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Decoherence of quantum systems sequentially interacting with a common environment
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A composite quantum channel is derived for two independent quantum systems that interact sequentially
with a common environment. One of the two quantum systems first interacts with the environment for a finite
time, and after that the other one interacts with the same environment. In the process, the environment does not
simultaneously interact with the two quantum systems. It is important to note that the second quantum system
interacts with the environment that has been disturbed by the first one. As a result, the correlation between
the two quantum systems, not directly interacting with each other, is created through the environment. An
approximation to the composite quantum channel is also provided, which is applicable if a correlation time
of the environment is not so long. When two independent qubits interact sequentially with a common bosonic
environment via a dephasing coupling, it is explicitly shown that the time evolution of the second qubit can be
non-Markovian due to the disturbance effect caused by the first qubit, even if the time evolution of the first qubit
is Markovian. Entanglement, total, classical, and quantum correlations are calculated to find how the disturbance
affects bipartite correlations. Furthermore, in state transmission through the composite quantum channel, it is
found that the fidelity of quantum states can be enhanced by the disturbance effect.
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I. INTRODUCTION

A quantum system in the real world is not isolated from its
surrounding environment, which includes a thermal reservoir,
a measurement apparatus, and a controller. Such a quantum
system is referred to as an open system [1–8]. An interaction
with an environment leads to irreversible time evolution of
an open quantum system, during which quantumness of the
system is degraded and disappears eventually. Quantumness
means coherence, quantum correlation, entanglement, nonlo-
cality, and so on [9–14]. To study how quantumness of an open
system is destructed during irreversible time evolution is of
great importance not only on the basis of quantum mechanics
[15] but also in quantum information processing [16]. Hence
open quantum systems have been studied extensively by many
authors [17–38]. To investigate their properties, several meth-
ods have been developed, including the phenomenological
method [39–41], the stochastic Schrödinger equation [6,7],
the quantum master equation [2,4], the classical stochastic
method [1,2], and the path integral method [42,43]. These
methods provide a reduced density operator of a relevant
quantum system, which is derived from whole dynamics by
eliminating environmental degrees of freedom. A reduced
density operator can explain all the statistical properties of
single-time events that occurred in an open quantum system.
Recently, several methods for calculating two- and multitime
correlations functions of open quantum systems have been
formulated [44–48]. A two- or multitime correlation function
of an open quantum system plays an important role in the
linear-response theory [2,49–52], the weak values of postse-
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lected quantum systems [53–58], and the temporal nonlocality
(the Leggett-Garg inequalities) [59–63].

An environmental system is usually assumed to be in
a thermal equilibrium state. Thus it may be interesting to
consider the degradation of quantumness of an open system
if an environmental state is not in a thermal equilibrium
state. For instance, let us consider that two quantum systems
interact sequentially with a common environment. One of
the two quantum system is transmitted from a sender to a
receiver through a noisy environment. After its arrival at the
receiver, the other quantum system is sent through the same
environment. In this case, although the first quantum system
interacts with the environment in a thermal equilibrium state,
the second one may interact with the environment in a non-
stationary state that has been created by the interaction with
the first quantum system. Such state transmission has been
phenomenologically treated in previous works to show that
correlation between two input states can enhance the channel
capacity of classical information [64–66]. In these works, a
disturbance effect has been taken into account as a memory
effect of the Kraus operators describing the quantum channel.
However, it should be noted that the whole quantum channel
itself is Markovian in the sense that the quantum channel is
described in terms of the time-independent Kraus operators.
Thus in the present paper we formulate the problem micro-
scopically and derive a general expression of a composite
quantum channel describing time evolution of two quantum
systems that interact sequentially with a common environ-
ment. Applying the result to a two-qubit system that interacts
with a bosonic environment via a dephasing coupling, we in-
vestigate how the disturbance caused by the first qubit affects
the non-Markovianity of the reduced time evolution of the
second qubit [67–72]. The degradation of entanglement, total,
classical, and quantum correlation between the two qubits
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are also investigated [73–76]. Furthermore, state transmission
through the composite quantum channel is examined. We will
find that the disturbance effect decreases an individual fidelity
while it can enhance a collective fidelity.

This paper is organized as follows. In Sec. II, we derive
a general formula for a composite quantum channel that
describes the time evolution of two quantum systems, each
of which interacts sequentially with a common environment.
It will be determined how the quantum system is influenced
by the environment that is disturbed by the other system. An
approximation to the quantum composite channel is provided,
which is valid if a correlation time of the environment is not
so long. In Sec. III, we investigate the non-Markovianity when
the two quantum systems are qubits and have a dephasing
coupling with a bosonic environment. It is shown that the
disturbance effect of the environment caused by the first qubit
enhances the non-Markovianity of the second one. In Sec. IV,
we clarify the disturbance effect on bipartite correlation of the
qubits, including entanglement, total, classical, and quantum
correlations. In Sec. V, we consider state transmission of
two qubits through the composite quantum channel. It will
be shown that the disturbance by the qubit has a negative
effect when the transmission is treated individually for the two
qubits while it has a positive effect when the transmission is
treated collectively. In Sec. VI, we give a brief summary of
this paper.

II. QUANTUM CHANNELS FOR QUANTUM SYSTEMS

We suppose that two quantum systems A and B are sequen-
tially transmitted from a sender to a receiver through a noisy
environment R. First the quantum system A is propagated
from time t0 to time t1. After the quantum system A is
received, the other system B is propagated from time t2 to time

t3. Here it is important to note that the environment R does not
interact simultaneously with the two quantum systems during
the transmission, that is, the inequality t0 < t1 � t2 < t3 is
satisfied. This assumption is essential for our consideration.
The transmission times t1 − t0 and t3 − t2 of the quantum
systems A and B may be different. The characteristic feature
is that the quantum system B is influenced by the environment
R that has been disturbed by the quantum system A. It may
be reasonable to consider that if the time difference t2 − t1
is much larger than the correlation time of the environment R,
the disturbance effect is negligible. The whole process that we
consider in this paper is depicted in Fig. 1.

To derive a quantum channel that describes how the two
quantum systems evolve in time, we denote Hamiltonians
of the quantum systems A and B and the environment R,
respectively, as HA, HB , and HR . The interaction Hamil-
tonians are HAR and HBR . An initial state prepared at the
time t = t0 is assumed to be described by a density operator
ρ in

ABR = ρ in
AB ⊗ ρ

eq
R . The two quantum systems A and B may

be initially correlated with each other while the environment
R is initially in a thermal equilibrium state and does not have
any correlation with the quantum A or B. For the sake of
simplicity, we assume that the two quantum systems A and
B remain unchanged after and before the interaction with the
environment R (outside the environment R). Since the whole
system evolves by HA + HR + HAR from t0 to t1, by HR from
t1 to t2, and by HB + HR + HBR from t2 to t3, the output state
ρout

ABR is given by

ρout
ABR = e(LB+LR+LBR )(t3−t2 )eLR (t2−t1 )e(LA+LR+LAR )(t1−t0 )ρ in

ABR,

(1)

where the Liouvillian superoperator LX is defined by LX• =
−(i/h̄)[HX, •] with X = A,B,R,AR,BR [2,4]. The

FIG. 1. A schematic representation of the whole process. (a) The quantum system A begins interacting with the environment R at time t0
and (b) continues to interact until time t1. (c) The disturbance caused by the quantum system A is left in the environment after the interaction.
(d) The quantum system B starts interacting with the environment R at time t2 and (e) continues to interact until time t3. (f) All the processes
are finished at time t3. The environmental system does not simultaneously interact with the quantum systems A and B.
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reduced output state of the quantum systems A and B

is obtained by tracing out the environmental degrees of
freedom,

ρout
AB = VAB (t3, t2; t1, t0)ρ in

AB, (2)

where the composite quantum channel VAB (t3, t2; t1, t0) for
the quantum systems A and B is given by

VAB (t3, t2; t1, t0)

= 〈e(LB+LR+LBR )(t3−t2 )eLR (t2−t1 )e(LA+LR+LAR )(t1−t0 )〉R,

(3)

with 〈· · · 〉R = TrR[· · · ρeq
R ]. If there is no initial correlation

between the two quantum states, we can obtain the reduced
quantum states ρout

A = TrBρout
AB and ρout

B = TrAρout
AB by substi-

tuting ρ in
AB = ρ in

A ⊗ ρ in
B into Eq. (3),

ρout
A = VA(t1, t0)ρ in

A , (4)

ρout
B = VB (t3, t2|t1, t0)ρ in

B . (5)

The reduced quantum channel VA(t1, t0) for the system A is
given by

VA(t1, t0) = 〈e(LA+LR+LAR )(t1−t0 )〉R. (6)

On the other hand, the reduced quantum channel
VB (t3, t2|t1, t0) for the system B includes the disturbance
effect caused by the system A, which has already interacted
with the environment R,

VB (t3, t2|t1, t0) = TrR[e(LB+LR+LBR )(t3−t2 )ρR (t2|t1, t0)], (7)

where ρR (t2|t1, t0) is the environmental state disturbed by the
quantum system A,

ρR (t2|t1, t0) = eLR (t2−t1 )〈e(LA+LR+LAR )(t1−t0 )〉Aρ
eq
R , (8)

with 〈· · · 〉A = TrA[· · · ρ in
A ]. If a correlation time of the en-

vironment is sufficiently short in comparison with the time
difference t2 − t1, we expect that the environment returns
to the thermal equilibrium state before interacting with the
quantum system B, that is, ρR (t2|t1, t0) = ρ

eq
R . In this case,

the composite quantum channel is factorized into the individ-
ual quantum channels, that is, VAB (t3, t2; t1, t0) = VB (t3, t2) ⊗
VA(t1, t0) with VB (t3, t2) = 〈e(LB+LR+LBR )(t3−t2 )〉R .

Our task is to find the composite quantum channel
VAB (t3, t2; t1, t0) by calculating the partial average with re-
spect to the environment R. This can be done by making
use of the method that has been developed for calculat-
ing a reduced density operator [77] and a two-time cor-
relation function [48] of an open quantum system in con-
tact with a Gaussian environment. First we rewrite Eq. (3)
into the interaction picture. To do this, we use the two
identities

e(LB+LR+LBR )(t3−t2 )

= e(LB+LR )(t3−t0 )VBR (t3, t2|t0)e−(LB+LR )(t2−t0 ), (9)

e(LA+LR+LAR )(t1−t0 ) = e(LA+LR )(t1−t0 )VAR (t1, t0|t0), (10)

with

VBR (t3, t2|t0) = T exp

(∫ t3

t2

dτ LBR (τ |t0)

)
, (11)

VAR (t1, t0|t0) = T exp

(∫ t1

t0

dτ LAR (τ |t0)

)
, (12)

where T stands for the time-ordering operation that the
superoperators LAR (τ |t0) and LBR (τ |t0) are placed from
the right to the left of in chronological order, and the Li-
ouvillian superoperators LBR (t |t0) and LBR (t |t0) are given
by

LBR (τ |t0) = e−(LB+LR )(τ−t0 )LBRe(LB+LR )(τ−t0 ), (13)

LAR (τ |t0) = e−(LA+LR )(τ−t0 )LARe(LA+LR )(τ−t0 ). (14)

Substituting Eqs. (9) and (10) into Eq. (3), we obtain

VAB (t3, t2; t1, t0) = eLB (t3−t0 )+LA(t1−t0 )TrR

[
VBA(t3, t2|t0)

×VAR (t1, t0|t0)ρeq
R

]
e−LB (t2−t0 ), (15)

where we have used the commutativity [VAR (t1, t0|t0), LB] =
[VBR (t2, t1|t0), LA] = 0. Here it is convenient to intro-
duce the superoperators LABR (τ |t0) and V̂AB (t3, t2; t1, t0)
by

LABR (τ |t0) = θ (τ − t2)LBR (τ |t0) + θ (t1 − τ )LAR (τ |t0),

(16)

V̂AB (t3, t2; t1, t0) = TrR

[
T exp

(∫ t3

t0

dτ LABR (τ |t0)

)
ρ

eq
R

]
,

(17)

where θ (t ) is the usual step function [θ (t ) = 1 for t � 0 and
otherwise zero]. Then we can express the quantum channel
VAB (t3, t2; t1, t0) as

VAB (t3, t2; t1, t0)

= eLB (t3−t0 )+LA(t1−t0 )V̂AB (t3, t2; t1, t0)e−LB (t2−t0 ). (18)

To proceed further, we assume that the interaction Hamil-
tonians are given by HAR = h̄A ⊗ R and HBR = h̄B ⊗ R,
where A and B are observables of the quantum systems and
R is an environmental operator. The generalization to HAR =∑

j Aj ⊗ Rj and HBR = ∑
j Bj ⊗ Rj is straightforward.

In the interaction picture, we have HAR (t |t0) = h̄A(t |t0) ⊗
R(t |t0) and HBR (t |t0) = h̄B(t |t0) ⊗ R(t |t0) with X(t |t0) =
e−LX (t−t0 )XeLX (t−t0 ) = eiHX (t−t0 )/h̄Xe−iHX (t−t0 )/h̄ (X = A,B).
Then the quantum channel V̂AB (t3, t2; t1, t0) becomes

V̂AB (t3, t2; t1, t0)

= TrR

[
T exp

(
−i

∫ t3

0
dτ [S(τ |0) ⊗ R(τ |t0)]×

)
ρ

eq
R

]
,

(19)

with X×• = [X, •] and

S(τ |t0) = θ (τ − t2)B(τ |t0) + θ (t1 − τ )A(τ |t0). (20)
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Furthermore we assume that the environment is Gaussian.
This means that all the time-ordered cumulants of R(t |t0)
higher than the second order vanish in the thermal equilibrium
state ρ

eq
R . Using the method for calculating reduced density

operators [77–79], we can derive from Eq. (17)

V̂AB (t3, t2; t1, t0)

= T exp

(
−

∫ t3

t0

dτ

∫ τ

t0

dτ ′ S×(τ |t0)[CR (τ−τ ′)S×(τ ′|t0)

+ iCI (τ − τ ′)S◦(τ ′|t0)]

)
, (21)

where S◦(τ ′|t0)• = {S(τ ′|t0), •} (anticommutator), and
CR (τ − τ ′) and CI (τ − τ ′) are the real and imaginary

parts of the two-time correlation function C(τ − τ ′) of the
environmental operator R,

C(τ − τ ′) = CR (τ − τ ′) + iCI (τ − τ ′)

= 〈R(τ |t0)R(τ ′|t0)〉R. (22)

Note that the correlation function is a function of time differ-
ence since the environment is initially in the thermal equilib-
rium state ρ

eq
R . If the environment is not Gaussian, Eq. (21) is

equivalent to the second-order approximation with respect to
the system-environment interaction in the time-local quantum
master equation derived by the projection operator technique
[1,2,4].

Finally, substituting Eq. (20) into Eq. (21), we obtain the
quantum channel V̂AB (t3, t2; t1, t0) in the interaction picture,

V̂AB (t3, t2; t1, t0) = T exp

(
−

∫ t3

t2

dτ

∫ τ

t2

dτ ′ B×(τ |t0)[CR (τ − τ ′)B×(τ ′|t0) + iCI (τ − τ ′)B◦(τ ′|t0)]

−
∫ t3

t2

dτ

∫ t1

t0

dτ ′ B×(τ |t0)[CR (τ − τ ′)A×(τ ′|t0) + iCI (τ − τ ′)A◦(τ ′|t0)]

−
∫ t1

t0

dτ

∫ τ

t0

dτ ′ A×(τ |t0)[CR (τ − τ ′)A×(τ ′|t0) + iCI (τ − τ ′)A◦(τ ′|t0)]

)
. (23)

Here we introduce vectors of the system superoperators and a matrix of the environmental correlation function [48],

C(τ ) =
(

CR (τ ) iCI (τ )

0 0

)
, A(τ |t0) =

(
A×(τ |t0)

A◦(τ |t0)

)
, B(τ |t0) =

(
B×(τ |t0)

B◦(τ |t0)

)
, (24)

in terms of which we can rewrite Eq. (23) into

V̂AB (t3, t2; t1, t0) = T exp

(
−

∑
μ,ν

∫ t3

t2

dτ

∫ τ

t2

dτ ′ Bμ(τ |t0)Cμν (τ − τ ′)Bν (τ ′|t0)

−
∑
μ,ν

∫ t3

t2

dτ

∫ t1

t0

dτ ′ Bμ(τ |t0)Cμν (τ − τ ′)Aν (τ ′|t0) −
∑
μ,ν

∫ t1

t0

dτ

∫ τ

t0

dτ ′ Aμ(τ |t0)Cμν (τ − τ ′)Aν (τ ′|t0)

)
.

(25)

Therefore, using the fact that the equality Bμ(τ |t2) = eLB (t2−t0 )Bμ(τ |t0)e−LB (t2−t0 ) is established since Bμ(τ |t0) =
e−LB (τ−t0 )BμeLB (τ−t0 ) and Bμ(τ |t2) = e−LB (τ−t2 )BμeLB (τ−t2 ), we can obtain the quantum channel VBA(t3, t2; t1, t0) in the
Schrödinger picture,

VBA(t3, t2; t1, t0) = eLB (t3−t2 )+LA(t1−t0 )T exp

(
−

∑
μ,ν

∫ t3

t2

dτ

∫ τ

t2

dτ ′ Bμ(τ |t2)Cμν (τ − τ ′)Bν (τ ′|t2)

−
∑
μ,ν

∫ t3

t2

dτ

∫ t1

t0

dτ ′ Bμ(τ |t2)Cμν (τ − τ ′)Aν (τ ′|t0) −
∑
μ,ν

∫ t1

t0

dτ

∫ τ

t0

dτ ′ Aμ(τ |t0)Cμν (τ − τ ′)Aν (τ ′|t0)

)
.

(26)

This is one of the main results of this paper. If the time difference t2 − t1 is much larger than the correlation time of the
environment, the second double integral on the right-hand side is negligible since there is no overlap between the two integrations.
In this case, the equality VBA(t3, t2; t1, t0) = VB (t3, t2) ⊗ VA(t1, t0) is established.

Although the quantum channel VBA(t3, t2; t1, t0) given by Eq. (26) is a general formula, it is difficult to explicitly calculate
the quantum channel due to the time-ordering operation. So we derive an approximated formula by assuming that the time
difference t2 − t1 is not so small in comparison with the correlation time τR of the environment. In this case, Cμν (τ − τ ′) is
considered a small parameter if τ > t2 and τ ′ < t1 [48]. In the following, we derive an approximation to the quantum channel
VBA(t3, t2; t1, t0) up to the lowest-order correction. First we expand the second exponential on the right-hand side of Eq. (26)
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under the time ordering, and we obtain up to the first order

VBA(t3, t2; t1, t0) = eLB (t3−t2 )+LA(t1−t0 )T

⎡
⎣exp

⎛
⎝−

∑
μ′,ν ′

∫ t3

t2

dτ

∫ τ

t2

dτ ′ Bμ′ (τ |t2)Cμ′ν ′ (τ − τ ′)Bν ′ (τ ′|t2)

⎞
⎠

×
(

1 −
∑
μ,ν

∫ t3

t2

dτ

∫ t1

t0

dτ ′ Bμ(τ |t2)Cμν (τ − τ ′)Aν (τ ′|t0)

)

× exp

⎛
⎝−

∑
μ′,ν ′

∫ t1

t0

dτ

∫ τ

t0

dτ ′ Aμ′ (τ |t0)Cμ′ν ′ (τ − τ ′)Aν ′ (τ ′|t0)

⎞
⎠
⎤
⎦ ≡ V

(0)
AB (t3, t2; t1, t0) + V

(1)
AB (t3, t2; t1, t0).

(27)

If the disturbance effect is ignored and the quantum systems A and B interact with the environment R in the thermal equilibrium
state, we have the reduced quantum channels VA(tj , tk ) and VB (tj , tk ),

VA(tj , tk ) = 〈
e(LA+LAR+LR )(tj −tk )

〉
R

= eLA(tj −tk )T exp

⎛
⎝−

∑
μ′,ν ′

∫ tj

tk

dτ

∫ τ

t0

dτ ′ Aμ′ (τ |tk )Cμ′ν ′ (τ − τ ′)Aν ′ (τ ′|tj )

⎞
⎠, (28)

VB (tj , tk ) = 〈(LB+LBR+LR )(tj −tk )〉
R

= eLB (tj −tk )T exp

⎛
⎝−

∑
μ′,ν ′

∫ tj

tk

dτ

∫ τ

t2

dτ ′ Bμ′ (τ |tk )Cμ′ν ′ (τ − τ ′)Bν ′ (τ ′|tj )

⎞
⎠. (29)

Then the lowest-order term of the quantum channel is given by

V
(0)
AB (t3, t2; t1, t0) = VA(t1, t0) ⊗ VB (t3, t2). (30)

The next task is to calculate the first-order correction term V
(1)
BA(t3, t2; t1, t0) to the composite quantum channel, which can be

rewritten as

V
(1)
BA(t3, t2; t1, t0) = −

∑
μ,ν

∫ t3

t2

dt

∫ t1

t0

dt ′ Cμν (t − t ′)eLB (t3−t2 )+LA(t1−t0 )

× T

⎡
⎣Bμ(t |t2) exp

⎛
⎝−

∑
μ′,ν ′

∫ t3

t2

dτ

∫ τ

t2

dτ ′ Bμ′ (τ |t2)Cμ′ν ′ (τ − τ ′)Bν ′ (τ ′|t2)

⎞
⎠
⎤
⎦

× T

⎡
⎣Aν (t ′|t0) exp

⎛
⎝−

∑
μ′,ν ′

∫ t1

t0

dτ

∫ τ

t0

dτ ′ Aμ′ (τ |t0)Cμ′ν ′ (τ − τ ′)Aν ′ (τ ′|t0)

⎞
⎠
⎤
⎦, (31)

where we have used the property of the time-ordered product. Since the first-order term with respect to the small parameter
Cμν (τ − τ ′) with τ > t2 and τ ′ < t1 is already present in front of the exponentials in Eq. (31), we can ignore such small
parameters in the first and second exponentials. Then Eq. (31) can be further approximated as

V
(1)
BA(t3, t2; t1, t0) = −

∑
μ,ν

∫ t3

t2

dt

∫ t1

t0

dt ′ Cμν (t − t ′)eLB (t3−t2 )+LA(t1−t0 )

× T exp

⎛
⎝−

∑
μ′,ν ′

∫ t3

t

dτ

∫ τ

t

dτ ′ Bμ′ (τ |t2)Cμ′ν ′ (τ − τ ′)Bν ′ (τ ′|t2)

⎞
⎠

× Bμ(t |t2)T exp

⎛
⎝−

∑
μ′,ν ′

∫ t

t2

dτ

∫ τ

t2

dτ ′ Bμ′ (τ |t2)Cμ′ν ′ (τ − τ ′)Bν ′ (τ ′|t2)

⎞
⎠

× T exp

⎛
⎝−

∑
μ′,ν ′

∫ t1

t ′
dτ

∫ τ

t ′
dτ ′ Aμ′ (τ |t0)Cμ′ν ′ (τ − τ ′)Aν ′ (τ ′|t0)

⎞
⎠

× Aν (t ′|t0)T exp

⎛
⎝−

∑
μ′,ν ′

∫ t ′

t0

dτ

∫ τ

t0

dτ ′ Aμ′ (τ |t0)Cμ′ν ′ (τ − τ ′)Aν ′ (τ ′|t0)

⎞
⎠. (32)
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After some calculation, we can finally obtain the first-order correction term of the composite quantum channel VBA(t3, t2; t1, t0),

V
(1)
BA(t3, t2; t1, t0) = −

∑
μ,ν

∫ t3

t2

dt

∫ t1

t0

dt ′ Cμν (t − t ′)VB (t3, t )BμVB (t, t2) ⊗ VA(t1, t
′)AνVA(t ′, t0), (33)

where VA(tj , tk ) and VB (tj , tk ) are given by Eqs. (28) and (29). The method to derive this result from Eq. (31) is similar to that
for calculating two-time correlation functions of an open quantum system [48]. The difference is that the composite quantum
channel in this paper treats two quantum systems while the two-time correlation function in Ref. [48] treats a single quantum
system.

We can simplify the composite quantum channel given by Eq. (27) when the interaction between the quantum system and
the environment is a dephasing coupling. In this case, the operators A(t |t0) and B(t |t0) become independent of time due to
the commutativity [HA,HAR] = [HB,HBR] = 0. Then the time ordering in Eq. (26) is removed and thus the quantum channel
VBA(t3, t2; t1, t0) is given by

VBA(t3, t2; t1, t0) = eLB (t3−t2 )+LA(t1−t0 ) exp

[
−

∑
μ,ν

(
BμGμν (t3, t2)Bν + BμGμν (t3, t2; t1, t0)Aν + AμGμν (t1, t0)Aν

)]
, (34)

with

Gμν (tj , tk ) =
∫ tk

tk

dτ

∫ τ

tk

dτ ′ Cμν (τ − τ ′), (35)

Gμν (tj , tk; tl, tm) =
∫ tk

tk

dτ

∫ tl

tm

dτ ′ Cμν (τ − τ ′). (36)

If the two quantum systems are initially uncorrelated, the
reduced output states ρout

A = TrBρout
AB and ρout

B = TrAρout
AB of

the two quantum systems become

ρout
A = VA(t1, t0)ρ in

A , (37)

ρout
B = VB (t3, t2)VB (t3, t2|t1, t0)ρ in

B , (38)

where VA(t1, t0), VB (t3, t2), and VB (t3, t2|t1, t0) are given by

VA(t1, t0) = eLA(t1−t0 ) exp

(
−

∑
μ,ν

AμGμν (t1, t0)Aν

)
, (39)

VB (t3, t2) = eLB (t3−t2 ) exp

(
−

∑
μ,ν

BμGμν (t3, t2)Bν

)
, (40)

VB (t3, t2|t1, t0) =
〈

exp

(
−

∑
μ,ν

BμGμν (t3, t2; t1, t0)Aν

)〉
A

.

(41)

The disturbance effect caused by the quantum system A is
described by the conditional quantum channel VB (t3, t2|t1, t0).
If the time difference t2 − t1 is much larger than the correla-
tion time of the environment, we obtain VB (t3, t2|t1, t0) = 1.
Hence the disturbance effect vanishes in this case.

III. REDUCED TIME EVOLUTION AND ITS
NON-MARKOVIANITY

In this section, when the quantum systems A and B

undergo a pure dephasing due to the interaction with the
environment R, we investigate how the disturbance in the
environment R that is caused by the quantum system A affects
the reduced output state of the quantum system B. To make
the problem analytically tractable, we assume that the two
quantum system are qubits (two-level systems), the Hamil-
tonians of which are given by HA = (1/2)h̄σ z

A and HA =
(1/2)h̄σ z

A, where σ z
A,B is the Pauli operator of the z component

of spin-1/2. The interaction Hamiltonians are assumed to be
HAR = (1/2)h̄σ z

A ⊗ R and HBR = (1/2)h̄σ z
B ⊗ R. Substitut-

ing A = (1/2)σ z
A and B = (1/2)σ z

B into Eq. (34), we obtain
the output state ρout

AB of the two qubits,

ρout
AB = ρee,ee

A︷ ︸︸ ︷
|e〉〈e| ⊗

B︷ ︸︸ ︷
|e〉〈e| +ρee,gg|e〉〈e| ⊗ |g〉〈g| + ρgg,ee|g〉〈g| ⊗ |e〉〈e| + ρgg,gg|g〉〈g| ⊗ |g〉〈g|

+ ρee,ege
−iωB (t3−t2 )−iGI (t3,t2;t1,t0 )−GR (t3,t2 )|e〉〈e| ⊗ |e〉〈g| + ρee,gee

iωB (t3−t2 )+iGI (t3,t2;t1,t0 )−GR (t3,t2 )|e〉〈e| ⊗ |g〉〈e|
+ ρgg,ege

−iωB (t3−t2 )+iGI (t3,t2;t1,t0 )−GR (t3,t2 )|g〉〈g| ⊗ |e〉〈g| + ρgg,gee
iωB (t3−t2 )−iGI (t3,t2;t1,t0 )−GR (t3,t2 )|g〉〈g| ⊗ |g〉〈e|

+ ρeg,eee
−iωA(t1−t0 )−GR (t1,t0 )|e〉〈g| ⊗ |e〉〈e| + ρge,eee

iωA(t1−t0 )−GR (t1,t0 )|g〉〈e| ⊗ |e〉〈e|
+ ρeg,gge

−iωA(t1−t0 )−GR (t1,t0 )|e〉〈g| ⊗ |g〉〈g| + ρge,gge
iωA(t1−t0 )−GR (t1,t0 )|g〉〈e| ⊗ |g〉〈g|

+ ρeg,ege
−iωA(t1−t0 )−iωB (t3−t2 )−GR (t1,t0 )−GR (t3,t2 )−GR (t3,t2;t1,t0 )|e〉〈g| ⊗ |e〉〈g|

+ ρeg,gee
−iωA(t1−t0 )+iωB (t3−t2 )−GR (t1,t0 )−GR (t3,t2 )+GR (t3,t2;t1,t0 )|e〉〈g| ⊗ |g〉〈e|

+ ρge,ege
iωA(t1−t0 )−iωB (t3−t2 )−GR (t1,t0 )−GR (t3,t2 )+GR (t3,t2;t1,t0 )|g〉〈e| ⊗ |e〉〈g|

+ ρge,gee
iωA(t1−t0 )+iωB (t3−t2 )−GR (t1,t0 )−GR (t3,t2 )−GR (t3,t2;t1,t0 )|g〉〈e| ⊗ |g〉〈e|, (42)
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where |g〉 and |e〉 are the eigenstates of the Pauli operator σ z

such that σ z|g〉 = −|g〉 and σ z|e〉 = |e〉. In this equation, we
set ρjk,mn = Tr[(|k〉〈j | ⊗ |n〉〈m|)ρ in

AB] and

GR,I (tj , tk ) =
∫ tk

tk

dτ

∫ τ

tk

dτ ′ CR,I (τ − τ ′), (43)

GR,I (tj , tk; tl, tm) =
∫ tk

tk

dτ

∫ tl

tm

dτ ′ CR,I (τ − τ ′). (44)

In this paper, when we denote |j 〉〈k| ⊗ |m〉〈n|, the left op-
erator |j 〉〈k| is for qubit A and the right operator |m〉〈n| is
for qubit B. Furthermore, we assume that there is no initial
correlation between the two qubits. Substituting the input state
ρ in

AB = ρ in
A ⊗ ρ in

B into Eq. (42), we obtain the reduced output
states,

ρout
A = ρa

ee|e〉〈e| + ρa
gg|g〉〈g| + ρa

ege
−iωA(t1−t0 )−GR (t1,t0 )|e〉〈g|

+ ρa
gee

iωA(t1−t0 )−GR (t1,t0 )|g〉〈e|, (45)

ρout
B = ρb

ee|e〉〈e| + ρb
gg|g〉〈g| + ρb

eg[cos GI (t3, t2; t1, t0)

− i
〈
σ z

A

〉
sin GI (t3, t2; t1, t0)]e−iωB (t3−t2 )−GR (t3,t2 )|e〉〈g|

+ ρb
ge

[
cos GI (t3, t2; t1, t0)+i

〈
σ z

A

〉
sin GI (t3, t2; t1, t0)

]
× eiωB (t3−t2 )−GR (t3,t2 )|g〉〈e|, (46)

with ρ
a,b
jk = 〈j |ρ in

A,B |k〉. In deriving Eq. (46), we have used the
relations ρA

ee = (1 + 〈σ z
A〉)/2 and ρA

gg = (1 − 〈σ z
A〉)/2 with

the initial average 〈σ z
A〉 = Tr[σ z

Aρ in
A ]. It is obvious from

Eq. (46) that the disturbance effect vanishes if the equality
GI (t3, t2; t1, t0) = 0 holds. This means that the imaginary part
of the two-time correlation function 〈R(t |t0)R(t ′|t0)〉R is in-
dispensable for creating the disturbance effect. In other words,

the existence of the disturbance effect requires noncommuta-
tivity of R(t |t0) and R(t ′|t0) (t = t ′). This also implies that
there is no disturbance effect in a classical environment. On
the other hand, the reduced state of qubit A is independent of
qubit B since the future event does not affect the past.

Next we investigate the property of the output state ρout
B of

qubit B. For a pure dephasing process, in general, a density
operator of a qubit can be expressed as ρ(t ) = ρee|e〉〈e| +
ρgg|g〉〈g| + ρegf (t )|e〉〈g| + ρgef

∗(t )|g〉〈e|, which is a solu-
tion of the time-local quantum master equation,

∂

∂t
ρ(t ) = −(i/2)ω(t )[σz, ρ(t )] + γ (t )[σzρ(t )σz − ρ(t )],

(47)

where the time-dependent frequency ω(t ) and the relaxation
parameter γ (t ) are related to the parameter f (t ) by

ω(t ) = −Im

(
ḟ (t )

f (t )

)
, γ (t ) = −1

2
Re

(
ḟ (t )

f (t )

)
. (48)

The time evolution of the qubit is non-Markovian if the
relaxation parameter γ (t ) can take a negative value [70]. Now
we define the density operator ρ(t ) of qubit B with t2 � t � t3
by

ρ(t ) = ρb
ee|e〉〈e| + ρb

gg|g〉〈g| + ρb
egf (t )|e〉〈g|

+ ρb
gef

∗(t )|g〉〈e|, (49)

where the time-dependent parameter f (t ) is

f (t ) = [
cos GI (t, t2; t1, t0) − i

〈
σA

z

〉
sin GI (t, t2; t1, t0)

]
× e−iωB (t−t2 )−GR (t,t2 ). (50)

We have the reduced output state ρout
B = ρ(t3). The time-

dependent frequency and relaxation parameters are given,
respectively, by

ω(t ) = ωB +
〈
σA

z

〉
ĠI (t, t2; t1, t0)

cos2 GI (t, t2; t1, t0) + 〈
σA

z

〉2
sin2 GI (t, t2; t1, t0)

, (51)

γ (t ) = 1

2

[
ĠR (t, t2) +

(
1 − 〈

σA
z

〉2)
cos GI (t, t2; t1, t0) sin GI (t, t2; t1, t0)

cos2 GI (t, t2; t1, t0) + 〈
σA

z

〉2
sin2 GI (t, t2; t1, t0)

ĠI (t, t2; t1, t0)

]
, (52)

where we set Ẋ(t ) = dX(t )/dt . If there is no disturbance
effect, these parameters become

ω(0)(t ) = ωB, γ (0)(t ) = 1
2 ĠR (t, t2). (53)

Comparing Eq. (52) with Eq. (53), we find that the relaxation
parameter γ (t ) can possibly take a negative value even if the
inequality γ (0)(t ) > 0 is always satisfied. This implies that the
disturbance in the environment R caused by qubit A induces
non-Markovianity of the reduced time evolution of qubit B.
For instance, setting 〈σ z

A〉 = 0 in Eq. (52), we have

γ (t ) = 1
2 [ĠR (t, t2) + ĠI (t, t2; t1, t0) tan GI (t, t2; t1, t0)].

(54)

In this case, if GI (t, t2; t1, t0) changes around π/2, the
relaxation parameter γ (t ) can take negative values unless
ĠI (t, t2; t1, t0) = 0 at this point.

To explicitly derive the relaxation parameter γ (t ) of qubit
B, we assume that the environment R consists of inde-

pendent harmonic oscillators. Then we have the Hamilto-
nian HR = ∑

k h̄ωka
†
kak and the environmental operator R =∑

k h̄gk (ak + a
†
k ), where ak is an annihilation operator of the

kth environmental oscillator with angular frequency ωk , and
gk represents a coupling strength between the qubit and the
kth oscillator. The two-time correlation function of the envi-
ronment is 〈R(t |t0)R(t ′|t0)〉R = ∑

k g2
k [(n̄k + 1)e−iωk (t−t ′ ) +

n̄ke
iωk (t−t ′ )] with n̄k = (eh̄ωk/kBT + 1)−1. In the following, we

further assume that the environment is initially in the ground
state (T = 0) and it has Lorentzian spectral density [4,28],
J (ω) = (γ /2π )λ2/[(ω − �)2 + λ2]. Then we obtain

G(tj , tk ) = GR (tj , tk ) + iGI (tj , tk )

= γ λ

2(λ+i�)2

[
(λ+i�)(tj −tk )−1+e−(λ+i�)(tj −tk )

]
(55)
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and

G(t3, t2; t1, t0) = GR (t3, t2; t1, t0) + iGI (t3, t2; t1, t0)

= γ λ

2(λ + i�)2
[1 − e−(λ+i�)(t3−t2 )]

× e−(λ+i�)(t2−t1 )[1 − e−(λ+i�)(t1−t0 )]. (56)

It is obvious from this equation that G(t3, t2; t1, t0) ≈ 0 if the
time separation between the output of qubit A and the input of
the qubit system B is sufficiently large, that is, λ(t2 − t1) 
 1.

We investigate the reduced time evolution of qubit B, the
density operator of which is obtained by substituting Eq. (50)
with Eqs. (55) and (56) into Eq. (49). To make our discussion
clear and focus on the disturbance effect caused by qubit
A, we assume that t1 = t2 and λ(t1 − t0) 
 1 in the rest of
this section. Then we have the reduced density operator of
qubit B,

ρ(t )=ρb
ee|e〉〈e|+ρb

gg|g〉〈g|+ρb
egf (t )|e〉〈g|+ρb

gef
∗(t )|g〉〈e|,

(57)

with

f (t ) = [
cos gi (t ) − i

〈
σA

z

〉
sin gi (t )

]
e−iωB t−gr (t ), (58)

where gr (t ) and gi (t ) are given by

gr (t ) =
( γ

2λ

) 1

1+(�/λ)2

[
λt− 1−(�/λ)2

1+(�/λ)2
(1−e−λt cos �t )

− 2�/λ

1 + (�/λ)2
e−λt sin �t

]
, (59)

gi (t ) =
( γ

2λ

) 1

1 + (�/λ)2

[
1 − (�/λ)2

1 + (�/λ)2
e−λt sin �t

− 2(�/λ)

1 + (�/λ)2
(1 − e−λt cos �t )

]
. (60)

In these equations, time t stands for an elapsed time from time
t2 at which qubit B is input. The relaxation parameter γ (t ) is
given by

γ (t ) = 1

2

[
ġr (t ) +

(
1 − 〈

σA
z

〉2)
cos gi (t ) sin gi (t )

cos2 gI (t ) + 〈
σA

z

〉2
sin2 gi (t )

ġi (t )

]

(61)

with

ġr (t ) =
(γ

2

) 1

1 + (�/λ)2

[
1 − e−λ cos �t

+
(

�

λ

)
e−λt sin �t

]
, (62)

ġi (t ) = −
(γ

2

) 1

1 + (�/λ)2

[
sin �t +

(
�

λ

)
cos �t

]
e−λt .

(63)

FIG. 2. The time evolution of (a) the trace distance D(t ), (b) its time derivative dD(t )/dt , (c) the relaxation parameter γ (t ), and (d)
the contour plot of dD(t )/dt . In panels (a)–(c) we set �/λ = 0.6, and the solid blue (dashed red) line stands for the time dependence with
(without) the disturbance effect. In all of the panels, we set γ /λ = 6.0 and 〈σA

z 〉 = 0.01. The inset in panel (b) is an enlarged view of the part
indicated by the green arrow.
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The non-Markovianity of the reduced time evolution of
qubit B is investigated in terms of the trace distance D(t )
between two density operators ρ(t ) and ρ ′(t ) [16,67,68],

D(t ) = 1
2 Tr|ρ(t ) − ρ ′(t )| =

√(
�ρb

ee

)2 + |f (t )|2∣∣�ρb
eg

∣∣2,
(64)

the time derivative of which is given by

dD(t )

dt
= [d|f (t )|2/dt]

∣∣�ρb
eg

∣∣2
2
√(

�ρb
ee

)2 + |f (t )|2∣∣�ρb
eg

∣∣2 . (65)

In these equations, �ρb
jk is the difference between the matrix

elements of the two different input states, ρ in
B and ρ in

B
′. In

the dephasing process, the time derivative dD(t )/dt becomes
most significant when ρ in

B = |ψ+〉〈ψ+| and ρ in
B

′ = |ψ−〉〈ψ−|
with |ψ±〉 = (|e〉 ± |g〉)/

√
2. In this case, we have D(t ) =

|f (t )|2 and dD(t )/dt = −4γ (t )|f (t )|2. So it is obvious that
dD(t )/dt > 0 is equivalent to γ (t ) < 0. If the time derivative
dD(t )/dt can take a negative value, the reduced time evo-
lution of qubit B is non-Markovian [70]. When we ignore
the disturbance effect, the parameters f (t ) and γ (t ) given by
Eqs. (58) and (61) are replaced by f (0)(t ) = e−iωB t−gr (t ) and
γ (0)(t ) = (1/2)ġr (t ). The time evolution of the trace distances
with and without the disturbance effect is depicted in Fig. 2(a).
It is found from the figure that the disturbance effect enhances
the decay of the trace distance. The time derivative of the
trace distance is plotted in Fig. 2(b). For given values of

the parameters, the figure shows that although dD(t )/dt is
always negative if the disturbance effect is ignored, it becomes
negative around λt = 2.9 due to the disturbance effect. Hence
we have found that the disturbance effect caused by qubit A

induces the non-Markovianity of the reduced time evolution
of qubit B. In Fig. 2(c), we plot the relaxation parameter γ (t ),
which clearly shows the non-Markovianity of the reduced
time evolution. We can observe the characteristic behavior
from the expression

γ (t ) = 1

2

[
ġr (t ) + ġi (t )

(
1 − 〈

σ z
A

〉2)
tan gi (t )

1 + 〈
σ z

A

〉2
tan g2

i (t )

]
. (66)

From Eq. (60), we find that gi (t ) ≈ π/2 at λt ≈ 2.71 when
�/λ = 0.6, γ /λ = 6.0, and 〈σA

z 〉 = 0.01. Hence the re-
laxation parameter γ (t ) changes from positive to negative
around λt ≈ 2.71. The contour plot of dD(t )/dt is shown in
Fig. 2(d). The brightest area is the region where the reduced
time evolution is non-Markovian. The time dependence of the
relaxation parameter γ (t ) is plotted for several values of the
parameter �/λ in Fig. 3. It is found from the figure that
the non-Markovianity appears in the two different parameter
regions [see Figs. 3(b) and 3(d)]. One is around �/λ = 0.5
and the non-Markovianity is caused by the disturbance effect.
The other is the region of large values of �/λ. In this case, the
environment is intrinsically non-Markovian since ġr (t ) takes
negative values and the disturbance effect becomes negligible.

FIG. 3. The time dependence of the relaxation parameter γ (t ) with (a) �/λ = 0.3, (b) �/λ = 0.5, (c) �/λ = 0.9, and (d) �/λ = 8.0,
where we set γ /λ = 5.0 and 〈σA

z 〉 = 0.01. In each panel, the solid blue (dashed red) line stands for the time dependence with (without) the
disturbance effect.
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FIG. 4. The non-Markovianity N of the reduced time evolution of the qubit B, where we set (a) γ /λ = 5.0, 〈σA
z 〉 = 0.01 and (b) �/λ =

0.6, 〈σA
z 〉 = 0.01. The inset of each panel stands for the non-Markovianity when the disturbance effect is ignored.

Finally, we quantify the non-Markovianity [70] by

N = −2
∫

γ (t )<0
γ (t ) dt =

∫ ∞

0
[|γ (t )| − γ (t )]dt, (67)

which is depicted in Fig. 4. It is found from Fig. 4(a) that
the non-Markovianity around �/λ ≈ 0.6 is caused by the
disturbance effect while the non-Markovianity for �/λ >

3.6 is due purely to the environmental property, where the
disturbance effect is negligible. From Fig. 4(b), the reduced
time evolution is non-Markovian for γ /λ � 0.5, while it is
always Markovian in the absence of the disturbance effect.

IV. DECAY OF TWO-QUBIT CORRELATION

In this section, the decay of two-qubit correlation, includ-
ing entanglement and quantum discord, is investigated when

the time evolution of two qubits A and B is described by
the composite quantum channel VAB (t3, t2; t1, t0). For this
purpose, we suppose that the two qubits to be sent through the
quantum channel are initially prepared in a statistical mixture
of Bell states [21],

ρ in
AB = 1 + c

2
|�+〉〈�+| + 1 − c

2
|�+〉〈�+|, (68)

with |�+〉 = (|ee〉 + |gg〉)/
√

2 and |�+〉 = (|eg〉 +
|ge〉)/

√
2. The positivity of the density operator ρ in

AB requires
the inequality |c| � 1. Then the output state ρout

AB is derived
from Eq. (42),

ρout
AB = 1

4

⎛
⎜⎜⎜⎝

1 + c 0 0 F+(t )(1 + c)

0 1 − c F−(t )(1 − c) 0

0 F ∗
−(t )(1 − c) 1 − c 0

F ∗
+(t )(1 + c) 0 0 1 + c

⎞
⎟⎟⎟⎠, (69)

with the basis vectors |1〉 = |ee〉, |2〉 = |eg〉, |3〉 = |ge〉,
and |4〉 = |gg〉. In this equation, we set F±(t ) =
e−iωA(t1−t0 )∓iωB (t3−t1 )G±(t ) with

G±(t ) = e−GR (t1,t0 )−GR (t3,t2 )∓GR (t3,t2;t1,t0 ). (70)

If the disturbance effect is ignored, the equality G+(t ) =
G−(t ) = e−GR (t1,t0 )−GR (t3,t2 ) is established. In the rest of this
section, we assume that the transmission times of qubits A

and B are the same and we set τ = t3 − t2 = t1 − t0 and
δτ = t2 − t1. We quantify the entanglement of the output state
ρout

AB with the concurrence [73], which is calculated to be

C(τ ) = max

[
0,

1+c

2
G+(t )− 1 − c

2
,

1 − c

2
G−(t )− 1 + c

2

]
.

(71)

If the disturbance effect is negligible, the concurrence is in-
variant under the replacement of c by −c. The dependence of
the concurrence on the transmission time τ and the parameter
�/λ is plotted in Fig. 5. It is found from Figs. 5(a) and 5(b)
that for a positive value of c, the concurrence decays with the
transmission time, and the entanglement sudden death (ESD)
[17,18] takes place at a finite time. The ESD time becomes
larger as the value of the parameter �/λ is larger since the
relaxation parameter γ (t ) is small for a large value of �/λ.
Furthermore, the EDS time becomes smaller as the value of
γ /λ is larger since the parameter γ stands for the strength
of the interaction between the qubit and the environment.
Although the concurrence decays monotonously with time
when �/λ is small, the oscillatory behavior of the concur-
rence is observed when the value of �/λ becomes larger.
The oscillation is enhanced when γ /λ becomes large. On the
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FIG. 5. The dependence of the concurrence C(τ ) on the transmission time τ and the parameter �/τ with (a) (γ /λ, c) = (0.8, 0.7), (b)
(γ /λ, c) = (12.0, 0.7), (c) (γ /λ, c) = (0.8, −0.7), and (d) (γ /λ, c) = (12.0, −0.7). In this figure, we set δτ = 0.

other hand, in the case of c < 0, it is found from Fig. 5(d)
that the oscillatory behavior of the concurrence becomes more
significant. In particular, for larger values of γ /λ, we can ob-
serve not only the ESD but also the entanglement sudden birth
(ESB) [19,20] around �/λ ≈ 0.4. The difference between the
concurrences with positive and negative values of c is caused
by the disturbance effect, which leads to G+(t ) �= G−(t ). The

difference disappears if the value of λδτ is large since the
disturbance effect caused by qubit A vanishes before qubit B

is input.
Next we investigate total, classical, and quantum corre-

lation of the output state ρout
AB [80]. For this purpose, it is

convenient to rewrite Eq. (69) into

ρout
AB = 1

4

⎛
⎜⎜⎝

1 + cz 0 0 cx − cy

0 1 − cz cx + cy 0
0 cx + cy 1 − cz 0

cx − cy 0 0 1 + cz

⎞
⎟⎟⎠, (72)

with

cx = 1
2 [G−(t )(1 − c) + G+(t )(1 + c)], (73)

cy = 1
2 [G−(t )(1 − c) − G+(t )(1 + c)], (74)

and cz = c. In Eq. (72), we have neglected the unimportant phase factors, which can be removed by a local unitary
transformation. The total correlation CT is quantified with the von Neumann mutual information [80]. For the two-qubit state
ρout

AB , we obtain

CT =S
(
ρout

A

) + S
(
ρout

B

) − S
(
ρout

AB

) = 1
2 (1 − c) log2(1 − c) + 1

2 (1 + c) log2(1 + c)

+ 1
4 (1 − c)([1 − G−(t )] log2[1 − G−(t )] + [1 + G−(t )] log2[1 + G−(t )])

+ 1
4 (1 + c)([1 − G+(t )] log2[1 − G+(t )] + [1 + G+(t )] log2[1 + G+(t )]), (75)
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where S(ρ) is the von Neumann entropy of ρ. The classical correlation CC is given by [80]

CC = 1
2 (1 − cmax) log2(1 − cmax) + 1

2 (1 + cmax) log2(1 + cmax) (76)

with cmax = max[|cx |, |cy |, |cz|]. The quantum correlation CQ is quantified by means of the quantum discord [80], which is the
difference between total and classical correlations. Then we obtain from Eqs. (75) and (76)

CQ = 1
2 (1 − c) log2(1 − c) + 1

2 (1 + c) log2(1 + c) + 1
4 (1 − c)([1 − G−(t )] log2[1 − G−(t )] + [1 + G−(t )] log2[1 + G−(t )])

+ 1
4 (1 + c)([1 − G+(t )] log2[1 − G+(t )] + [1 + G+(t )] log2[1 + G+(t )])

− 1
2 (1 − cmax) log2(1 − cmax) − 1

2 (1 + cmax) log2(1 + cmax). (77)

If the disturbance effect is ignored, the classical and quantum correlations become

CC = 1
2 (1 − c̃max) log2(1 − c̃max) + 1

2 (1 + c̃max) log2(1 + c̃max), (78)

CQ = 1
2 (1 − c̃min) log2(1 − c̃min) + 1

2 (1 + c̃min) log2(1 + c̃min), (79)

with c̃max = max[|c|,G(t )] and c̃min = min[|c|,G(t )]. In this case, the inequality CC � CQ is always satisfied and either CC or
CQ remains unchanged in time. The correlations for the initial state with c = −0.6 are plotted in Fig. 6. We note that when
λδτ = 5.0, the plots given in Figs. 6(b), 6(d) 6(f), and 6(h) are equal to those obtained for the initial state with c = 0.6 since
the disturbance effect on qubit B is negligible and so G+(t ) ≈ G−(t ) is established. The oscillatory behavior observed in the
total and classical correlations in Figs. 6(c), 6(d) 6(g), and 6(h) is due to the intrinsic non-Markovianity of the environment. On
the other hand, the increase of quantum discord observed in Figs. 6(a), 6(e) and 6(g) is caused by the disturbance effect. Since
this effect is small, it is not apparent in the total and classical correlations. In Figs. 6(e) and 6(g), there is a time at which the
inequality CQ > CC is established.

V. FIDELITY OF STATE TRANSMISSION

Finally, we investigate how faithfully the composite quantum channel VAB (t3, t2; t1, t0) can transmit quantum states of qubits
A and B [16], where the transmission times are the same, namely, τ = t3 − t2 = t1 − t0. We set the time separation δτ = t2 − t1
between the two transmissions. We suppose that the input states of the two qubits are, respectively, |ψ in

A 〉 = αA|e〉 + βA|g〉 and
|ψ in

B 〉 = αB |e〉 + βB |g〉 with |αA|2 + |βA|2 = 1 and |αB |2 + |βB |2 = 1. Then the output state ρout
AB is given by

ρout
AB = |αA|2|αB |2|e〉〈e| ⊗ |e〉〈e| + |αA|2|βB |2|e〉〈e| ⊗ |g〉〈g| + |βA|2|αB |2|g〉〈g| ⊗ |e〉〈e|

+ |βA|2|βB |2|g〉〈g| ⊗ |g〉〈g| + |αA|2αBβ∗
Be−iωBτ−i�(τ )−�(τ )|e〉〈e| ⊗ |e〉〈g|

+ |αA|2α∗
BβBeiωBτ+i�(τ )−�(τ )|e〉〈e| ⊗ |g〉〈e| + |βA|2αBβ∗

Be−iωBτ+i�(τ )−�(τ )|g〉〈g| ⊗ |e〉〈g|
+ |βA|2α∗

BβBeiωBτ−i�(τ )−�(τ )|g〉〈g| ⊗ |g〉〈e| + αAβ∗
A|αB |2e−iωAτ−�(τ )|e〉〈g| ⊗ |e〉〈e|

+ α∗
AβA|αB |2eiωAτ−�(τ )|g〉〈e| ⊗ |e〉〈e| + αAβ∗

A|βB |2e−iωAτ−�(τ )|e〉〈g| ⊗ |g〉〈g|
+ α∗

AβA|βB |2eiωAτ−�(τ )|g〉〈e| ⊗ |g〉〈g| + αAβ∗
AαBβ∗

Be−iωAτ−iωBτ−2�(τ )−ϒ(τ )|e〉〈g| ⊗ |e〉〈g|
+ αAβ∗

Aα∗
BβBe−iωAτ+iωBτ−2�(τ )+ϒ(τ )|e〉〈g| ⊗ |g〉〈e| + α∗

AβAαBβ∗
BeiωAτ−iωBτ−2�(τ )+ϒ(τ )|g〉〈e| ⊗ |e〉〈g|

+ α∗
AβAα∗

BβBeiωAτ+iωBτ−2�(τ )−ϒ(τ )|g〉〈e| ⊗ |g〉〈e|, (80)

where the time-dependent parameters are �(τ ) = GR (t3, t2) = GR (t1, t0), ϒ(τ ) = GR (t3, t2; t1, t0), and �(τ ) = GI (t3, t2; t1, t0).
First we evaluate the state transmission of the two qubits individually. The reduced output states of qubits A and B are given by

ρout
A = |αA|2|e〉〈e| + |βA|2|g〉〈g| + αAβ∗

Ae−iωAτ−�(τ )|e〉〈g| + α∗
AβAeiωAτ−�(τ )|g〉〈e|, (81)

ρout
B = |αB |2|e〉〈e| + |βB |2|g〉〈g| + αBβ∗

Be−iωBτ−�(τ )(|αA|2e−i�(τ ) + |βA|2ei�(τ ) )|e〉〈g|
+ α∗

BβBeiωBτ−�(τ )(|αA|2ei�(τ ) + |βA|2e−i�(τ ) )|g〉〈e|, (82)

both of which are independent of the parameter ϒ(τ ).
To evaluate the state transmission through the composite
quantum channel VAB (t3, t2; t1, t0), we calculate the aver-
age fidelity [16] between the reduced output state ρout

A,B and
the time-evolved input state |ψ in

A,B (τ )〉 = e−iωA,Bτ αA,B |e〉 +
eiωA,Bτ βA,B |g〉 generated by the free Hamiltonian HA,B . The

average is taken over the Bloch sphere of the input state. Then
we obtain the average fidelities from Eqs. (81) and (82),

FA = 〈
ψA

in (τ )
∣∣ρout

A

∣∣ψA
in (τ )

〉 = 2 + e−�(τ )

3
, (83)

FB = 〈
ψB

in (τ )
∣∣ρout

B

∣∣ψB
in (τ )

〉 = 2 + e−�(τ ) cos �(τ )

3
. (84)
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FIG. 6. The dependence of the total, classical, and quantum correlations of the output state ρout
AB with c = −0.6 on the transmission time τ ,

where the solid line (blue) stands for the total correlation CT , the dotted line (red) for the classical correlation CC , and the dashed line (green) for
the quantum correlation CQ. In this figure, we set (λδτ, �/λ, γ /τ ) = (0.0, 0.8, 0.8) in panel (a), (λδτ, �/λ, γ /τ ) = (5.0, 0.8, 0.8) in panel
(b), (λδτ,�/λ, γ /τ ) = (0.0, 6.0, 0.8) in panel (c), (λδτ, �/λ, γ /τ ) = (5.0, 6.0, 0.8) in panel (d), (λδτ, �/λ, γ /τ ) = (0.0, 0.8.12.0) in panel
(e), (λδτ, �/λ, γ /τ ) = (5.0, 0.8, 12.0) in panel (f), (λδτ, �/λ, γ /τ ) = (0.0, 8.0, 12.0) in panel (h), and (λδτ, �/λ, γ /τ ) = (5.0, 8.0, 12.0)
in panel (g). In panels (b), (d), (f), and (h), G+(t ) ≈ G−(t ) is satisfied.
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FIG. 7. The average fidelity of the state transmission through the composite quantum channel. In panels (a) and (b), the dashed line (red)
stands for FA and the solid line (blue) for FB . In panels (c) and (d), the dashed line (red) stands for FAFB and the solid line (blue) for FAB . In
panels (e) and (f), the ratio �FAB/FAFB is plotted. We set �/λ = 1.0 in panels (a), (c), and (e), and �/λ = 6.0, γ /λ = 8.0 in panels (b), (d),
and (f). In all of the panels, we set γ /λ = 8.0 and λδτ = 0.0.

If the disturbance effect is negligible [�(τ ) ≈ 0], the equality
FA = FB holds. It is obvious from these equations that the
disturbance effect decreases the average fidelity of qubit B.
On the other hand, when the state transmission is treated
collectively, the average fidelity between the output two-qubit
state ρ in

AB and the compound input state |ψ in
A (τ )〉 ⊗ |ψ in

B (τ )〉 is
given by

FAB = 1
9 [4 + 2e−�(τ ) + 2e−�(τ ) cos �(τ )

+e−2�(τ ) cosh ϒ(τ )]. (85)

The fidelity difference between the individual and collective
state transmissions is obtained,

�FAB = FAB − FAFB = 1
9e−2�(τ )[cosh ϒ(τ ) − cos �(τ )],

(86)

which clearly satisfies the inequality �FAB � 0. Thus the
correlation between the two qubits that is created by the

environmental disturbance has a positive effect on the col-
lective state transmission, though it has a negative effect
on the individual state transmission. The dependence of the
fidelities on the transmission time τ is depicted in Fig. 7.
As pointed out above, the fidelity of qubit B is smaller than
that of qubit A. When �/λ is small, the fidelity FA decays
monotonously with the transmission time while the fidelity
FB first decreases to the minimum value and then increases
slightly up to the stationary value [Fig. 7(a)]. On the other
hand, when �/λ is large, FA and FB are nearly equal and
demonstrate oscillatory behavior [Fig. 7(b)]. The disturbance
effect is small in this case. In Figs. 7(c) and 7(d), the collective
fidelity FAB is compared with the individual fidelity FAFB ,
and it is found that FAB is slightly larger than FAFB . To
make this point clear, the ratio �FAB/FAFB is plotted in
Figs. 7(e) and 7(f). The result means that the disturbance
effect enhances collective fidelity but reduces individual
fidelity.
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VI. SUMMARY

In this paper, when two independent quantum systems A

and B interact sequentially with a common environment, we
have derived a general expression of the composite quantum
channel describing the time evolution of the two quantum
systems. In the process, the quantum system A first interacts
with the environment in the thermal equilibrium state, and
after that the quantum system B interacts with the same en-
vironment, which has been disturbed by the quantum system
A. Hence the quantum system B, which does not directly
interact with the quantum system A, is affected indirectly by
the quantum system A through the environment. The quantum
channel derived in this paper is exact if the environment is
Gaussian, otherwise it is the second-order approximation with
respect to the system-environment interaction. We have also
provided the approximation to the quantum channel that is
valid if the correlation time of the environment is not so
long in comparison with the time difference t2 − t1, where
the quantum system A finishes the interaction at time t1
and the quantum system B begins the interaction at time t2.
If the two quantum systems interact with the environment
via a dephasing coupling, the general formula is analytically
tractable since the time-ordering operation is removed.

Assuming that the two quantum states are qubits interact-
ing with the environment via a dephasing coupling, we have
investigated the non-Markovianity of the reduced time evo-
lution, the degradation of the two-qubit correlation, and the
state transmission through the composite quantum channel.
Qubit B is influenced by the environment disturbed by qubit
A. For qubit A, the reduced time evolution is non-Markovian

only if the correlation time of the environment is long in
comparison with the characteristic time of the qubit A. On the
other hand, for qubit B, the non-Markovianity is caused by
two different origins. One is the same as that for qubit A. The
other is the disturbance effect of the environment caused by
qubit A. In fact, it has been found that the non-Markovianity
appears in the different parameter regions. The result implies
that the condition for non-Markovianity is weakened when the
environment is out of thermal equilibrium.

For a statistical mixture of Bell states, we have shown that
the entanglement of the two-qubit state coming out of the
composite quantum channel exhibits not only sudden death
but also sudden birth in the case of strong coupling with the
environment. Although classical correlation is always greater
than quantum correlation without the disturbance effect, this is
not true in the presence of the disturbance effect. The increase
of quantum correlation has been observed due to the distur-
bance effect. Finally, we have investigated the state transfer of
two qubits through the composite quantum channel. When the
transmissions of qubits A and B are treated individually, the
disturbance effect decreases the average fidelity of qubit B.
However, when the state transmissions are treated collectively,
the average fidelity of qubits A and B is increased in the
presence of the disturbance effect. In this paper, we have
found that the disturbance effect in the environment has a
nontrivial influence on the non-Markovianity, the bipartite
correlation, and the state transmission. In Secs. III–V, we have
assumed that the environment has Lorentzian spectral density.
So it may be important to investigate the disturbance effect
when it has a different spectral density, such as Ohmic spectral
density.
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