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Partial topological Zak phase and dynamical confinement in a non-Hermitian bipartite system
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Unlike a Chern number in a two-dimensional (2D) and 3D topological system, the Zak phase takes a subtle
role to characterize the topological phase in 1D. On the one hand, it is not gauge invariant, and, on the other hand,
the Zak phase difference between two quantum phases can be used to identify the topological phase transitions.
A non-Hermitian system may inherit some characters of a Hermitian system, such as entirely real spectrum,
unitary evolution, topological energy band, etc. In this paper, we study the influence of a non-Hermitian term
on the Zak phase. We show exactly that the real part of the Zak phase remains unchanged in a class of 1D
bipartite lattice systems even in the presence of the on-site imaginary potential. The non-Hermitian term only
gives rise to the imaginary part of Zak phase. Such a complex quantity has a physical implication when we
consider the dynamical realization in which the Zak phase can be obtained through adiabatic evolution. In this
context, its imaginary part represents the amplification and/or attenuation of the Dirac norm of the evolved state.
Based on this finding, we investigate a scattering problem for a time-dependent scattering center, which is a
magnetic-flux-driven non-Hermitian Su-Schrieffer-Heeger ring. Due to the topological nature of the Zak phase,
the intriguing features of this design are the wave-vector independence and allow two distinct behaviors, perfect
transmission or confinement, depending on the timing of a flux impulse threading the ring. When the flux is added
during a wave packet travelling within the ring, the wave packet is confined in the scatter partially. Otherwise,
it exhibits perfect transmission through the scatter. Our finding extends the understanding and broadens the
possible application of the Zak phase in a non-Hermitian system.
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I. INTRODUCTION

The scope of quantum mechanics has been extended to a
non-Hermitian system since the discovery that a certain class
of non-Hermitian Hamiltonians could exhibit the entirely real
spectra [1–3] and the observation of non-Hermitian behavior
in experiment [4–12]. Besides the exceptional point (EP), a
biorthonormal inner product can be induced to take the role of
the Dirac inner product for a pseudo-Hermitian Hamiltonian
operator [13,14], which always associates with a particular
symmetry, PT symmetry. Here P is an unitary operator, while
T is an antiunitary operator. Especially in the PT symmetric
region, a non-Hermitian Hamiltonian acts as a Hermitian one,
having entirely real spectrum, unitary evolution, etc., in the
context of biorthonormal inner product. In this sense, many
conclusions for Hermitian system can be extended to the non-
Hermitian regime. Recently there has been a growing inter-
est in topological properties of non-Hermitian Hamiltonians
applicable to a wide range of systems including systems with
unbalanced pairing, systems with gain and/or loss and systems
with open boundaries [15–31]. In this area, theoretical studies
of non-Hermitian topological systems usually focus on either
concrete experimental realizations of dissipative topological
in real material or finding topological invariants or systematic
classification of topological phases [23,32–40].
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In the Hermitian regime, it is well known that the non-
trivial band topologies of both two-dimensional (2D) and 3D
systems are characterized by the Chern numbers and the Z2

invariants, respectively, while the topological property of bulk
bands in 1D periodic systems is characterized by the Zak
phase [41]. However, the role of the Zak phase is subtle:
The Zak phase is not a geometric invariant, since it depends
on the choice of origin of the Brillouin zone. Only the Zak
phase difference can identify a topological transition. On the
other hand, it has been shown that the geometric phase can be
complex [42–50] in a non-Hermitian system. Motivated by the
performance of the Zak phase in a non-Hermitian system, in
this work, we investigate the influence of non-Hermitian term
on the Zak phase in a bipartite lattice.

If a Hermitian system is topological, then a natural ques-
tion to ask is how does the non-Hermitian term can effect
on the topology of the original Hermitian system. In general,
there exists three possibilities: (i) The system possesses the
original topology even in the presence of the non-Hermitian
term. (ii) The system remains partial topology of its original
one. (iii) The existence of the non-Hermitian term spoils the
original topology. Which one does the non-Hermitian system
prefer? This is what we need to answer in this paper. Through
the analytical solution, we find that when the staggered on-
site potential is added, a class of non-Hermitian bipartite
systems can still inherit partially the topology of the original
Hermitian systems through the real part of Zak phase. The
non-Hermitian term only brings about an imaginary part of
Zak phase. Such a complex quantity has physical implication
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when we relate it to a complex Berry phase through adiabatic
evolution of a time-dependent Hamiltonian driven by the
magnetic flux. In this context, we point out that the Zak
phase difference between different parameter regions can be
dynamically characterized by the scattering of a wave packet.
Due to the partial topology of Zak phase, the wave packets
after the interference will exhibit the partial confinement
behavior. This also provide a possible experimental scheme
to observe the topological invariants.

This paper is organized as follows. In Sec. II, we present a
general theory about the partial topological phase in a 1D non-
Hermitian bipartite system. In Sec. III, we apply the theory to
a concrete model and provide a dynamical method to realize
the Zak phase. Section IV devotes to the scattering behaviors
based on the topological feature of the Zak phase. Finally, we
give a summary and discussion in Sec. V.

II. ZAK PHASE IN A NON-HERMITIAN BIPARTITE
SYSTEM

We first investigate the generic non-Hermitian lattice
models that consist of two sublattices, A and B, the non-
Hermiticity of which stems from the staggered imaginary
on-site potential. For clarity, we start discussion with systems
that possess the identical sublattice numbers A = B = N . The
corresponding bipartite non-Hermitian Hamiltonian can be
written as

H =
∑
ij

wij c
†
A,icB,j + H.c.

− i�
∑

i

(c†A,icA,i − c
†
B,icB,i ), (1)

where c
†
A(B ),j denotes the creation operator of an electron

on site A (B) with periodic boundary condition c
†
A(B ),j =

c
†
A(B ),j+N and wij is a complex number describing the cou-

pling constant between the two sublattices. A schematic
illustration of the model is presented in Fig. 1. Due to
the complexity of the coupling wij , the system does not
have the chirality-time-reversal symmetry but has translation

FIG. 1. Schematic illustration of the non-Hermitian bipartite lat-
tice that consists of two sublattices A and B with identical lattice
length. The two sublattices are connected with each other by bond
wij which is across the ith site in sublattice A and the j th site in
sublattice B.

symmetry with the condition wij = wi+1,j+1, i.e., [T ,H] = 0.
Here the translation operator T is defined as

T −1c
†
A(B ),j T = c

†
A(B ),j+1, (2)

which allows the invariant subspace spanned by the eigenvec-
tor of operator T . Taking the Fourier transformation, the non-
Hermitian Bloch Hamiltonian of a lattice with translational
symmetry then reads H = ∑

k Hk , satisfying [Hk′ ,Hk] = 0.
In the Nambu representation, the bipartite non-Hermitian
Hamiltonian can be written as

H =
∑

k

η
†
khkηk, (3)

where the basis η
†
k = (c†A,k , c

†
B,k ) with c

†
A(B ),k the creation

operator of a Fermion in the momentum space, which satisfies
T −1c

†
A(B ),kT = e−ik , and

hk = −→
B (k) · −→σ , (4)

with −→σ = (σx, σy, σz) the vector of the matrices. Note

that
−→
B (k) = [Bx (k), By (k), Bz] is a three-dimensional com-

plex vector field, where Bz = −i� is k independent. The
presence of the staggered imaginary on-site potential re-
sults in the imaginary strength of z direction of

−→
B (k),

i.e., B∗
z = −Bz. The general energy expression of the sin-

gle quasiparticle can be given as εk = ±rk , where rk =√
B2

x (k) + B2
y (k) − [Im(Bz)]2 . It is clear that when any

one of the quasimomenta k satisfies B2
x (k) + B2

y (k) −
[(Im(Bz)]2 < 0, the imaginary energy level appears in the
quasiparticle spectrum, which leads to the occurrence of com-
plex energy levels. This result has three implications. (i) The
non-Hermitian Hamiltonian H is pseudo-Hermitian, since its
eigenvalues are either real or come in complex-conjugate
pairs. (ii) One can always modulate the strength of imagi-
nary on-site potential to obtain the full real spectrum. The
critical strength of the imaginary on-site potential depends
on the energy gap between the two bands of the Hermitian
version with Bz = 0. (iii) The EP occur at B2

x (k) + B2
y (k) =

[Im(Bz)]2, which corresponds to the Jordan Block of hk

accompanied by the coalescence of the two eigenstates. Now
we give the expression of the eigenstates. The eigenstates of a
bipartite non-Hermitian Hamiltonian can construct a complete
set of biorthogonal bases in association with the eigenstates of
its Hermitian conjugate. For the concerned bipartite system,
|�k

+〉, |�k
−〉 of hk and |χk

+〉, |χk
−〉 of h

†
k are the biorthogonal

bases of the single-quasiparticle invariant subspace, which are
explicitly expressed as

|�k
+〉 =

(
cos θ

2 e−iϕ

sin θ
2

)
, |�k

−〉 =
(

sin θ
2

− cos θ
2 eiϕ

)
, (5)

|χk
+〉 =

(
cos θ

2 eiϕ

sin θ
2

)∗
, |χk

−〉 =
(

sin θ
2

− cos θ
2 e−iϕ

)∗
. (6)

Here the vector field
−→
B (k) is represented in terms of polar

coordinates as
−→
B (k) = rk (sin θ cos ϕ, sin θ sin ϕ, cos θ ), (7)
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where

rk =
√

B2
x (k) + B2

y (k) − [Im(Bz)]2, (8)

cos θ = Bz

rk

, tan ϕ = By (k)

Bx (k)
. (9)

It is easy to check that biorthogonal bases {|�k
λ〉, |χk

λ 〉}(λ = ±)
satisfy the biorthogonal and completeness conditions,〈

�k
λ

∣∣χk′
λ′

〉 = δλλ′δkk′ ,
∑
λk

∣∣�k
λ

〉〈
χk

λ

∣∣ = I. (10)

Note that these properties are independent of the reality of
the spectrum and are generally satisfied except at the EP. In
the absence of the staggered imaginary on-site potential, we
have |�k

λ〉 = |χk
λ 〉 with θ = π/2 and the conditions (10) reduce

to the Dirac orthogonal and completeness conditions. In the
following, we focus on the system with full real spectrum.
This is crucial to achieve the main conclusion. To characterize
the topological property of the energy band, we introduce the
modified Zak phase

Z±=
∫ 2π

0
Ak,±dk, (11)

where the Berry connection is given by

Ak,± = i
〈
χk

±
∣∣∂k

∣∣�k
±
〉 = ∂kϕAϕ,± + ∂kθAθ,±, (12)

with

Aϕ,± = i
〈
χk

±
∣∣∂ϕ

∣∣�k
±
〉
, Aθ,± = i

〈
χk

±
∣∣∂θ

∣∣�k
±
〉
. (13)

The straightforward algebra shows that

Z± = ±1

2

∫ ϕ(2π )

ϕ(0)
(1 + cos θ )dϕ, (14)

= Z± ± i
Im(Bz)

2

∫ ϕ(2π )

ϕ(0)

1

rk

dϕ, (15)

where Z denotes the Zak phase of the Hermitian system with-
out staggered imaginary potential, i.e., the Bloch Hamiltonian
hk with

−→
B (k) = (Bx (k), By (k), 0). Comparing to the Her-

mitian version with θ = π/2, the presence of the staggered
imaginary potential does not alter the real part of the Zak
phase but brings about an extra imaginary part, which am-
plifies the Dirac probability of the adiabatic evolved state. In
this sense, if the Zak phase of the original Hermitian bipartite
Hamiltonian is topological, then the modified Zak phase of the
non-Hermitian version will inherit this topological property
through its real part. Such a modified Zak phase is therefore
referred to as the partial topological Zak phase.

A. Two concrete bipartite non-Hermition models

Here we want to point out that this conclusion is held
for a class of non-Hermitian bipartite lattice models. To
demonstrate this finding, we consider two concrete models,
the non-Hermitian Su-Schrieffer-Heeger (SSH) model and the
coupled SSH model, which are shown in Fig. 2.

FIG. 2. Schematic illustration of two typical bipartite non-
Hermitian lattice systems: (a) a non-Hermitian SSH model with
staggered on-site imaginary potential and (b) a non-Hermitian cou-
pled SSH model. It consists of two non-Hermitian SSH chains with
periodical boundary condition. The non-Hermitian systems inherit
the topology of the original Hermitian system through the real part
of a Zak phase.

1. Non-Hermitian SSH model

For a non-Hermitian SSH model, the Hamiltonian can be
given as

H =
∑

j

w1c
†
A,j cB,j + w2c

†
B,j cA,j+1 + H.c.

−i�
∑

j

(c†A,j cA,j − c
†
B,j cB,j ), (16)

where wi (i = 1, 2) is a positive real number and de-
scribes the staggerd hopping amplitude. Applying the Fourier
transformation

c
†
A,k = 1√

N

∑
j

eikc
†
A,j , (17)

c
†
B,k = 1√

N

∑
j

eikj c
†
B,j , (18)

one can immediately obtain the vector field
−→
B (k) as

Bx (k) = w1 + w2 cos k, (19)

By (k) = w2 sin k, (20)

Bz = −i�. (21)

Substituting the expressions (19)–(21) into Eq. (14), the
corresponding Zak phase is

Z± =
[
Z± ∓ i�

∫ ϕ(2π )

ϕ(0)

1

rk

dϕ

]
, (22)

with

Z± =
{

π, w2 > w1

0, otherwise
. (23)
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Obviously, the real part of the Zak phase is topological.
This can be also understood with the help of the auxiliary
Bx − By space. In that sapce, Bx (k) and By (k) form a loop
as k changes from 0 to π . Evidently, the real part of the Zak
phase characterizes the winding number of the loop around the
origin of the Bx − By space. Note that the Zak phase is not a
topological invariant, since it depends on the choice of origin
of the Brillouin zone. Specifically, one can change the value
of Zak phase through the different Fourier transformations,
which will be demonstrated in Sec. III.

2. Non-Hermitian coupled SSH model

The coupled SSH model consists of two SSH chains with a
periodical boundary condition. The geometry of this system is
illustrated in Fig. 2(b), in which the hopping amplitudes and
on-site potential in each leg are staggered. Such a ladder sys-
tem is a bipartite lattice system, consisting of two sublattices
A and B. We write down the Hamiltonian for the system in a
simple form,

H =
∑

j

w1c
†
A,j cB,j+1 + w2c

†
B,j cA,j+1 + tc

†
A,j cB,j + H.c.

− i�
∑

j

(c†A,j cA,j − c
†
B,j cB,j ), (24)

where t depicts the coupling between the two legs. With
the same procedures, we can obtain the complex vector field−→
B (k) with

Bx (k) = (w1 + w2) cos k + t, (25)

By (k) = (w2 − w2) sin k, (26)

Bz = −i�. (27)

Following the idea in the previous subsection, it represents an
ellipse with the center located at (t, 0) in the auxiliary Bx −
By space. Therefore we can infer that the real part of the Zak
phase is topological: When |t | > |w1 + w2|, the origin is out
of the ellipse, resulting zero real part of Zak phase. Otherwise,
the real part of Zak phase is ±π depending on the direction of
the loop when k increases from 0 to 2π . With this spirit, the
Zak phase can be given as

Z± = ±
{

0 + i�, |t | > |w1 + w2|
πsgn

(
w2

2 − w2
1

) + i�, otherwise
, (28)

where sgn(.) denotes the sign function and

� = −i
�

2

∫ ϕ(2π )

ϕ(0)

1

rk

dϕ. (29)

In the following section, we will demonstrate first the partial
topological Zak phase can be realized by a magnetic-flux-
driven non-Hermitian SSH ring and then apply it to a scat-
tering problem.

III. NON-HERMITIAN SSH MODEL WITH FLUX

We consider a bipartite non-Hermitian SSH ring threaded
by magnetic flux, the Hamiltonian of which can be given as

H = −1

2

2N∑
j=1

[1 + (−1)j δ](eiφc
†
j cj+1 + H.c.)

+ i�
∑

j

(−1)j c†j cj , (30)

the non-Hermiticity of which arises from the on-site staggered
imaginary potential i�

∑
j (−1)j c†j cj . The system possesses

a 2N -site lattice, where cj is the annihilation operator on
site j with the periodic boundary condition cj+2N = cj . The
nominal tunneling strength is staggered by δ, and � = 2Nφ is
the magnetic flux threading the ring. We sketch the structure
of the system in Fig. 3. The original Hermitian Hamiltonian
with � = 0 can be realized with controlled defects using a
system of attractive ultracold fermions [51–53] in a simple
shaken one-dimensional optical lattice. Furthermore, the non-
Hermitian version can be realized in a zigzag array of optical
waveguides with alternating optical gain and loss [54]. Before
solving the Hamiltonian, it is profitable to investigate the
symmetry of the system and its breaking in the eigenstates.
Straightforward algebra shows that [PT ,H ] = 0, that is, the
Hamiltonian is PT symmetric even in the presence of the
magnetic flux, where the antilinear time-reversal operator
T has the function T −1iT = −i and the parity operator
obeys P−1c

†
jP = c

†
2N−j+1. However, the eigenstates does not

always hold this symmetry. According to the non-Hermitian
quantum mechanics, the occurrence of the EP always accom-
plishes the PT symmetry breaking of an eigenstate. In the
following, we will demonstrate this point.

We note that the Hamiltonian is invariant through a trans-
lational transformation, i.e., [T ,H ] = 0, where T is the shift
operator that defined as

T −1c
†
j T = c

†
j+2. (31)

FIG. 3. Schematic illustration of the non-Hermitian SSH model
driven by a time-dependent external field. The presence of the
magnetic field does not spoil the PT symmetry of the system. A
time-varying field �(t ) induces the eddy field in a direction indicated
by the purple arrow, which acts as a linear field to drive the wave-
packet dynamics.
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This allows invariant subspace spanned by the eigenvector
of operator T . The single-particle eigenvector of T2 can be
expressed as c

†
A,k|0〉 and c

†
B,k|0〉, where

c
†
A,k = 1√

N

∑
j

eik(j−1/2)c
†
2j−1, (32)

c
†
B,k = 1√

N

∑
j

eikj c
†
2j , (33)

satisfying

T −1c
†
A(B ),kT = e−ikc

†
A(B ),k. (34)

Here c
†
A,k and c

†
B,k are two kinds of creation operators of

bosons (or fermions), with k = 2πn/N (n ∈ [1, N]), repre-
senting the particles in odd and even sublattices. Then the
Bloch Hamiltonian Hk can be given as Hk = η

†
khkηk , where

hk = −→
B (k) · −→σ with the 3D vector field

Bx (k) = − cos (k/2 + φ), (35)

By (k) = −δ sin (k/2 + φ), (36)

Bz = −i�. (37)

Accordingly, the eigenvalue of single quasiparticle can be
obtain readily as

εk = ±rk, (38)

rk =
√

cos2 (k/2 + φ) + δ2 sin2 (k/2 + φ) − �2. (39)

Here we want to point out that in the absence of �, the
energy gap is 2δ, which determines the EP occurring at � =
�c = δ. The corresponding biorthogonal eigenstates can be
determined by Eqs. (5) and (6), which can be expressed as

|�k
+〉 = cos

θ

2
e−iϕc

†
A,k|Vac〉 + sin

θ

2
c
†
B,k|Vac〉, (40)

|�k
−〉 = sin

θ

2
c
†
A,k|Vac〉 − cos

θ

2
eiϕc

†
B,k|Vac〉, (41)

where |Vac〉 is the vacuum state of the fermion cj , and

cos θ = −i�

rk

, tan ϕ = δ sin (k/2 + φ)

cos (k/2 + φ)
. (42)

Applying the PT operator to the fermion operators and its
vacuum state |Vac〉, we have

(PT )−1c
†
A(B ),kPT = e−ik/2c

†
B(A),k (43)

and

PT |Vac〉 = 0, (44)

which are available in both the broken and unbroken region.
Due to the relation [PT ,H ] = 0, the eigenstate |�k

λ〉 of H

for a real eigenvalue is always the eigenstate of the symmetry
operator PT , that is, PT |�k

±〉 = ±e±iϕ |�k
±〉. However, when

the system is in the spontaneously broken PT -symmetric
phase (ε∗

k = −εk ), the coefficients cos θ
2 and sin θ

2 experience

a transition as (
cos

θ

2

)∗
= cos

θ

2
, (45)

(
sin

θ

2

)∗
= − sin

θ

2
, (46)

which directly leads to PT |�k
±〉 = −|�k

∓〉. Therefore, the
eigenstate |�k

λ〉 is not PT symmetric.
With the help of Eq. (14), one can give directly the

modified Zak phase based on the analytical solution

Z± = ±
[

πsgn(δ)

2
− i�δ

∫ 2π

0

1

4rk

(
r2
k + �2

)dk

]
, (47)

Note that we only consider the case of the system with a
full real spectrum. There are two features in the expression
of Z±: (i) Z± does not depend on the magnetic flux φ due
to the relation Ak,λ = Ak+2π,λ. (ii) The real part of Z± is
topological. Here we want to stress that the real part of Z± is
not gauge invariant since the different Fourier transformations
can change its value, which can be seen from the Eq. (22).
However, the difference of real part between Z± in the regions
of δ > 0 and δ < 0 is gauge invariance. Therefore the Zak
phase difference can be utilized to identify a topological
transition. This property also provides a way to adiabatically
control the scattering of the wave-packet dynamics in the
following section.

Before starting the discussion of the wave-packet dynam-
ics, we first connect the magnetic-flux-driven Berry phase
to the modified Zak phase Z±. To this end, we consider an
adiabatic evolution, in which an initial eigenstate evolves into
the instantaneous eigenstate of the time-dependent Hamilto-
nian. From Eq. (30), we know that H is a periodic function
of φ, H (φ) = H (φ + 2π ). Considering the time-dependent
flux φ(t ), any eigenstate |�k

λ(0)〉 will return back to |�k
λ(0)〉 if

φ(t ) varies adiabatically from 0 to 2π , and the evolved state
is the instantaneous eigenstate |�k

λ(φ)〉. More explicitly, the
adiabatic evolution of the initial eigenstate |�k

λ(0)〉 under the
time-dependent Hamiltonian H (φ(t )) can be expressed as

∣∣�k
λ (φ)

〉 = T exp

[
−i

∫ t

0
H (t )dt

]∣∣�k
λ(0)

〉
= ei(αλ

k +γ λ
k )∣∣�k

λ(φ)
〉
. (48)

Here αλ
k (φ) the dynamics phase and γ λ

k (φ) the adiabatic phase
have the form

αλ
k (φ) = −

∫ φ

0
εk
λ(φ)

∂t

∂φ
dφ, (49)

γ λ
k (φ) = λ

∫ φ

0
Aφdφ, (50)

where the Berry connection Aφ = δ/2rk (rk + i�) with Aφ =
Aφ+π . When the flux φ varies from 0 to π , one can verify
that the adiabatic phase is k independent, which is similar
to the case in the modified Zak phase. Correspondingly, the
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expression of adiabatic phase can be given as

γ ± = ±
[

πsgn(δ)

2
− i�δ

∫ π

0

1

2rk

(
r2
k + �2

)dφ

]
. (51)

For a Hermitian system, the adiabatic phase is always real
that ensures the probability preserving evolution, while the
probability of an evolved state changes due to the imaginary
part of the adiabatic phase in a non-Hermitian system. The
attenuation or amplification of probability depends on the sign
of the imaginary phase. Straightforward algebra shows that
the imaginary part of Z± is the same as the imaginary part of
γ ±. This is always true for any values of k (φ) for Z± (γ ±). In
this sense, one can mimic the modified Zak phase Z± through
the adiabatic variation of magnetic flux from 0 to π . Here
we want to point out that although the magnetic-flux-driven
adiabatic phase is identical to the modified Zak phase, the
evolve state |�k

λ (π )〉 does not return back to the initial state.
One can readily obtain the |�k

λ (π )〉 by modulating ϕ → ϕ +
π in initial state |�k

λ(0)〉. In the coordinate space, it can be
achieved through modulating π phase of the distribution on
the odd site, that is,∣∣�k

λ (π )
〉 = eiαλ

k (π )eiγ λ ∣∣�k
λ(π )

〉
,

= eiαλ
k (π )eiγ λ

√
N

∑
j

[
− cos

θ

2
e−iϕeik(j−1/2)c

†
2j−1

+ sin
θ

2
eikj c

†
2j |Vac〉

]
. (52)

This is crucial step to understand the wave-packet dynamics
in the following.

Now switch gear to the adiabatic time evolution of the
wave packet. We consider two kinds of functions φ(t ). For
the first one, the magnetic flux φ linearly depends on time,
that is, φ = βt . When the flux φ varies from 0 to π , the
dynamics phase αλ

k (π ) is k independent, which can be verified
through the fact that εk (φ) = εk (φ + π ). Therefore, if one
considers the wave-packet dynamics, the adiabatic phase and
dynamics phase are served as an overall phase and cannot
induce the interference among the instantaneous eigenstates.
More explicitly, we consider the wave packet localized on the
upper band of the system (the conclusion is also hold for the
case of lower band),∣∣GNA

k0
(0)

〉 =
∑

k

gk

∣∣�k
+(0)

〉
, (53)

where NA and k0 denote the center and velocity of the initial
wave packet, respectively. Here we do not give the explicit
expression of the coefficient gk , since the following analysis
is irrelevant to gk . In the coordinate space, the wave packet
can be expressed as

|G(0)〉 =
∑

j

fj c
†
j |Vac〉, (54)

where the scripts NA and k0 are neglected. Through an adia-
batic evolution in which φ varies from 0 to π , the adiabatic
phase and dynamics phase is an overall phase and then we

have

|G(π )〉 = ei�+eξ+
∑

k

gk|�k
+(π )〉, (55)

where �+ = α+(π ) + Re(γ +) and ξ+ = −Im(γ +). Due to
the relation (52), the evolved wave packet at time t = π/β in
the coordinate space can be given as

|G(π )〉 = ei�+eξ+
∑

j

(−1)j fj c
†
j |Vac〉, (56)

where the odd site acquires a phase π . It indicates that the two
wave packets |G(0)〉 and |G(π )〉 are orthogonal based on

F (π ) = 〈G(0)|G(π )〉√〈G(0)|G(0)〉〈G(π )|G(π )〉 = 0. (57)

To demonstrate this feature, we plot the trajectories of the
wave packet with different β in Figs. 4(a)–4(c). It can be
shown that the wave packet experiences half a Bloch oscil-
lation (BO) accompanied by the probability amplification in
the coordinate space. The dynamics of a wave packet driven
by time-dependent magnetic flux is the same as that driven
by a linear field with strength β, according to the quantum
Faraday’s law [55]. Furthermore, the center path of a wave
packet driven by a linear field accords with the dispersion of
the Hamiltonian in the absence of the field within the adiabatic
regime [56],

xc(φ) = xc(0) + 1

β

[
εkc

(φ) − εkc
(0)

]
, (58)

where εkc
(φ) is the dispersion relation and kc is the central

momentum of the wave packet. From this perspective, the am-
plitude of the BO of the wave packet is inversely proportional
to β.

For the second one, the magnetic flux varies with time
according to the error function curve, that is, φ = erf (t ),
where erf (.) is the error function. In this situation, the dy-
namics phase αλ

k (π ) is k dependent but the adiabatic phase
γ ± is still k independent. Therefore the dynamics of the wave
packet is more complicated than the case of φ = βt . In Fig. 5,
we plot the trajectory of the wave packet. On the one hand,
we can see that when dφ/dt is small, which corresponds to
two ends of the error function, the wave packet travels at
approximately uniform speed. In this condition, the effective
linear field with strength β is approximate zero. On the other
hand, the derivative dφ/dt is linear in the middle of the error
function. Therefore, there exists a linear field that drives the
wave-packet oscillate in the coordinate space, which can be
shown in Fig. 5. For the sake of simplicity, we consider the
first case where φ = βt to realize the dynamical control of
the wave packet.

IV. TRANSMISSION AND CONFINEMENT

In this section, we will control the scattering behavior of
the wave packet based on the partial topological property of
the Zak phase. We will show that the wave packet will display
two distinct dynamical behaviors in the modulating non-
Hermitian scattering network, that is, perfect transmission and
partial confinement.
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FIG. 4. The profiles of the time evolution of a wave packet in several typical cases. The initial wave packet is in the form of Eq. (53)
with gk = exp [−(k − k0 )2/4α2 − i(k − kc )Nc], where the half width of the wave packet α = 0.05, central momentum k0 = π/4, and the
location of the initial state Nc = 250. The time is in units of J −1, where J is the scale of the Hamiltonian and we take J = 1. The other
system parameters are δ = 0.15 and � = 0.1. The magnetic flux adiabatically varies with (a) β = 0.01, (b) β = 0.005, and (c) β = 0.0015,
respectively. It can be shown that the wave packet exhibits half a BO with different amplitude which is determined by β. After half a BO,
the wave packet return back to the starting position. However, it is orthogonal to the initial state that can be shown in the upper panel of each
subfigures. The numerical results demonstrate our analytical statement below Eq. (58).

A. Interferometer

In order to demonstrate these behaviors, we first consider
the interferometer model which is illustrated schematically
in Fig. 6. This quantum interferometer consists of two non-
Hermitian SSH chains A, D and a ring {B1, B2} threaded by
magnetic flux in the unit of flux quanta. The corresponding
Hamiltonian reads

Hnet = −1

2

∑
α

(Hα + Hjoint ), (59)

where α = A, B1, B2, D denote four non-Hermitian SSH
chains, respectively, and

Hσ1 =
2Nσ1 −1∑

j=1

[1 + (−1)j δ]
(
c
†
σ1,j

cσ1,j+1 + H.c.
)

− 2i�

2Nσ1 −1∑
j=1

(−1)j c†σ1,j
cσ1,j , (60)

Hσ2 =
2Nσ2 −1∑

j=1

[1 + (−1)j δ]
(
eiφc

†
σ2,j

cσ2,j+1 + H.c.
)

− 2i�

2Nσ2 −1∑
j=1

(−1)j c†σ1,j
cσ1,j , (61)

where σ1 = A, D and σ2 = B1, B2. Note that HB1 and
HB2 describe the two identical non-Hermitian SSH chains
with length NB ≡ NB1 = NB2 . The connection Hamiltonian

reads

Hjoint = (1 + δ)√
2

(
eiφc

†
A,2NA,cB1,1 + e−iφc

†
A,2NA,cB2,1

+ eiφc
†
B1,2NB,cD,1 + e−iφc

†
B2,2NB,cD,1 + H.c.

)
. (62)

Here � = 4(NB + 1/2)φ is the total magnetic flux threading
the ring. Now we focus on the dynamics of the wave packet
based on the partial topological property of the modified Zak
phase. To this end, we take the initial state as the Gaussian
wave packet (GWP)

|G(k0, 0)〉 = 1√
�

2NA∑
l=1

e−α2(l−Nc )2
eik0lc

†
A,l|Vac〉, (63)

with the central momentum k0. Here � is the normalization
factor and Nc ∈ [1, 2NA] is the initial central position of the
GWP at the input chain A while the factor α is large enough
to guarantee the locality of the state in the chain A. According
to the Ref. [57], when the center momentum k0 satisfies the
condition |k0 + π/2| � 0 and δ is a small number, the initial
state will distribute on k ∼ 2k0 in the upper band of the Hamil-
tonian HA with a periodic boundary condition. It is worthy
pointing out that when k0 = π/4, 3π/8, and π/2, such a
GWP can approximately propagate along the non-Hermitian
SSH chain without spreading [57]. For simplicity, the center
momentum k0 is assumed to be π/4 in the following, which
ensures that the initial state is mainly localized on the upper
band of the Hamiltonian HA with either δ > 0 or δ < 0.

Due to the Eq. (A1) of the Appendix, the initial GWP
will travel along the virtual chain a in the absence of the
magnetic flux. Actually, at a certain time τ , such a GWP
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FIG. 5. Numerical simulation of the evolved wave packet driven
by the magnetic flux φ(t ) that varies as the error function. The
initial state and the system parameters are the same with that of the
Fig. 4(c) except that δ is replaced with −δ. Hence the probability of
the evolved wave packet is attenuated as time increases.

evolves approximately into

∣∣∣G(π

4
, τ

)〉
∼ 1√

�

2NA+2NB∑
l=2NA+1

e−α2(l−Nc−2vτ )2
ei π

4 l c̃
†
a,l|Vac〉

(64)
in the virtual space, where v = |(∂εk/∂k)π/2| represents the
group velocity of the GWP. From the mapping of the operators
(A1)–(A4), we have the final state as

∣∣∣G(π

4
, τ

)〉
= 1√

2

2∑
p=1

∣∣∣Gp

(π

4
, τ

)〉
, (65)

where

∣∣∣Gp

(π

4
, τ

)〉
= 1√

�

2NB∑
j=1

e−α2(j−Nτ )2
ei π

4 j c
†
Bp,j |Vac〉 (66)

is the clone of the initial GWP with the center Nτ ∈ [1, 2NB].
The beam splitter split the single-particle GWP into two
cloned GWPs without any reflection. Now we investigate the
effect of the magnetic flux threading the ring adiabatically on
the dynamics of GWP. We consider the following two cases.

FIG. 6. Schematic illustration of the scattering setup. The scat-
tering system consists of three components: an input non-Hermitian
SSH lead A with length NA, an output non-Hermitian SSH lead
D with length ND , and a ring {B1, B2} threaded by a magnetic
flux �(t ) = 4(NB + 1/2)φ(t ), where NB represents the length of
B1(2). Here κ+ = −(1 − δ)/2 and κ− = −(1 + δ)/2. The subchains
B1 and B2 are P symmetric with respect to the direction of incident
GWP. Note that the hopping constants connecting the leads and the
scattering ring are modulated with κ−/

√
2, which ensure that the

network can be decoupled into two independent virtual chains with
different lengths. In the absence of the magnetic flux, therefore, the
whole propagation process in the real space is as follows: When
the initial GWP reaches the node, it is divided into two identical
GWPs which also move with same speed along the legs B1 and B2,
respectively, without spreading. In the scattering center, the upper
and lower GWPs are driven by the effective Hamiltonians which
can be constructed by extending the two legs to the completed
non-Hermitian SSH rings. The difference between two effective
Hamiltonians is the sign of δ resulting from two symmetric legs. This
also indicates that when the two GWPs experience half a BO, they
acquire the phase difference of π .

B. Perfect transmission

We first consider the case where the magnetic flux φ has
changed from 0 to π before the GWP enters into the ring.
Under this condition, the GWP cannot feel the presence of
magnetic flux. Therefore it will travel along the virtual chain
a without any reflection. The final state in the virtual space
can be expressed as∣∣∣Gp

(π

4
, τf

)〉
= 1√

�

N∑
l=2NA+2NB+1

e−α2(l−Nf )2

ei π
4 l c̃

†
a,l |Vac〉,

(67)
with Nf ∈ [2NA + 2NB, N ]. We detail this process in the
Appendix. In the coordinate space, the GWP will pass per-
fectly through the scattering center. We plot the Fig. 7(a) to
demonstrate this case.

C. Partial confinement

Second, we consider the case wheres the magnetic flux φ is
varied from 0 to π during a wave packet traveling within the
ring. In this situation, the initial GWP |G( π

4 , 0)〉 first enters
into the ring so that it is split into two cloned GWPs at time
τ . When the magnetic flux is switched on, the two cloned
GWPs will experience half a BO. However, the corresponding
effective driven Hamiltonians are different for two cloned
GWPs. For the upper GWP, the effective driven Hamiltonian
can be obtained through extending the Hamiltonian HB1 to
a complete SSH ring. On the other hand, for a lower GWP,
one can check that the effective driven Hamiltonian can
be constructed by replacing δ of the upper effective SSH
ring with −δ. Therefore, the two cloned GWPs acquire two
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2B

(c)

2B

D

A

FIG. 7. Propagation of the GWP in the non-Hermitian scattering system with (a) NA = NB = ND = 400 and (b) NA = NB = 400, ND =
1600. The other system parameters are � = 0.5 and δ = 0.15. (a) This panel describes the case where the magnetic flux has changed from 0
to π before the GWP enters into the scattering ring. In this condition, the GWP travels along the virtual chain a as shown in the Appendix.
Therefore the GWP can pass perfectly through the scattering center with no reflection at the two nodes. In this sense, the non-Hermitian
scattering ring is invisible to the incident GWP. (b) When the GWP enters into the scattering ring, the magnetic flux is switched on. In this
case, each of the two cloned GWPs undergoes half a BO. The probability of upper GWP is amplified due to δ > 0 of the effective Hamiltonian.
On the contrary, the probability of lower GWP is attenuated driven by the corresponding effective Hamiltonian with δ < 0. The adiabatic
process bring about a phase difference π between two such cloned GWPs. Therefore, the partial probability of two cloned GWPs is confined in
the scattering center, which is inaccordance with our theoretical prediction. (c) Schematic illustration of the concerned scattering system. The
four panels of subfigures (a) and (b) represent the input lead A, scattering center {B1, B2}, and output chain D, which are denoted by black,
green, blue, and red lines, respectively. Note that the scale of the fourth panel of subfigure (b) is different from the other panels.

opposite adiabatic phase after half a BO. The evolved state
can be obtained with the help of Eq. (56) as∣∣∣G(π

4
, τ + τBO

)〉
= eξ+

∣∣∣G̃1

(π

4
, τ + τBO

)〉
− e−ξ+

∣∣∣G̃2

(π

4
, τ + τBO

)〉
, (68)

where τBO represents the time that the GWP undergoes half a
BO and∣∣∣G̃p

(π

4
, τ + τBO

)〉
= 1√

2�

2NB∑
j=1

(−1)j e−α2(j−Nτ )2

× ei π
4 j c

†
Bp,j |Vac〉 (69)

with the center Nτ ∈ [1, 2NB ]. Here we ignore the same
overall phase eiα+(π ) of the two cloned GWPs. From the
Eq. (68), we can see that the adiabatic change of the flux leads
to a relative π phase between the two cloned GWPs. Straight-
forward algebra shows that there are sinh(ξ+) [cosh(ξ+)]
probability on the virtual chain a (b). This indicates that the
partial probability of a wave packet is confined in the scatter
which is different from the first case. Note that one can mod-
ulate the value of �δ to reduce the transmission probability
and therefore realize the approximate perfect confinement. In

Fig. 7(b), we compute the time evolution of the GWP, which
is in accordance with our theoretical prediction.

Before closing the discussion of findings, we want to point
out the key point to realize the interferometer: The added mag-
netic flux can make the two identical wave packets experience
half a BO so that the two wave packets acquires π phase
difference. For a Gaussian wave packet with large half-width
(that is, the wave packet is localized in the momentum space),
its scattering behavior is only determined by the timing of a
flux impulse threading the ring and has nothing to do with
the choice of time dependence of the magnetic flux. The
type of the time-dependent magnetic flux only influences the
trajectory of a wave packet in real space, which can be shown
in Figs. 4 and 5. If the magnetic flux varies as φ = erf (t ), then
one needs to increase the size of the scattering center, which
ensures the π phase difference between two wave packets.
In this sense, the conclusion is independent of the type of
time-dependent magnetic flux.

V. SUMMARY

In summary, we have investigated the influence of non-
Hermitian term on the Zak phase of Bloch systems. We have
shown exactly that for a class of bipartite lattice systems,
the real part of the Zak phase cannot be affected by the
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staggered imaginary potential. Comparing with the Hermitian
system, a nonzero imaginary part appears in the Zak phase.
It amplifies and/or attenuates the Dirac norm of the evolved
state in the context of dynamical correspondence between
the Zak phase and complex Berry phase, in which the Zak
phase can be obtained by an adiabatic evolution under the
time-dependent threading flux. It is shown that the difference
of the real part of a Zak phase is an observable. In this sense,
the Zak phase in a non-Hermitian system can still be used
to characterize the difference of two topological phases. To
further demonstrate this finding, we investigate the scattering
problem for a time-dependent scattering center, which is a
magnetic-flux-driven non-Hermitian SSH ring. Due to the
partial topology of the Zak phase, the intriguing feature of this
design are wave-vector independent and allow two distinct
dynamical behaviors, perfect transmission or confinement,
depending on the timing of a flux impulse threading the ring
(scattering center). When the flux is added during a wave
packet traveling within the ring, the wave packet is confined in
the scatter partially, Otherwise, it exhibits perfect transmission
through the scatter. Based on these points, our findings extend
the understanding and broaden the possible application of a
Zak phase in a non-Hermitian system.
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APPENDIX

The reduction of the scattering system and the corresponding
dynamics

To reduce the network of interferometer, the following four
sets of fermion operators

c̃
†
a,l = c

†
A,l, (A1)

c̃
†
a,j+2NA

= 1√
2

(
e−iφj c

†
B1,j

+ eiφj c
†
B2,j

)
, (A2)

c̃
†
b,j = 1√

2

(
e−iφj c

†
B1,j

− eiφj c
†
B2,j

)
, (A3)

c̃
†
d,m = c

†
D,m, (A4)

for l ∈ [1, 2NA], j ∈ [1, 2NB ], and m ∈ [1, 2ND] are intro-
duced to satisfy {̃

c
†
a,j+2NA

, c̃b,j

} = 0. (A5)

The inverse transformation of the above Eqs. (A1)–(A4)
reduces the Hamiltonian (59) into

Hnet =
∑

s

H̃s + H̃joint,

FIG. 8. The φ-shaped scattering network with an input
non-Hermitian SSH chain A, an output chain non-Hermitian
chain D, and a ring {B1, B2} threaded by a magnetic flux
�(t ) = 4(NB + 1/2)φ(t ). (b) For an arbitrary flux, the net-
work can be decoupled into three virtual SSH chains a,
b, and d . They connect with each other by the hopping
integrals tad = (1 + δ) cos [(2Nb + 1)φ]/2 and tbd = −i(1 + δ)
sin [(2Nb + 1)φ]/2. (c) When φ = 0, π , the φ-shaped scattering net-
work can be decoupled into a long virtual non-Hermitian SSH chain
a with length N = 2(Na + Nd ) and a short virtual non-Hermitian
SSH chain b with length 2Nb.

where

H̃s = −1

2

2Ns−1∑
j=1

[1 + (−1)j δ](̃c†s,j c̃s,j+1 + H.c.)

+ i�

2Ns−1∑
j=1

(−1)j c̃†s,j c̃s,j , (A6)

H̃joint = −tad c̃
†
a,2Na

c̃d,1 − tbd c̃
†
b,2Nb

c̃d,1 + H.c., (A7)

with s = a, b, and d. The couplings are tad = (1 + δ)
cos [(2NB + 1)φ]/2 and tbd = iJ (1 + δ) sin [(2NB + 1)φ]/2,
respectively. For clarity, we sketch this decomposition in
Fig. 8. It is shown that for an arbitrary flux φ, the concerned
network can be decoupled into three virtual non-Hermitian
SSH chains a, b, and d with length Na = NA + NB ,
Nb = NB , and Nd = Nd , respectively. The virtual chains
a and b connect with chain d through the hopping integral
tad and tbd , which depends on the magnetic flux φ. In the
following, we focus on the case that φ = 0 or π . Under this
condition, the virtual chains b and d are decoupled. The
network reduced to two independent non-Hermitian SSH
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chains with lengths N = 2Na + 2Nd and 2Nb, respectively.
Then the corresponding Hamiltonian can be given as

Hnet = −1

2

2N−1∑
j=1

[1 + (−1)j δ](̃c†a,j c̃a,j+1 + H.c.)

+ i�

2N−1∑
j=1

(−1)j c̃†a,j c̃a,j ,

− 1

2

2Nb−1∑
j=1

[1 + (−1)j δ](̃c†b,j c̃b,j+1 + H.c.)

+ i�

2Nb−1∑
j=1

(−1)j c̃†b,j c̃b,j , (A8)

with the defined operators

c̃
†
a,2NA+2NB+m = c̃

†
d,m. (A9)

This fact means that for an arbitrary initial state localized on
the virtual chain a(b), it will evolve driven by the virtual chain
of length N (2Nb ). There are two typical features that should
be mentioned: (i) For the state localized on the virtual chain
a, the evolve state will exhibit perfect transmission through
the scattering center. (ii) For the state localized on the virtual
chain b, the localized state will be confined in the scattering
center. These two mechanisms are crucial to understand the
wave-packet dynamics.
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