
PHYSICAL REVIEW A 99, 012114 (2019)

Time-reversal and rotational symmetries in noncommutative phase space
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Time-reversal symmetry is studied in the frame of quantum and classical mechanics in a space with
noncommutativity of coordinates and noncommutativity of momenta of canonical type. The circular motion
is examined as an apparent example of time-reversal symmetry breaking in the space. On the basis of an
exact solution of the problem, we show that because of noncommutativity the period of the circular motion
depends on its direction. We propose the way to recover the time-reversal and rotational symmetries in
noncommutative phase space of canonical type. Namely, on the basis of the idea of generalization of parameters
of noncommutativity to tensors, we construct noncommutative algebra which is rotationally invariant, invariant
under time reversal, and equivalent to noncommutative algebra of canonical type.

DOI: 10.1103/PhysRevA.99.012114

I. INTRODUCTION

Much attention has been devoted to studies of a quantum
space realized on the basis of the idea that coordinates can
be noncommutative. The idea was suggested by Heisenberg
and later formalized by Snyder [1]. Noncommutative phase
space of canonical type has been studied intensively. It is
characterized by the commutation relations for operators of
coordinates and momenta

[Xi,Xj ] = ih̄θij , (1)

[Xi, Pj ] = ih̄(δij + γij ), (2)

[Pi, Pj ] = ih̄ηij , (3)

with θij , ηij , and γij elements of constant antisymmetric
matrices.

The idea that coordinates and momenta may be non-
commutative offers a possibility to construct quantum space
(space with minimal length) at the same time noncommutativ-
ity causes fundamental problems. In noncommutative space
of canonical type (1)–(3) with ηij = γij = 0, one faces the
problems of rotational and time-reversal symmetries breaking
[2–5]. The same problems appear in noncommutative phase
space (1)–(3). In [6] it was proven that the CPT theorem
holds and spin statics remains valid for noncommutative
quantum field theories while C, P (in some cases), and T

symmetries are broken. The authors of Ref. [7] examined the
unitarity of noncommutative scalar field theories and showed
that noncommutativity of space-time leads to violation of
unitarity. In addition, the noncommutativity of space-time
causes violation of causality [8].

To preserve rotational symmetry, the noncommutative al-
gebra of canonical type was generalized in different ways. As

*khrystyna.gnatenko@gmail.com
†mykolasamar@gmail.com
‡voltkachuk@gmail.com

a result, different types of algebras with noncommutativity
of coordinates were proposed and examined [9–12]. Among
these algebras rotationally invariant algebra with position-
dependent noncommutativity (see, for example, [13–19]) and
noncommutative algebras with spin noncommutativity (see,
for example, [20,21]) were intensively studied. These algebras
are rotationally invariant but they are not equivalent to non-
commutative algebras of canonical type in the sense that the
relation [Xi, θij ] = [Pi, θij ] = 0 does not hold in the frame of
the algebras.

In the present paper we study time-reversal symmetry in
noncommutative phase space of canonical type (1)–(3) in the
frame of noncommutative quantum and classical mechanics.
The circular motion is studied as an obvious example for
observing the time-reversal symmetry breaking. On the basis
of an exact solution of the problem, it is shown that because of
noncommutativity, the period of the circular motion depends
on its direction. So noncommutativity causes violation of the
time-reversal symmetry. To recover the symmetry we propose
noncommutative algebra which is time-reversal invariant, ro-
tationally invariant, and equivalent to noncommutative alge-
bra of canonical type.

The paper is organized as follows. In Sec. II the time-
reversal symmetry is studied in noncommutative phase space
of canonical type. The invariance of noncommutative algebra
upon time reversal is analyzed. The influence of noncommu-
tativity on the period of circular motion in different directions
is examined. In Sec. III algebra with noncommutativity of
coordinates and noncommutativity of momenta which is time-
reversal and rotationally invariant is constructed. A summary
is presented in Sec. IV.

II. TIME-REVERSAL SYMMETRY IN
NONCOMMUTATIVE PHASE SPACE OF

CANONICAL TYPE

An obvious example for observing violation of the time-
reversal symmetry in noncommutative phase space is a cir-
cular motion. The effect of noncommutativity on the motion
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depends on its direction. To show this let us consider non-
commutative algebra of canonical type in the two-dimensional
case

[X1, X2] = ih̄θ, (4)

[X1, P1] = [X2, P2] = ih̄(1 + γ ), (5)

[P1, P2] = ih̄η (6)

and study the Hamiltonian

H = P 2
1

2m
+ P 2

2

2m
− k

X
. (7)

Here θ , η, and γ are constants and X =
√

X2
1 + X2

2. In
the classical limit h̄ → 0 from (4)–(6) we have the Poisson
brackets

{X1, X2} = θ, (8)

{X1, P1} = {X2, P2} = 1 + γ, (9)

{P1, P2} = η. (10)

Taking into account that Xi and Pi in (7) satisfy (8)–(10), one
obtains equations of motion

Ẋ1 = P1

m
(1 + γ ) + kθX2

X3
, (11)

Ẋ2 = P2

m
(1 + γ ) − kθX1

X3
, (12)

Ṗ1 = ηP2

m
− kX1

X3
(1 + γ ), (13)

Ṗ2 = −ηP1

m
− kX2

X3
(1 + γ ). (14)

The obtained equations have the solution

X1(t ) = R0 cos(ωt ), X2(t ) = R0 sin(ωt ), (15)

P1(t ) = −P0 sin(ωt ), P2(t ) = P0 cos(ωt ). (16)

The solution corresponds to circular motion with radii R0,
momentum

P0 = mωR3
0 + kmθ

R2
0 (1 + γ )

, (17)

and frequency

ω= 1

2

⎡
⎣

√
4k

mR3
0

[(1+γ )2−θη]+
(

kθ

R3
0

+ η

m

)2

− η

m
− kθ

R3
0

⎤
⎦.

(18)

The period of the motion reads

T =4π

⎡
⎣

√
4k

mR3
0

[(1+γ )2−θη]+
(

kθ

R3
0

+ η

m

)2

− η

m
− kθ

R3
0

⎤
⎦

−1

.

(19)

Let us consider the circular motion in the opposite direction
with radii R0. The corresponding solution reads

X1(t ) = R0 cos(ωt ), X2(t ) = −R0 sin(ωt ), (20)

P1(t ) = P ′
0 sin(ωt ), P2(t ) = P ′

0 cos(ωt ). (21)

Expressions (20) and (21) correspond to (15) and (16) with
−t . We put P ′

0 in (21) to distinguish momentum which cor-
responds to the motion in the opposite direction. Substituting
(20) and (21) into (11)–(14), we obtain

ω′ = 1

2

⎡
⎣

√
4k

mR3
0

[(1 + γ )2 − θη] +
(

kθ

R3
0

+ η

m

)2

+ η

m
+ kθ

R3
0

⎤
⎦, (22)

T ′ = 4π

⎡
⎣

√
4k

mR3
0

[(1 + γ )2 − θη] +
(

kθ

R3
0

+ η

m

)2

+ η

m
+ kθ

R3
0

⎤
⎦

−1

, (23)

and

P ′
0 = −mω′R3

0 − kmθ

R2
0 (1 + γ )

. (24)

Note that the obtained frequency (22) and period (23) do not
coincide with (18) and (19). We have

�ω = ω′ − ω = η

m
+ kθ

R3
0

. (25)

The period and the frequency are different for motions in a
circle of radius R0 in different directions. In comparison to
(18) and (19), expressions for ω′ and T ′ contain parameters
of noncommutativity with opposite signs. One also has that
P ′

0 �= −P0 (in the ordinary space one has that P ′
0 = −P0,

which corresponds to the motion in the opposite direction).
The discrepancy between expressions (18) and (19) and ex-
pressions (22) and (23) is because of noninvariance of non-
commutative algebra (4) and (6) upon time reversal, because
of time-reversal symmetry breaking in noncommutative phase
space.

Ordinary commutation relations for coordinates and mo-
menta (θ = η = γ = 0) are invariant under the time-reversal
transformation [22]. In analogy to the ordinary case (θ =
η = γ = 0), considering transformations of coordinates and
momenta upon time reversal as Xi → Xi and Pi → −Pi

and taking into account that in quantum mechanics the time-
reversal operation involves complex conjugation [22], for (4)–
(6) we obtain commutation relations

[X1, X2] = −ih̄θ, (26)

[X1, P1] = [X2, P2] = ih̄(1 + γ ), (27)

[P1, P2] = −ih̄η, (28)
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which in the classical limit correspond to the Poisson
brackets {X1, X2} = −θ , {X1, P1} = {X2, P2} = 1 + γ , and
{P1, P2} = η. From (26)–(28) it follows that the algebra (4)–
(6) is not invariant upon time reversal.

Note that the results (22) and (23) can be obtained by
taking into account that the motion in the opposite direction
corresponds to the time-reversal transformation and upon time
reversal one has (26)–(28). Therefore, expressions (22) and
(23) for ω′ and T ′ can be found by changing the signs of
parameters of noncommutativity in (18) and (19) (changing
θ to −θ and η to −η). We also have that by changing signs of
parameters of noncommutativity in P ′

0 [Eq. (24)] (changing θ

to −θ and η to −η), one obtains −P0 [Eq. (17)].

III. RECOVERING TIME-REVERSAL AND ROTATIONAL
SYMMETRIES IN NONCOMMUTATIVE PHASE SPACE

To recover the time-reversal and rotational symmetries in
noncommutative phase space we consider the idea to construct
tensors of noncommutativity involving additional coordinates
and additional momenta. On the basis of studies presented
in the preceding section, we can conclude that in order to
preserve the time-reversal symmetry the tensors θij and ηij

have to transform under the time reversal as

θij → −θij , ηij → −ηij . (29)

Expressions for the tensors of noncommutativity in which
(29) hold in terms of simplicity can be written as

θij = cθ

h̄

∑
k

εijkp
a
k , (30)

ηij = cη

h̄

∑
k

εijkp
b
k , (31)

where cθ and cη are constants and pa
i and pb

i are additional
momenta.

To preserve the rotational symmetry, additional coordinates
ai and bi and momenta pa

i and pb
i conjugate of them are

supposed to be governed by rotationally symmetric systems.
For simplicity, the systems are considered to be harmonic
oscillators

Ha
osc = (pa )2

2mosc
+ moscω

2
osca2

2
, (32)

Hb
osc = (pb )2

2mosc
+ moscω

2
oscb2

2
, (33)

with
√

h̄/
√

moscωosc = lP and very large frequency ωosc. So
the distance between the energy levels is large and harmonic
oscillators put into the ground states remain in the states [23].
So we propose the noncommutative algebra

[Xi,Xj ] = icθ

∑
k

εijkp
a
k , (34)

[Xi, Pj ] = ih̄

(
δij + cθcη

4h̄2 (pa · pb )δij − cθcη

4h̄2 pa
j p

b
i

)
, (35)

[Pi, Pj ] = icη

∑
k

εijkp
b
k . (36)

where we take into account (30) and (31) and consider γij =∑
k θikηjk/4, as was considered in [24].
Additional coordinates and additional momenta are sup-

posed to satisfy the ordinary commutation relations

[ai, aj ] = [bi, bj ] = [ai, bj ] = [
pa

i , p
a
j

] = [
pb

i , p
b
j

]
= [

pa
i , p

b
j

] = 0, (37)[
ai, p

a
j

] = [
bi, p

b
j

] = ih̄δij , (38)[
ai, p

b
j

] = [
bi, p

a
j

] = 0. (39)

Also, the relations

[ai, Xj ] = [ai, Pj ] = [
pb

i , Xj

] = [
pb

i , Pj

] = 0 (40)

hold. So operators Xi and Pi , and θij and ηij , sat-
isfy the same commutation relations as in the case
of noncommutative phase space of canonical type (1)–
(3). We have [θij , Xk] = [θij , Pk] = [ηij , Xk] = [ηij , Pk] =
[γij , Xk] = [γij , Pk] = 0. In this sense noncommutative alge-
bra (34)–(36) is equivalent to (1)–(3).

The coordinates and momenta ai , bi , pa
i , and pb

i can be
treated as internal coordinates and momenta of a particle.
Quantum fluctuations of these coordinates lead effectively to
a nonpointlike particle with size of the order of the Planck
scale.

As a result of involving additional coordinates and addi-
tional momenta, one has to consider the total Hamiltonian
defined as

H = Hs + Ha
osc + Hb

osc, (41)

where Hs is the Hamiltonian of a system under consideration
and Ha

osc and Hb
osc are given by (32) and (33). Taking into ac-

count that coordinates and momenta upon time reversal trans-
form as Xi → Xi , Pi → −Pi , ai → ai , pa

i → −pa
i , bi →

bi , and pb
i → −pb

i and the time-reversal operation involves
complex conjugation, one obtains that the algebra (34)–(36)
and the Hamiltonian (41) are invariant under the time reversal.
So the time-reversal symmetry is preserved in a space with
(34)–(36).

We would like to note here that because of invariance of
noncommutative algebra (34)–(36) on time reversal, indepen-
dently of representation, one can find that upon time reversal
Xi → Xi and Pi → −Pi . For example, the coordinates and
momenta which satisfy (34)–(36) can be represented as

Xi = xi + cθ

2h̄
[pa × p]i , (42)

Pi = pi − cη

2h̄
[x × pb]i , (43)

with xi and pi satisfying the ordinary commutation relations
[xi, xj ] = [pi, pj ] = 0 and [xi, pj ] = ih̄δij . After time rever-
sal one has xi → xi , pi → −pi , pa

i → −pa
i , and pb

i → −pb
i

and taking into account (42) and (43), noncommutative coor-
dinates and noncommutative momenta transform as Xi → Xi

and Pi → −Pi . We would like to mention here that in the case
of noncommutative algebra of canonical type the transfor-
mation of noncommutative coordinates and noncommutative
momenta upon time reversal depends on their representation
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(see the Appendix). This is a consequence of noninvariance
of noncommutative algebra of canonical type on the time
reversal.

Besides being time-reversal invariant, the algebra
(34)–(36) is rotationally invariant. After rotation X′

i =
U (ϕ)XiU

+(ϕ), P ′
i = U (ϕ)PiU

+(ϕ), a′
i = U (ϕ)aiU

+(ϕ),
pb′

i = U (ϕ)pb
i U

+(ϕ), and the commutation relations
(34)–(36) remain the same,

[X′
i , X

′
j ] = icθ

∑
k

εijkp
a′
k , (44)

[X′
i , P

′
j ] = ih̄

(
δij + cθcη

4h̄
(pa′ · pb′)δij − cθcη

4h̄
pa′

j pb′
i

)
, (45)

[P ′
i , P

′
j ] = icη

∑
k

εijkp
b′
k . (46)

The operator of rotation has the form U (ϕ) = exp[iϕ(n ·
Lt )/h̄], with Lt = [x × p] + [a × pa] + [b × pb] and
U+(ϕ) = exp[−iϕ(n · Lt )/h̄] [23].

So the noncommutative algebra (34)–(36) is rotationally
and time-reversal invariant and is equivalent to noncommuta-
tive algebra of canonical type. Note that the proposed algebra
is consistent. The Jacobi identity is satisfied and can be
easily checked for all possible triplets of operators because
of explicit representation (42) and (43).

We would like to mention that in our previous paper [23], in
order to preserve rotational symmetry, we proposed noncom-
mutative algebra (34)–(36) with tensors of noncommutativity
defined as

θij = l0

h̄

∑
k

εijkak, (47)

ηij = p0

h̄

∑
k

εijkp
b
k . (48)

with l0 and p0 constants and ak and pb
k additional coordinates

and momenta governed by harmonic oscillators. In the case
when θij is defined as (47), the commutation relations (1) are
not invariant under the time reversal. Upon time reversal one
has

[Xi,Xj ] = −il0
∑

k

εijkak = −ih̄θij . (49)

We would like also to note here that instead of examining the
total Hamiltonian (41), one can study an effective Hamiltonian

H0 = 〈Hs〉ab + Ha
osc + Hb

osc, (50)
up to second order in

�H = H − H0 = Hs − 〈Hs〉ab. (51)
This is because the corrections to the energy levels of the
total Hamiltonian H [Eq. (41)] caused by terms �H vanish
up to second order in the perturbation theory [25]. Here the
notation 〈· · · 〉ab is used for averaging over degrees of freedom
of harmonic oscillators Ha

osc and Hb
osc in the ground states

〈· · · 〉ab = 〈
ψa

0,0,0ψ
b
0,0,0

∣∣...∣∣ψa
0,0,0ψ

b
0,0,0

〉
, (52)

where ψa
0,0,0 and ψb

0,0,0 are eigenstates of Ha
osc and Hb

osc. Note
that H0 does not contain terms linear over parameters of
noncommutativity. After averaging over ψa

0,0,0 and ψb
0,0,0 the

terms in the Hamiltonian Hs in the first order in θij and ηij

vanish because of 〈ai〉ab = 〈pb
i 〉ab = 0. The Hamiltonian H0

depends only on

〈
θ2
i

〉 = l2
0

h̄2

〈
ψa

0,0,0

∣∣a2
i

∣∣ψa
0,0,0

〉 = l2
0 l

2
P

2h̄2 = 〈θ2〉
3

, (53)

〈
η2

i

〉 = p2
0

h̄2

〈
ψb

0,0,0

∣∣(pb
i

)2∣∣ψb
0,0,0

〉 = p2
0

2h̄2l2
P

= 〈η2〉
3

. (54)

Therefore, H0 is invariant on replacement of θij by −θij

and taking into account that (49) is invariant under the time-
reversal transformation. Note that this statement holds for
different definitions of the tensors of noncommutativity on
which 〈θi〉ab = 〈ηi〉ab = 0. We would also like to mention
that the Hamiltonian H0 depends on the mean values 〈θ2〉
and 〈η2〉 and does not depend explicitly on the way the
tensors of noncommutativity θij and ηij are defined and on
the rotationally invariant system which governs ai , bi , pa

i ,
and pb

i . So, independently of the definition of the tensors
of noncommutativity (only one condition has to be satisfied,
〈θij 〉ab = 〈ηij 〉ab = 0) the effective Hamiltonian H0 is invari-
ant upon time reversal.

So the idea to define tensors of noncommutativity, intro-
ducing additional coordinates and additional momenta, of-
fers a possibility to construct noncommutative algebra which
is rotationally invariant, invariant under the time-reversal
transformation, and equivalent to noncommutative algebra of
canonical type.

IV. CONCLUSION

Time-reversal symmetry has been studied in the frame of
quantum and classical mechanics in a space with noncom-
mutativity of coordinates and noncommutativity of momenta
of canonical type. It has been shown that noncommutative
algebra (4)–(6) is not time-reversal invariant. Upon time
reversal one obtains noncommutative algebra with opposite
signs of parameters of noncommutativity (26) and (28). We
have also concluded that because of noninvariance of algebra
(4)–(6), transformations for noncommutative coordinates and
noncommutative momenta upon time reversal depend on their
representation (A8)–(A11).

Circular motion has been examined in noncommutative
phase space as an evident example for studying the time-
reversal symmetry breaking. The frequency and period of the
motion have been found exactly in noncommutative phase
space of canonical type. We have concluded that because of
noncommutativity, the frequency and the period of the circular
motion depend on its direction [Eqs. (18), (19), (22), and
(23)]. The effect of noncommutativity on the motion in a circle
of radius R0 depends on its direction.

To recover the time-reversal symmetry in noncommutative
phase space we have considered the idea to generalize the
parameters of noncommutativity to tensors. We have shown
that the time-reversal symmetry is preserved if the tensors of
noncommutativity transform as θij → −θij and ηij → −ηij

under time reversal. So, on the basis of this statement and
in terms of simplicity, we proposed the tensors of noncom-
mutativity to be defined as (30) and (31). To construct these
tensors additional coordinates and additional momenta have
been considered. To preserve the rotational symmetry the
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coordinates and the momenta have been supposed to be gov-
erned by rotationally invariant systems, which for simplicity
are considered to be harmonic oscillators. As a result, we
proposed noncommutative algebra (34)–(36) which is rota-
tionally invariant, time-reversal invariant, and equivalent to
noncommutative algebra of canonical type.
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APPENDIX

Because of noninvariance of noncommutative algebra of
canonical type (4)–(6) under time reversal, the transformation
of Xi and Pi upon time reversal depends on representation. It
is known that the noncommutative coordinates and noncom-
mutative momenta which satisfy (4)–(6) can be represented
by coordinates and momenta xi and pi with

[xi, xj ] = 0, (A1)

[xi, pj ] = ih̄δij , (A2)

[pi, pj ] = 0. (A3)

Namely, for coordinates and momenta which satisfy (4)–(6)
we can write

X1 = ε(x1 − θ ′
1p2), (A4)

X2 = ε(x2 + θ ′
2p1), (A5)

P1 = ε(p1 + η′
1x2), (A6)

P2 = ε(p2 − η′
2x1), (A7)

with ε, θ ′
1, θ ′

2, η′
2, and η′

2 constants. Upon time reversal,
considering transformations xi → xi and pi → −pi , we have

X1 → X′
1 = ε(x1 + θ ′

1p2), (A8)

X2 → X′
2 = ε(x2 − θ ′

2p1), (A9)

P1 → −P ′
1 = ε(−p1 + η′

1x2), (A10)

P2 → −P ′
2 = ε(−p2 − η′

2x1). (A11)

So transformations (A8)–(A11) depend on the parameters ε,
θ ′

1, θ ′
2, η′

2, and η′
2, therefore they depend on the representation.

The parameters ε, θ ′
1, θ ′

2, η′
2, and η′

2, can be chosen in
different ways. Taking into account (A1)–(A7), we have

[X1, X2] = ih̄ε2(θ ′
1 + θ ′

2), (A12)

[X1, P1] = ih̄ε2(1 + θ ′
1η

′
1) (A13)

[X2, P2] = ih̄ε2(1 + θ ′
2η

′
2), (A14)

[P1, P2] = ih̄ε2(η′
1 + η′

2). (A15)

On the basis of comparison of (A12)–(A15) with (4)–(6) we
can write the equations

ε2 = 1, θ ′
1η

′
1 = θ ′

2η
′
2 = γ, (A16)

θ ′
1 + θ ′

2 = θ, (A17)

η′
1 + η′

2 = η, (A18)

from which we obtain

θ ′
1 = 1

2

(
θ ±

√
θ2 − 4

θγ

η

)
, (A19)

θ ′
2 = 1

2

(
θ ∓

√
θ2 − 4

θγ

η

)
, (A20)

η′
1 = 1

2

(
η ∓

√
η2 − 4

ηγ

θ

)
, (A21)

η′
2 = 1

2

(
η ±

√
η2 − 4

ηγ

θ

)
, (A22)

and γ � θη/4. So, choosing the signs in (A19)–(A22),
we obtain two different representations for noncommuta-
tive coordinates and noncommutative momenta and there-
fore two different transformations upon time reversal
(A8)–(A11).

Symmetric representation with ε = 1, θ ′
1 = θ ′

2 = θ/2, and
η′

1 = η′
2 = η/2 is well known. In this case coordinates and

momenta Xi and Pi satisfy (1)–(3) with γ = θη/4 [26].
For γ = 0 in (5) the commutator of coordinates and mo-

menta is equal to ih̄ as in the ordinary space. Comparing
(A12)–(A15) and (4)–(6) with γ = 0, we can write

ε2 = 1

1 + θ ′
1η

′
1

, (A23)

θ ′
1η

′
1 = θ ′

2η
′
2, (A24)

ε2(θ ′
1 + θ ′

2) = θ, (A25)

ε2(η′
1 + η′

2) = η. (A26)

Note that we have four equations (A23)–(A26) and five
parameters ε, θ ′

1, θ ′
2, η′

1, and η′
2. So by choosing one of

them one can obtain different representations of coordinates
and momenta which satisfy (4)–(6) with γ = 0 and different
transformations (A8)–(A11). For instance, one can choose
θ ′

2 = 0. As a result, from (A23)–(A26) one obtains ε = 1,
η′

1 = 0, η′
2 = η, and θ ′

1 = θ and the representation reads X1 =
x1 − θp2, X2 = x2, P1 = p1, and P2 = p2 − ηx1. In this case,
upon time reversal the coordinate X2 and momentum P1

transform in the traditional way, X2 → X2 and P1 → −P1.
However, for X1 and P1 one has X1 → X′

1 = x1 + θp2 and
P2 → −P ′

2 = −p2 − ηx1. It is also possible to write two sym-
metric representations (A4)–(A7) with the parameters ε =
(1 + θ ′η′)−1/2, θ ′

1 = θ ′
2 = (1 ± √

1 − θη)/η, and η′
1 = η′

2 =
(1 ± √

1 − θη)/θ [26,27], which lead to different transforma-
tions under time reversal.
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