt sin k · r]

+ e2

4c2

A2
0

(ωE/c2)2 − (k · p)2 [(ωE/c2) sin 2ωt cos 2k · r − (k · p) cos 2ωt sin 2k · r] + e2

4c2
A2

0

[
sin 2k · r

(k · p)
− sin 2ωt

(ωE/c2)

]}
,

(61)
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and the expression for p̃ resulting from Eq. (58). The singu-
larity at k · p = 0 derives from that at a1 − a2 = 0 in Eq. (59)
and the previous remark applies.

VI. WAVE PACKETS OF CBS

An important issue is the effect of the passage of crossed
beams over a free electronic (positive energy) wave packet
(wp) [33]. We write the wp at some time ti , before the arrival
of the radiation, as

�(r, ti ) =
∫

c(p)eip+·xi dp ≡
∫

c(p)ei(p·r−E+ti )dp. (62)

Initially, the wp undergoes the usual quantum-mechanical
spreading due to the term (−iE+t ) at the exponent. When the
crossed beams cover the area where the wp is located, the
plane waves eip+·xi become, in the reduced-equation approx-
imation, � (+)

p (r, ti ) 	 eip+xi �p(ϕ1, . . . , ϕN ) and the expres-
sion of the wp is

�(r, t ) =
∫

c(p)� (+)
p (r, t )dp ≡

∫
c(p)ei[p·r−E+t+χp (ϕ)]dp,

(63)
where the coefficients c(p) are the same as in Eq. (62) and we
have introduced the phase χp of �p(ϕ) ≡ eiχp (ϕ). At the end
of the pulse tf , when the fields have vanished and the electron
is again free, the final form of the wp is given by Eq. (63), with
χp(ϕ) replaced by χ∞

p , the limit of χp(ϕ) when all ϕj → +∞
(this is their limit for tf → ∞ and the finite distances imposed
by the wp). We have calculated this limit for a Gaussian
pulse in geometry (C) in Eq. (55), and have seen that the
original expansion coefficients c(p) got multiplied by a p-
dependent phase factor eiχ∞

p . Let us now show that this result
is general, valid for any beam geometry. Referring to Eq. (63),
the exponential in �(r, tf ) acquires an extra phase compared
to that in the initial �(r, ti ), Eq. (62), equal to

�p = χ∞
p − E+(tf − ti ). (64)

[Note that χp(tf ) ≡ χ∞
p , as the radiation vanishes for

t > tf .] The phase χp(ϕ) stays real from the beginning to
the end of the pulse and for any beam geometry. Indeed,
by inserting �p(ϕ) ≡ eiχp (ϕ) into Eq. (12), the equation for
χp(ϕ) has real coefficients, and with the initial condition
χp = 0 at ϕj → −∞ [corresponding to Eq. (3)], the function
χp(ϕ) stays real while propagating. Thus the final form of the
wp Eq. (63) contains the same eip+·xi as initially, but with the
different coefficients, c(p)ei�p . This means that we are still
dealing with an electronic wave packet and that crossed laser
beams cannot induce transitions to negative energy states
(create pairs), no matter how intense the field is (just as in
the single beam case). Moreover, as |c(p)ei�p |2 = |c(p)|2,
the momentum distribution remains unchanged. Whereas
these conclusions are exact in the SBS case, as they are based
on the exact SBS form of the equation for the distortion
factor �p, Eq. (6), in the CBS case they are based on the
reduced-equation approximation, Eq. (12).

Next, let us look more closely at the phase at the end of
the pulse �p , Eq. (64). To fix the ideas we shall consider
the case of geometry (C) for which the phase χ∞

p can be
obtained, at any intensity, by taking the limit ϕj , ϕk → ∞

in the exact Eq. (41) with a ≡ a+
j > 0. As noted, at lesser

intensities, the formula is valid for an arbitrary geometry. Let
us first show that the last integrals of Eq. (41) vanish in the
limit. Indeed, for the type of pulses we have chosen, Aj (ϕj )
has a maximum at ϕj = 0 and tends to zero for ϕj → ±∞.

The maxima of Aj (a+
j ζ ′ + ϕj ) and Ak (a+

k ζ ′ + ϕk ) will occur
at ζ ′

j = −(ϕj/a
+
j ) and ζ ′

k = −(ϕk/a
+
k,), respectively. For large

t and finite r, this means ζ ′
j 	 −(ωj/a

+
j )t, ζ ′

k 	 −(ωk/a
+
k )t.

When t → ∞, the separation of two points ζ ′
j and ζ ′

k grows
indefinitely. As the shape of the pulses stays the same, their
overlap tends to zero and so does the respective integral. (This
result is explicitly displayed in the special case of Gaussian
pulses by the terms Ujk; see end of Sec. IV.)

We shall now also assume that we are dealing with a wp of
low relativistic momenta. Expanding the a+

j to first order in
p/mc gives

a+
j 	 ωj

c
mc

(
1 − 1

mc
nj · p

)
. (65)

Inserting this into the first line of Eq. (41), we can write
χ∞

p 	 χ∞
0 + χ∞

p1, where χ∞
0 and χ∞

p1 are the contributions of
the p-independent and first-order p terms, respectively. The
χ∞

p1 term can be written as

χ∞
p1 = −p · �, � =

N∑
j=1

�j , (66)

�j ≡ − c

ωj

e

mc2

∫ ∞

−∞
Aj (ζ )dζ

+ nj

c

ωj

e2

2m2c4

∫ ∞

−∞
A2

j (ζ )dζ. (67)

Concerning the first term in Eq. (67), see [34]. When inserting
further χ∞

p into Eq. (63), we get for the wp at the end of the
pulse tf, at low relativistic momenta:

�(r, tf ) 	 eiχ∞
0

∫
c(p) ei[p(r−�)−E+tf ]dp

≡ eiχ∞
0 �̃(r − �, tf ). (68)

Here, eiχ∞
0 is a physically irrelevant constant phase factor

which can be omitted and �̃(r, t ) represents the wave function
of the initial wave packet Eq. (62) at time t , had it been
spreading in the absence of the field. With the field present,
a spatial shift � is superposed on the spreading. The value
of �j in Eq. (67) agrees with the classical displacement of
a charge e under the effect of a single beam; e.g., see [35],
Eq. (27), with r0 = 0, β0 = 0, γ0 = 1, ϕ = η, and note that
the (−e) it contains stands for e in our notation; see also [6],
Sec. II. The second term of Eq. (67) represents the Lorentz
displacement of a classical electron under the effect of the
beam. As opposed to SBS, for CBS � is the resultant of N

such displacements.

VII. CONCLUSION

Analytic solutions of the Klein-Gordon equation have been
found for crossed laser beams acting on an electron plane
wave, in the form �p = eip·x Fp(r, t ). They generalize the
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Gordon-Volkov single beam solutions. The field was con-
sidered to be a superposition of N beams Aj (ϕj ) of given
phases ϕj = ωj t − kj r+δj . For this type of field, we have
used an alternative method of solution to that in configuration
space, based on the “auxiliary variables” {ϕ1, . . . , ϕN }. By
setting Fp(r, t )≡F (ϕ1, . . . , ϕN ), the function F (ϕ1, . . . , ϕN )
should satisfy Eq. (6) and is shown to be equivalent to the
solution in configuration space if the boundary conditions
Eq. (11) are satisfied.

Finding exact solutions for Eq. (6) does not appear to be
possible. However, Eq. (6) displays the remarkable fact that
its second-order derivatives are multiplied by coefficients λij

that are small with respect to the coefficients of the first-order
derivatives Xj, in two cases: (A) the angles between the
beams are small; (B) if for all ωj we have ωj/mc2 � 1.
This suggests treating the second-order derivatives in Eq. (6)
as a perturbation of the part of the equation containing the
first-order derivatives, which we designate as the “reduced
equation,” Eq. (12). From the physical point of view, case
(B) is a valid approximation, as the ωj/mc2 are quite small
quantities up into the x-ray range and at this time there are no
intense lasers in sight to violate the approximation.

However, there is the mathematical difficulty that when-
ever the perturbing terms contain higher-order derivatives than
the unperturbed ones this gives rise to difficulties which can
invalidate regular perturbation theory. In such cases a special
form of perturbation theory needs to be applied — “singular
perturbation theory” (SPT). This endeavors one to construct
by successive approximations a solution which is indeed in-
finitesimally close to the exact solution when the perturbation
parameters λij tend to zero. We have not attempted to do this
and thereby rigorously justify the validity of the “reduced
equation approximation,” Eq. (12). Instead, we have shown
on typical soluble models of Eq. (6) that the assumption is
justified (see the Appendix) and have passed to the solution
of the reduced equation. We note, however, that the solution
of the exact equation will probably manifest new physi-
cal aspects at high frequencies ωj � mc2, requiring further
analysis.

The reduced equation can be solved exactly for certain
geometries (propagation directions of the beams; polarization
of the fields) by applying known mathematical methods for
first-order PDE. We have started with the case of pulsed
beams. The most general geometry solved is that in which the
propagation vectors of the beams are coplanar and the fields
are linearly polarized perpendicular to the propagation plane,
with the possible exception of two, which can be oblique to
it and can be elliptically polarized. This covers all config-
urations discussed in connection with physical applications.
In particular, it covers the most general configuration for two
crossed beams. An explicit solution was given for Gaussian-
shape pulses in one of the geometries considered. We have
considered further the case of crossed monochromatic plane
waves, treating it as a limiting case of the laser-pulse case.
Explicit solutions were given for some geometries, including
standing waves.

Finally, we have discussed the effect of the passage of
crossed beams over a free-electron wave packet. We have
found that the beams cannot change the momentum distri-
bution of the wave packet or induce transitions to negative

energy states (create pairs). However, this conclusion may
need to be revised upon consideration of the solutions of the
exact Eq. (6). We have also indicated how the classical free
particle Lorentz displacement shows up in the evolution of a
quantum-mechanical wave packet of CBS.

The Appendix contains a soluble model of the exact
Eq. (6). It illustrates the connection between the solutions of
the exact and the reduced equations, and justifies the reduced-
equation approximation.
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APPENDIX: MODEL PDE FOR ASSESSING THE
VALIDITY OF THE REDUCED-EQUATION

APPROXIMATION

In view of assessing the validity of the “reduced-equation
approximation” (12), with respect to the exact equation (6),
we have developed exactly soluble two-dimensional models
of hyperbolic PDE. Let us first explain how we have chosen
them.

Consider the physical case of geometry (C), Sec. III, for
two rays. The exact equation for �p, Eq. (6), has the form

λ
∂2F

∂x∂y
− ia

∂F

∂x
− i b

∂�

∂y
= f (x, y)�, (A1)

where x, y stand for the auxiliary variables ϕ1, ϕ2 and
λ > 0, a > 0, b > 0 are constants and f (x, y) is a real
function. In order to find a soluble model, it is preferable to
work with the equation for the phase ζ of � ≡ eiζ :

λ

(
∂2ζ

∂x∂y
+ i

∂ζ

∂x

∂ζ

∂y

)
− i a

∂ζ

∂x
− i b

∂ζ

∂y
= −i f (x, y). (A2)

This includes the term (∂ζ/∂ξ )(∂ζ/∂η) which, although non-
linear, contains only first-order derivatives that can be handled
by regular perturbation theory. As it is not interesting for our
purposes, it shall not be considered. Note that, as opposed to
Eq. (A1), the driving term f (x, y) appears in Eq. (A2) as an
inhomogeneity, which eases the solution. Although we have
considered the general case a �= 0, b �= 0, we shall present in
the following only the case a = 0. The general case is more
intricate and leads to the same conclusions.

The model we shall present is thus

λ
∂2ζII

∂x∂y
− i b

∂ζII

∂y
= −i f (x, y). (A3)

The subscript II refers to the fact that ζII (λ; x, y) is a solution
of a second-order PDE. Further, let us take the domain of
definition of the solution to be �L (−L � x < ∞, −L �
y < ∞), where eventually the limit L → ∞ will be taken.
We designate a subdomain in the vicinity of the border
along (x = −L, y = variable) and (x = variable, y = −L)
by DL. The inhomogeneity f (x, y) is assumed to vanish in
DL, together with its derivatives, as in the physical case; hence
f (x,−L) = f (−L, y) = 0.

Let us now consider the properties we should assign to the
quantities λ and b in order to emulate the physical situation;
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see Sec. II, cases (A) and (B). In case (A) λ is variable and
can be small, whereas b is a constant. In case (B), both λ and b

depend on a frequency parameter ω, as λ = c ω2 and b = c′ω,

where c, c′ are constants.
Under the change of unknown, ζII (λ ; x, y) = ei (b/λ) x

u(λ ; x, y), Eq. (A1) becomes

∂2u

∂x∂y
= − i

λ
e−i b

λ
xf (x, y). (A4)

The most general solution of Eq. (A4) is easy to find:

u(λ; x, y) = φ(x) + ψ (y) − i

λ

∫ y

−L

dη

∫ x

−L

dξ e−i b
λ
ξ f (ξ, η),

(A5)
and is expressed in terms of the two arbitrary functions
φ(x), ψ (y); see also [21], Chap. 4, Sec 1.

The corresponding solution ζII (λ; x, y) is then

ζII (λ; x, y) = ei(b/λ)x[φ(x) + ψ (y)]

− i

λ
ei b

λ
x

∫ y

−L

dη

∫ x

−L

dξ e−i b
λ
ξ f (ξ, η). (A6)

The solution takes at the boundaries of �L the values

ζII (ε; x,−L) = ei(b/ελ)x[φ(x) + ψ (−L)],

ζII (ε; −L, y) = e−i(b/ελ)L[φ(−L) + ψ (y)]. (A7)

As we want our model to simulate the physical situation,
we have to choose the functions φ(x), ψ (y) appropriately.
With � ≡ eiζ , the analog of the bc in Eq. (11) is that
ζII (λ; x, y) should vanish with its derivatives in DL. This
requires that both φ(x), ψ (y) be identically zero: φ(x) ≡
0, ψ (y) ≡ 0. Thus

ζII (ε; x,−L) ≡ 0, ζII (ε; −L, y) ≡ 0. (A8)

Moreover, since we have required that f (x, y) and its
derivatives vanish sufficiently rapidly in DL, we can allow
L → ∞ and write the solution of interest in whole space as

ζII (λ; x, y) = − i

λ
ei b

λ
x

∫ y

−∞
dη

∫ x

−∞
dξ e−i b

λ
ξ f (ξ, η). (A9)

Integrating here by parts and taking into account that
f (−∞, η) = 0, we get

ζII (λ; x, y) = 1

b

∫ y

−∞
f (x, η)dη − 1

b
ei b

λ
x

∫ y

−∞
dη

∫ x

−∞
dξ

× e−i b
λ
ξ ∂f (ξ, η)

∂ξ
. (A10)

The “reduced equation” associated with Eq. (A3) is

−i b
∂ζI (x, y)

∂y
+ i f (x, y) = 0, (A11)

differential in y, which should hold for all x. This gives for
any x, y

ζI (x, y) = 1

b

∫ y

−∞
f (x, η)dη + h(x), (A12)

where h(x) is an arbitrary function. As we want ζI (x, y) to be
able to approximate ζII (λ; x, y), we take h(x) so as to satisfy

the first bc for ζII in Eq. (A8); hence h(x) ≡ 0. Thus

ζI (x, y) = 1

b

∫ y

−∞
f (x, η)dη, (A13)

which is the first term of Eq. (A10). It is important to note that
consequently ζI (x, y) also satisfies the second bc in Eq. (A8).
Indeed, the integral in Eq. (A13) vanishes at x → −∞, as
f (x, y) → 0 when x → −∞, whatever y. The situation, in
which the solution of the reduced, first-order equation ζI (x, y)
can satisfy both bc of the exact second-order equation is
exceptional, typical of our physical problem.

The solution of Eq. (A3) we are interested in is finally

ζII (λ; x, y) = ζI (x, y) + R(λ; x, y), (A14)

where

R(λ; x, y) ≡ −1

b
ei b

λ
x

∫ y

−∞
dη

∫ x

−∞
dξ e−i b

λ
ξ ∂f (ξ, η)

∂ξ
. (A15)

The solution is unique, satisfying the bc in Eq. (A8). It is valid
for any constant values of λ, b (λ �= 0).

We are interested in the possibility of approximating
ζII (λ; x, y) by ζI (x, y) in cases (A) and (B). To assess
this possibility in case (A) we evaluate the magnitude of
R(λ ; x, y) at small λ > 0, with b constant. By performing the
change of variable t = −ξ + x, R can be written:

R(λ; x, y) = −1

b

∫ y

−∞
dη

∫ ∞

0
dt ei b

λ
t

[
∂f (ξ, η)

∂ξ

]
ξ=−t+x

.

(A16)

R(λ; x, y) is expressible as

R(λ; x, y) = −1

b

∫ y

−∞
I (ζ )dη, (A17)

in terms of the integral

I (ζ ) ≡
∫ ∞

0
eiζ t q(t )dt, (A18)

if we take

ζ ≡ b

λ
, q(t ) ≡

[
∂f (ξ, η)

∂ξ

]
ξ=−t+x

. (A19)

Equation (A18) is a Fourier integral, and its large ζ (small
λ) behavior is well known. One can write the expansion
(see [36], Chap. 3, Sec. 5.2 and also Chap. 4, Sec. 1.3)

I (ζ ) =
n−1∑
s=0

(
i

ζ

)s+1

q (s)(0) + Tn(ζ ), ζ → ∞, (A20)

where we have denoted q (s)(t ) ≡ dsq(t )/dts . It is assumed
that the individual terms of the series expansion of q(t ),
when inserted in Eq. (A18), give rise to convergent integrals
[37]. Moreover, it is shown that Tn(ζ ) = O(ζ−n−1) and hence
we are dealing with the “asymptotic expansion” of I (ζ ) for
ζ → ∞ (for definitions, see, e.g., Ref. [36], Chap. 1, Sec. 7;
Ref. [24], Chap. 2).

In our case q(t ), Eq. (A19), also depends on x, η, and
we shall write q (s)(0) ≡ q (s)(0; x, η). Inserting Eq. (A20) into
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Eq. (A17) gives

R(λ; x, y) = −1

b

n−1∑
s=0

(
i
λ

b

)s+1

×
∫ y

−∞
q (s)(0; x, η)dη + T̃n(λ; x, y). (A21)

As

q (s)(0; x, η) = (−1)s
∂s+1

∂xs+1
f (x, η), (A22)

Eq. (A21) can be expressed as

R(λ; x, y)

=
[

n∑
s=1

(
−i

λ

b

)s
∂s

∂xs

]
ζI (x, y) + O

((
λ

b

)n+1)
, (A23)

in terms of ζI (x, y), the solution of the reduced equation,
Eq. (A13). The expansion holds uniformly in x, y. Inserting
Eq. (A23) into Eq. (A14) we get the asymptotic expansion:

ζII (λ; x, y)

=
[

n∑
s=0

(
−i

λ

b

)s
∂s

∂xs

]
ζI (x, y) + O

((
λ

b

)n+1)
. (A24)

It follows from Eq. (A24)

|R(λ; x, y)| = |ζII (λ; x, y) − ζI (x, y)| = O

(
λ

b

)
, λ > 0.

(A25)

Thus, in case (A) at arbitrarily small λ, ζII (λ; x, y) can lie as
close to ζI (x, y) as desired, uniformly in x, y, and ζI (x, y) is
a good approximation [38]. Case (A) is the typical situation
considered in STP studies.

Case (B) is somewhat different. Now both λ and b de-
pend on the underlying parameter ω. The exact solution ζII ,

Eqs. (A14), (A15), as well as the reduced equation solution in
Eq. (A13), are proportional to 1/b = 1/(c ω), and are singular
at ω = 0. However, b ζII is finite for ω ↓ 0 and one can write
for it an expansion similar to Eq. (A24). Thereby, b ζII can be
brought as close as desired to b ζI as ω ↓ 0, or, equivalently,
ζII coincides with ζI to dominant order O(1/ω).

For both cases we can draw the Conclusion: the solution
ζII (λ; x, y) of the exact equation Eq. (A3) can be brought to
be arbitrarily close, to dominant order, to the solution ζI (x, y)
of the reduced equation (A11), uniformly in x, y. In case (A)
the dominant order with respect to the parameter λ is O(1)

and in case (B) the dominant with respect to ω is O(1/ω).
This supports the assumption made in Sec. II that the solution
of the reduced equation, Eq. (6), is a valid approximation and a
good starting point for a successive approximation procedure.

It is interesting to consider what SPT would give for our
model, in case (A). SPT seeks to construct a formal solution as
an expansion in powers of λ (for convenience we take i λ/b):

ζ SPT
II (λ; x, y) =

n∑
k=0

(
i
λ

b

)k

χ (k)(x, y) + Vn(ε; x, y), (A26)

starting with χ (0) ≡ ζI (x, y), the solution of the reduced
equation, Eq. (A13). In general, the expansion Eq. (A26)
should contain also “boundary layer functions” to accom-
modate for the initial condition of ζII (λ; x, y) that ζI (x, y)
cannot satisfy. In our case these are not needed, as we are
in the exceptional situation that ζI (x, y) can satisfy both
initial conditions for ζII . Inserting the expansion Eq. (A26)
in Eq. (A3), we get the sequence of equations

∂χ (k)

∂y
	 −∂2χ (k−1)

∂x∂y
(k � 1). (A27)

To integrate them we need to apply the bc for the exact
ζII , Eq. (A8). The latter require that, at x, y → −∞ (when
χ (0) → 0), the solution should vanish too, i.e., χ (k) → 0 for
all k. As a consequence, all arbitrary functions of x appearing
in the course of the integration should be taken zero. This
leads to

χ (k) = (−1)k
∂k

∂xk
χ0(x, y) (A28)

and the formal SPT expansion becomes

ζ SPT
II (λ; x, y) =

[
n∑

k=0

(
−i

λ

b

)k
∂k

∂xk

]
χI (x, y) + Vn(λ; x, y).

(A29)

By comparing Eqs. (A24) and (A29) we see that SPT re-
produces the asymptotic expansion of the exact result (with
no need for layer functions). On the basis of Eq. (A24), we
conclude that Vn = O((λ/b)n+1), uniformly in the variables.
(Of course, an independent SPT calculation would have to
prove this.) Because of the similarities of the model with the
physical case of Sec. II, we can expect this to happen also
in the latter case, i.e., the corrections to the reduced equation
approximation Eq. (12) can be obtained by successive approx-
imations.
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