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Duality of bounded and scattering wave systems with local symmetries
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We investigate the spectral properties of a class of hard-wall bounded systems, described by potentials
exhibiting domainwise different local symmetries. Tuning the distance of the domains with locally symmetric
potential from the hard-wall boundaries leads to extrema of the eigenenergies. The underlying wave function
becomes then an eigenstate of the local symmetry transform in each of the domains of local symmetry. These
extrema accumulate towards eigenenergies which do not depend on the position of the potentials inside the walls.
They correspond to perfect transmission resonances of the associated scattering setup, obtained by removing the
hard walls. We argue that this property characterizes the duality between scattering and bounded systems in
the presence of local symmetries. Our findings are illustrated through a numerical example with a potential
consisting of two domains of local symmetry, each comprised of Dirac δ barriers.
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I. INTRODUCTION

The existence of symmetries provides numerous advan-
tages to the study of a physical system, thereby yielding
significant fundamental and phenomenological insights. The
usual practice for most of the studied systems is to assume
a global symmetry, i.e., the symmetry holds for the complete
system under consideration. In this case, important properties,
such as the band structure in periodic settings [1] or the
classification into even and odd eigenstates for systems with
global reflection (inversion) symmetry [2], can be extracted.
However, due to the finite size of a realistic system as well
as to the inevitable existence of defects, a globally valid
symmetry constitutes an idealized scenario in nature. On the
other hand, exact or approximate symmetries which exist in
restricted spatial subdomains of a larger system are frequently
met. Such spatially localized symmetries can be intrinsic
in complex physical systems such as quasicrystals [3–5],
partially disordered matter [6], large molecules [7,8], and
biological materials [9].

Furthermore, contemporary technology requires structures
with specialized properties which are not always possible
to achieve in the presence of generic characteristics such
as a global symmetry or total disorder. In such cases, local
symmetries can be present by design, providing tailored prop-
erties and enhanced control in photonic multilayers [10–12],
semiconductor superlattices [13], magnonic systems [14], and
acoustic [15–17] and phononic [18–20] structures. With the
term local symmetries (LSs) we refer to symmetries which
are valid in spatial subdomains of the complete (embedding)
space; one possible way is to consider them as remnants of a
broken global symmetry.

The foundations of local symmetries and their impact in a
variety of scattering systems have been investigated in a se-

quence of recent works. A rigorous mathematical framework
for the description of symmetry breaking leading to local sym-
metries has been developed in Refs. [21–23], where nonlocal
invariant currents have been identified as remnants of broken
global symmetries. In Ref. [24] it was shown that the long-
range order and complexity of lattice potentials generated by
well-known binary aperiodic one-dimensional sequences can
be encapsulated within their local symmetry structure, while
in Ref. [25] the case of driven lattices was discussed. The scat-
tering properties of quantum and photonic aperiodic structures
were discussed in Refs. [26,27], answering the puzzling ques-
tion about the existence of perfect transmission resonances in
aperiodic systems and also providing a classification scheme
with respect to their kind. These theoretical findings were ex-
perimentally verified in Ref. [28] in the framework of acoustic
waveguides. Apart from continuous scattering systems, the
impact of local symmetries has been also investigated in the
framework of discrete systems [29]. In this context, the local
symmetry partitioning revealed possibilities for the design of
flat bands and compact localized states [30]. Very recently,
it was shown that the existence of local symmetries plays
a crucial role in the real-space control of edge states in
aperiodic chains [31] as well as in the wave delocalization and
transport between disorder and quasiperiodicity [32]. Thus,
the concept of local symmetries, even being a recent one, has
already led to a rich phenomenology and revealed properties
of fundamental importance.

Even though local symmetries in continuous scattering
and discrete systems have been extensively investigated in
the aforementioned works, their consequences and effects in
continuous bounded systems remain unexplored. The link
between bounded and unbounded systems is a long-standing
subject of study in quantum mechanics and in the more gen-
eral context of wave physics [33]. Several methods have been
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employed to describe how a bounded system is connected to
its open counterpart [34], since spectral properties usually can
be measured when the system is coupled to an environment,
leading, for instance, to the inside (bound states) -outside
(scattering) duality [35–37]. Another way to view and study
the bound-scattering duality is through the notion of qua-
sistates, namely, scattering resonances which become actual
bound states when the system closes [38,39]. Nonetheless,
here this link is studied under the prism of local symmetries.

As a step in this direction we explore in this work the prop-
erties of one-dimensional bounded systems with two locally
symmetric potential barriers, focusing on the case of local
reflection symmetries. We define as the setup the two locally
symmetric potential barriers along with the distance which
separates them, while the term system is used to describe the
entire potential landscape consisting of both the setup and the
bounding hard walls. Tuning the distance of the setup from
the left hard wall, we prove the existence of spectral extrema
where the mirror symmetry of the wave function is restored
inside each reflection symmetric potential barrier. We also
establish a link between the spectral properties of a generic
bounded system with two domains of local symmetry and the
properties of the respective scattering system. In particular, we
find that certain eigenenergies of the bounded system corre-
spond to the energies where perfect transmission resonances
(PTRs) manifest in the transmittance of its scattering coun-
terpart and we prove that these eigenenergies are unaffected
by the position change of the setup inside the walls. These
theoretical findings are numerically verified for a system with
two domains of local reflection symmetry comprised of Dirac
δ barriers.

The paper is organized as follows. In Sec. II we summarize
the key ingredients and present some basic results of scatter-
ing theory in systems with local symmetries. Also we intro-
duce the setups which we will employ, both in the scattering
and in the bounded context. In Sec. III we focus on the prop-
erties of a bounded system with local symmetries comprised
of Dirac δ barriers and discuss the relevant properties. We
also discuss the connection between certain bounded states
and PTRs. In Sec. IV we generalize rigorously our results
for a generic system with two domains of local symmetry
of arbitrary potential shape. Our results are summarized in
Sec. V.

II. OVERVIEW OF SCATTERING IN SYSTEMS
WITH LOCAL SYMMETRIES

A. Perfect transmission resonances

Scattering potentials possessing a global mirror symmetry
and the possibility of the occurrence of PTRs have been
directly linked to each other in several studies [40,41]. On the
other hand, the lack of such a symmetry usually leads to a non-
vanishing reflection of an incoming scattering wave. However,
the existence of PTRs in aperiodic [12] structures possessing
no global mirror symmetry has been reported. Recently, we
established [27] a classification of the possible PTRs which
occur in nonglobally symmetric systems. In particular, for
a system with local symmetries the PTRs can be classified
according to the symmetry of the wave-function modulus

SPTR

SPTR APTR

APTR

FIG. 1. (a) Transmittance setup. The two peaks correspond to a
SPTR and an APTR, respectively. Also shown is the magnitude of the
wave function at the wave numbers of the (b) SPTR and (c) APTR
shown in (a). Here D/d = 1.2644 (and L/d = 0.1321).

u(x) = |ψ (x)|. If u(x) is reflection symmetric within the
domains of local reflection symmetry then it is called a
symmetric PTR (SPTR), whereas if u(x) does not obey this
local symmetry it is called asymmetric PTR (APTR). In the
SPTR case each domain of local symmetry is individually
transparent. For APTRs the system is transparent only as a
whole.

Figure 1(a) shows the transmittance of the setup shown
in Fig. 2(a). The two peaks correspond to a SPTR and an
APTR, as their wave-function moduli indicate in Figs. 1(b)
and 1(c), respectively. Note here that the PTRs shown in
Fig. 1(a) do not occur by chance. The setup is designed
according to prescription based on local symmetries and the
parameters (indicated in Fig. 2) are suitably tuned in order
to emerge at the specific frequencies. Also, a different kind
of tuning is required for an APTR and a SPTR, respectively.
This design technique and a thorough investigation of the
scattering properties of the system which corresponds to the
transmittance shown in Fig. 1(a) can be found in Ref. [28].

B. Symmetry-induced invariant currents

Another important finding of our theoretical framework
on local symmetries is the existence of symmetry-induced
currents which are spatially invariant in domains where a
certain symmetry, i.e., reflection, translation, or PT symme-
try, is present. Employing a generic wave mechanical frame-
work, we consider a generalized Helmholtz equation ψ ′′(x) +
U (x)ψ (x) = 0, where U (x) is the generalized potential. In
this framework, it is possible to treat in a unified way different
wave mechanical systems of, e.g., photonic, acoustic, and
quantum mechanical origin. Assuming that the potential U (x)
obeys a symmetry transformation U (x) = U [F (x)] within a
domain D ⊆ R (D = R corresponds to a global symmetry), it
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FIG. 2. (a) Scattering and (b) bounded systems with local sym-
metries. Each potential subpart V1 and V2 is reflection symmet-
ric. The distances between the δ functions are equal to L1/d =
0.0884, L2/d = 0.3372, L/d = 0.1321, and L3/d = 0.2431 and the
strengths of the δ barriers are equal to c1 = 6.2492/d and c2 =
9.7766/d .

can be shown that a spatially invariant nonlocal current exists,

Q = 1

2i
[σψ (x)ψ ′(x̃)−ψ (x̃)ψ ′(x)] = const∀x, x̃ ∈ D.

(1)
This quantity plays a fundamental twofold role. It provides
the tool to systematically describe the breaking of discrete
symmetries, while it also generalizes the Bloch and parity
theorems for systems with broken translation and reflection
symmetry, respectively [21]. The quantity Q is of central
importance for this study. Note that, in bounded systems, since
the wave function is real, only the invariant current Q exists.
On the other hand, in scattering systems where the wave
function ψ (x) is complex, an additional invariant quantity

Q̃ = 1

2i
[σψ∗(x)ψ ′(x̃) − ψ (x̃)ψ ′∗(x)] = const∀x, x̃ ∈ D

(2)
emerges.

C. Description of the setup

Let us now describe the setup which we will use through-
out this work. Figure 2(a) illustrates a scattering system
comprised of seven Dirac δ barriers, forming two reflection
symmetric potential subparts denoted by V1 and V2 (colored
areas). The lengths of V1 and V2 are d1 and d2, respectively,
while their separating distance is L. Moreover, a1 and a2 stand
for the positions of the reflection centers of each subpart. The
parameters ci , i = 1, 2, represent the strength of the δ barriers
and r and t are the reflection and transmission coefficients,
respectively. A detailed study of the scattering properties of

this system and their experimental verification can be found
in Ref. [28]. Figure 2(b) shows the corresponding bounded
system, where the aforementioned setup is delimited by hard-
wall boundaries. The general characteristics remain the same.
However, the distance � which determines the distance from
the left wall plays a crucial role and in the following will
serve as our tuning parameter. In order to preserve the local
symmetries of the system for any value of �, namely, the
domains D1 and D2 being always reflection symmetric, L =
� + �̃ should hold [see Fig. 2(b)].

At this point we would like to emphasize the fact that
the duality between bounded and scattering systems, which is
established in this work, is not restricted to systems comprised
of δ barriers. In fact, it is general and valid for systems
with two domains of local reflection symmetry with potential
barriers of arbitrary shape, as it will be proven in Sec. IV.

III. LOCAL SYMMETRIES IN BOUNDED SYSTEMS

Several connections between bounded and scattering sys-
tems can be investigated. In this work we focus on bounded
systems and how they can be linked to their scattering coun-
terparts from the perspective of PTRs and local symmetries.
To this end, we consider the bounded version of our system as
shown in Fig. 2(b). We remind the reader that for the lengths
� and �̃, L = � + �̃ holds. With this choice, and employing
� as our tuning parameter with � ∈ [0, L], we ensure that
for any value of � the system is always decomposable into
two locally symmetric domains D1 and D2. Keeping L fixed
and varying �, we expect that the spectrum of the allowed
wave numbers will change continuously. During this variation
we will examine the spectral properties which emerge due
to the local symmetries. In order to render all quantities
dimensionless, we divide lengths and multiple wave numbers
by the distance d = d1 + d2, which is the sum of the width
of the two reflection symmetric potential barriers. We choose
this distance since it remains unaffected by the shifts of the
setup inside the boundaries.

Figure 3(a) shows the first six states of the bounded system
[see Fig. 2(b)] for L/d = 0.1321 and how these change as
� varies within the range [0, L]. The small figures on the
right provide a close-up of the selected curves for better
resolution. A striking characteristic is the perfectly flat black
solid line which indicates that the wave number κ remains
unaffected by the position of the setup inside the box. This
is an important observation because eigenenergies with this
property emerge in the respective scattering counterpart as
PTRs, offering the ground for establishing a duality between
open and closed systems. Figure 3(b) shows the transmit-
tance of the corresponding scattering system. The dashed
line indicates an APTR peak at k = 11.889/d. In Fig. 3(c)
we focus on the fourth state of Fig. 3(a) and examine its
behavior for several L values in the vicinity of L/d = 0.1321.
For L/d < 0.1321 each κ (�/d ) curve exhibits a minimum.
Exactly at L/d = 0.1321 the wave number κ = 11.889/d

becomes invariant with respect to the position of the setup
within the walls and this manifests through the flat solid line.
Remarkably, this κ value is identical to the k value of the
APTR in the transmittance of Fig. 3(b). For L/d > 0.1321
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FIG. 3. (a) Spectrum showing the first six states of the bounded system shown in Fig. 2(b) for L/d = 0.1321. As the tuning parameter �

varies in the range [0, L] the wave number κ varies continuously. The insets zoom into the curves to provide better resolution. (b) Transmittance
for the corresponding open system. The dashed line at k = 11.889/d indicates an APTR. (c) Fourth state of the spectrum of the bounded
system for different L values. For L/d = 0.1321 a duality between the open and closed systems occurs connecting the PTR wave number
k = 11.889/d and the invariant bounded state κ = 11.889/d . (d) Wave function which follows the local symmetries of the setup at the
maximum indicated with the triangle.

the κ (�/d ) curves exhibit maxima. All extrema approach the
flat line of L/d = 0.1321.

It is obvious that for each L value, both the spectrum
of the bounded system and the transmittance of the scat-
tering system will change. Nevertheless, the aforementioned
correspondences can be identified. In Fig. 4 the respective
properties of the system for L/d = 0.3025 are discussed.
Figure 4(a) shows five states of the spectrum and how these
change as � varies within the range [0, L]. The eigenstate
which is invariant under � shifts corresponds to the SPTR
shown in the transmittance of Fig. 4(b). In Fig. 4(c) the
dependence of the second state as L changes is shown.
The pattern is the same as in the previous example. For
L/d = 0.3025 the wave number κ = 6.525/d remains con-
stant as the � changes. For this L value the transmittance
exhibits a SPTR peak at the same wave number k = 6.525/d.

For L/d �= 0.3025, κ (�/d ) possess extrema, which saturate to
the flat line.

Another very interesting property which is observed here
relates the extrema of the κ (�/d ) curves with the local sym-
metries of the setup and the form of the wave function.
In particular, at every extremum of the κ (�/d ) curves, the
wave function becomes an eigenstate of the local reflection
symmetry transform and follows the local symmetries of the
setup. Figures 3(c) and 3(d) illustrate this case. In particular,
Fig. 3(d) shows the wave function at the maximum of the
curve for L/d = 0.1439 (the correspondence is indicated by
the �). It is clear that the wave function is (locally) parity
definite within the local symmetry domains D1 and D2 of
the setup. The same holds for the system in Fig. 4. The
wave function in Fig. 4(d) corresponds to the minimum of
the κ (�/d ) curve for L/d = 0.2840 (see the �) and is locally

FIG. 4. (a) Spectrum showing five states of the bounded system shown in Fig. 2(b), this time for L/d = 0.3025. As � varies in [0, L]
the wave number κ varies continuously. (b) Transmittance for the corresponding open system. The dashed line at k = 6.525/d indicates an
SPTR. (c) Second state of the spectrum of the bounded system for different L values. For L/d = 0.3025 a duality between the open and closed
systems occurs connecting the PTR wave number k = 6.525/d and the invariant bounded state κ = 6.525/d . (d) Wave function which follows
the local symmetries of the setup at the minimum indicated with the down triangle.
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FIG. 5. (a) Transmittance of the setup shown in Fig. 2(a) for
L/d = 0.2183. The dashed line corresponds to a PTR which occurs
for the specific L/d = 0.2183 choice at k = 16.626/d . (b) Variation
of the seventh state with �/d of the spectrum of the respective
bounded system for several L choices around L/d = 0.2183. Each
κd vs �/d curve exhibits one minimum and one maximum. For
L/d = 0.2183 the wave number (κ = 16.626/d) is independent of
� with a value coinciding with the wave number k of the APTR. Also
shown are the wave functions at the (c) maximum and (d) minimum
of the first curve (indicated by up and down triangles, respectively).
Here the wave function becomes an eigenstate of the local symmetry
transform.

parity definite following the symmetries of the D1 and D2.
This correspondence between the κ (�/d ) extrema and the
local symmetry properties of the wave function provides a
systematic attempt to investigate the manifestation of local
symmetries in bounded systems.

In fact, there are κ (�/d ) curves which may possess more
than one extrema, such as those shown in Fig. 5(b). These
curves correspond to the seventh state of a bounded system
for several L values around L/d = 0.2183. The flat line
occurs for this L at κ = 16.626/d and again benchmarks the
appearance of an APTR in the corresponding scattering setup,
as indicated in Fig. 5(a), a finding which supports the duality
between open and closed systems at the PTR wave numbers.
Figures 5(c) and 5(d) illustrate the wave function at the two
extrema of the first curve (marked with the up and down
triangles). In both cases, it becomes parity definite within the
two domains of local symmetry D1 and D2. Note that the
fifth state in Fig. 4(a) also possesses two extrema. However,
we showed the case of a different setup in order to stress
further the correspondence between PTRs and translationally
invariant bound states.

Note that this bound-scattering duality and the manifes-
tation of local symmetries on the extrema are not system
specific. Our conclusions will be rigorously proven and gen-
eralized for systems with two locally symmetric potential do-
mains of arbitrary shape in the following section. To conclude
this section we summarize our key findings in the following,
which hold for the general case. Consider a bounded system
which consists of two domains of local symmetry D1 and
D2, each with a reflection symmetric potential V1 and V2

of arbitrary shape and finite support. Between this system

FIG. 6. Schematic of a bounded system with hard-wall boundary
conditions containing two domains of local symmetry D1 and D2. In
regions I–III the potential vanishes.

and its scattering counterpart the following duality holds.
(i) Starting from a bounded system, if a bound state with
wave number κ is invariant with respect to translations of
the setup inside the cavity, then it corresponds to a PTR
(asymmetric or symmetric) in the corresponding scattering
system with incoming wave number k = κ . (ii) Starting from
a scattering system, the existence of an APTR in a scattering
system at k is equivalent to a bound state with wave number
κ = k which is invariant under translations of the (same) setup
inside the cavity. The reason that we discriminate SPTRs
from APTRs is because the wave number k of an APTR will
always emerge as an eigenstate with wave number κ in the
corresponding bounded system. This one-to-one correspon-
dence between scattering and bounded systems exists because
the APTR occurs for a specific distance L between the two
locally symmetric scatterers. For the SPTR, on the other
hand, this one-to-one correspondence between scattering and
bounded systems would not be possible because it appears
in the transmittance for any distance L between the locally
symmetric scatterers [27]. In this case, all bounded systems’
spectra for all different L values would have an eigenstate at
the same κ , which is not possible. Nevertheless, if the bounded
system has an eigenstate at a κ value which coincides with
the k wave number of an SPTR of its scattering counterpart,
then the equivalence between the SPTR and the bound-state
translation invariance is preserved (case shown in Fig. 4).
(iii) All extrema which emerge in the κ (�/d ) curves corre-
spond to states which are eigenstates of the local reflection
symmetry transform and the wave function is parity definite
inside D1 and D2.

IV. GENERALIZATION FOR AN ARBITRARY BOUNDED
SYSTEM WITH TWO DOMAINS OF LOCAL SYMMETRY

In this section we will generalize the results presented
above for arbitrary bounded systems with two domains of
local symmetry. In order to prove the above statement we
employ the transfer matrix (TM) approach to connect the wave
fields in the regions I, II, and III of the system, as shown in
Fig. 6. Since I–III are potential-free regions, the wave function
will be of the form

ψm(x) = Ameiκx + Bme−iκx, m = I, II, III. (3)
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The connection between ψI and ψII is provided by the TM,
which reads, for a Hermitian system,

MDj
=

[
wj zj

z∗
j w∗

j

]
, j = 1, 2. (4)

Here j = 1, 2 corresponds to the TMs of the LS symmetric
subparts defined on D1 and D2, respectively. For the TM
elements it holds that wj = 1/tj and zj = r∗

j /t∗j , where tj and
rj are the transmission and reflection amplitudes of the j th
potential unit, respectively.

Positioning the first wall at x = 0, the wave function
should be zero there, i.e., ψ (0) = 0, leading to the condition
AI = −BI and subsequently to

AII

BII
= −z1ce

−2iκa1 + w∗
1c

z∗
1ce

2iκa1 + w1c

, (5)

connecting regions I and II. Note here that the index c in the
TM elements (referring to centered) corresponds to the TM
for D1 centered at x = 0. The shift to the actual position of
D1 in our setup is realized by the phases in Eq. (5), with a1

being the position of the reflection axis of D1.
In the same manner, taking the wave function to be zero

at the second wall ψ (D) = 0, we find the condition BIII =
−AIIIe

2ikD , which in turn leads to the relation

AII

BII
= w2c − z2ce

−2iκa2e2iκD

z∗
2ce

2iκa2 − w∗
2ce

2iκD
, (6)

connecting the plane-wave coefficients in regions II and III.
Here a1 and a2 correspond to the mirror symmetry center of
the two scatterers (see Fig. 6). In turn, Eqs. (5) and (6) yield

G = z1ce
−2iκa1 + w∗

1c

z∗
1ce

2iκa1 + w1c

+ w2c − z2ce
−2iκa2e2iκD

z∗
2ce

2iκa2 − w∗
2ce

2iκD
= 0, (7)

which involves only the wave number κ and the characteristic
parameters of the system which are included in the TM
elements wjc and zjc (j = 1, 2). In order to facilitate the
mathematical computations we consider only the numerator
of Eq. (7), which we set as F . Since we are interested
in the behavior of κ with respect to � it is sufficient to calculate
the total derivative of F with respect to � and then calculate
the derivative dκ/d�,

dF
d�

= ∂F
∂�

+ ∂F
∂κ

dκ

d�
= 0, (8)

which leads to

dκ

d�
= −

∂F
∂�

∂F
∂κ

. (9)

Therefore, the behavior of the wave number κ with respect to
� can be investigated via the term ∂F/∂�. Note that in order to
find dF/d� we have expressed a1,2 with respect to �, d1, d2,
and L, namely, a1 = � + d1/2 and a2 = � + d1 + L + d2/2.
Then the latter is written as

∂F/∂� = 2iκ[eiκP (w∗
1cz

∗
2c + z∗

1cw2ce
−iκD )

+ e−iκP (w1cz2c + z1cw
∗
2ce

iκD )], (10)

where P = 2� + d1. In the following we will show that this
equation has a very instructive form regarding the emergence

of local symmetries. To this end, we employ the existence of
the symmetry-induced invariant current Q for reflection sym-
metry, as defined in Eq. (1). Given the plane-wave solution in
the potential-free regions I–III [see Eq. (3)], we find that the
form for Q1 and Q2 in the LS domains D1 and D2 is

Q1 = κ (AIAIIe
2iκa1 + BIBIIe

−2iκa1 ), (11a)

Q2 = κ (AIIAIIIe
2iκa2 + BIIBIIIe

−2iκa2 ), (11b)

where Aj and Bj are the plane-wave coefficients in regions
I–III and κ is the wave number of the specific eigenstate. We
stress here that Q can be calculated taking into account only
the potential-free regions I–III, since, due to the symmetry,
it is independent of the exact potential form (see Ref. [21]).
Note also that Eqs. (11a) and (11b) have no dependence on x,
signaling its spatial invariance. Focusing on the setup shown
in Fig. 1, we find that Q1 for the domain D1 reads

Q1 = kAIBII

(
AII

BII
e2iκa1 + e−2iκa1

)
, (12)

where we have used the condition BI = −AI. The behavior of
Q1 determines the LS properties of the wave function in the
domain D1. In particular, if Q1 = 0 the wave function inside
D1 will be parity definite. Substituting Eq. (5) into Eq. (12)
and setting Q1 = 0, we find

z1c = 1
2 (w1ce

−iκP − w∗
1ce

iκP ), (13)

where we have used the property z1c = −z∗
1c, which holds for

the TM of reflection symmetric potentials. Following the same
procedure for the domain D2 and for Q2 = 0, we find

z2c = 1
2 (w2ce

iκPe−iκD − w∗
2ce

−iκPeκkD ). (14)

We stress here that when Eqs. (13) and (14) hold, then the
wave function is parity definite inside D1 and D2, respectively.

The next step is to substitute Eqs. (13) and (14) into
Eq. (10). This allows us to focus on the behavior of the
quantity ∂F/∂� when the wave function is parity definite in
both domains D1 and D2. After some algebraic manipulation,
we find that ∂F/∂� = 0 and in turn that

dκ/d� = 0. (15)

Therefore, the restoration of LS in the wave function (i.e., the
field is parity definite inside D1 and D2, and Q1 = Q2 = 0)
in any structure comprised of two barriers of arbitrary shape
obeying the corresponding local symmetry manifests as an
extremum in the κ vs � curve.

The implications of Eq. (15) on bounded systems provide
also certain interesting links to their corresponding scatter-
ing counterparts. The transition from the bounded system
to the scattering one is achieved by removing the hard-wall
boundaries, leaving the system otherwise unaffected. Then,
on either side of the setup, the potential vanishes and the
wave function can be described by plane waves. Here the
asymptotic conditions are described by incoming and outgo-
ing waves of the form ψI(x) = eikx + re−ikx and ψIII(x) =
teikx , respectively. Note that k is the continuous wave number
of the scattering system, while r and t are the transmission
amplitudes.

Then we can distinguish two cases of particular interest
which render Eq. (10) [and consequently Eq. (15)] also equal
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to zero. These cases provide the connection between special
spectral points of the bounded system and the wave numbers
where PTRs occur in the transmittance of the respective
scattering system. For clarity, we denote by ks and ka the
wave numbers where the SPTR and APTR occur, respectively.
Therefore, we have the following κ values.

(i) κ = ks . At this κ value the corresponding scattering
system exhibits a SPTR. In the case of a SPTR both potential
parts are independently transparent (for a detailed analysis
see Ref. [27]). The independence refers to the fact that their
distance L is irrelevant to their transparency. In terms of the
TM formalism, this occurs when the antidiagonal terms are
z1c(ks ) = z2c(ks ) = 0. In this case (κ = ks) Eqs. (10) and (15)
become zero independently of the � value. Therefore, the
eigenstate with κ = ks will be invariant under translations of
the setup inside the cavity and the κ vs �/L curve will appear
as a horizontal line. We recall here that for the scattering
system the SPTR at ks will appear for any distance L between
the two scatterers. On the other hand, for the bounded system
not all L values will yield an eigenstate at κ = ks . If, however,
an eigenstate with κ = ks exists in the spectrum, then it will
have the aforementioned translation invariance property.

(ii) κ = ka . At this κ value the corresponding scattering
system exhibits an APTR. In the case of an APTR the
complete setup, i.e., the combination of the two subparts,
is transparent. Then the off-diagonal terms of the total TM,
which is the product MD1 × MD2 of the two individual TMs,
is given by ztot = w1cz2c + z1cw

∗
2ce

−iκD , which (along with
its complex conjugate) are the quantities in the parentheses
in Eq. (10). Apparently, for the reflectionless state we have
ztot = 0 and consequently Eq. (10) [and Eq. (15)] becomes
zero. Therefore, also this κ = ka value will be unaffected by
the � variation and will appear as a horizontal line in the κ vs
� diagram. Here, contrary to the SPTR, the distance L plays
a major role in the transparency, since an APTR corresponds
to a specific distance L. This leads to fact that there is always
a correspondence between an APTR of a scattering system
at ks and a translation-invariant bound state of its bounded
counterpart at κ = ks .

Inversely, it holds that a translation-invariant bound state at
κ value will manifest in the transmittance of the corresponding
scattering system as a PTR.

As a final comment, we stress that throughout our analysis
we have employed transfer-matrix-based techniques, both for
the numerical and for the analytical results. However, different
and powerful techniques, such as Green’s function methods
[38,42], could possibly be employed.

V. CONCLUSION

We have explored a generic bounded system with hard-
wall boundary conditions, consisting of two locally reflection
symmetric potential barriers. Focusing on the variation of the
energy eigenvalues by tuning the position of the potential units
inside the box, we proved the existence of spectral extrema
where the mirror symmetry of the wave function is restored
inside each locally symmetric potential barrier. These extrema
accumulate to eigenenergy values which coincide with the
energies where perfect transmission resonances emerge in
the transmittance of the associated scattering system. This
behavior is a benchmark of the duality between scattering
and bounded systems in the presence of locally symmetric
potential landscapes. It is exemplified in this work for a
system with two domains of local symmetry comprised of
Dirac δ barriers. Our work could facilitate the design of cav-
ities with prescribed spectral and wave-function properties.
The established duality opens the perspective of linking and
controlling bounded versus scattering setups. Not only can a
bounded system be designed to possess LS symmetric wave
functions, but its opening up to a scattering device leads also
to an infinite-range extension via PTRs to the outside region.
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