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The uncertainty principle is one of the central concepts in quantum theory. Different forms of this principle
have been discussed in various foundational and information theoretic topics. Whereas in the discrete input-
output scenario the limited nonlocal behavior of quantum theory has been explained by the fine-grained
uncertainty relation, in the continuous-variable paradigm the Robertson-Schrödinger (RS) uncertainty relation
has been used to detect multimode entanglement. Here we show that the RS uncertainty relation plays an
important role in discriminating between quantum and postquantum nonlocal correlations in the multimode
continuous outcome scenario. We provide a class of m-mode postquantum nonlocal correlations with a
continuous outcome spectrum. While nonlocality of the introduced class of correlations is established through
the Calvalcanti-Foster-Reid-Drummond class of Bell inequalities, the RS uncertainty relation detects their
postquantum nature. Our result suggests a wider role of the uncertainty principle in the study of nonlocality
in continuous-variable multimode systems.
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I. INTRODUCTION

Nonlocality is one of the most bizarre features of multipar-
tite quantum systems. It was first established in the seminal
paper by Bell [1]. Local outcomes of spatially separated
quantum systems prepared in entangled states can produce
correlations that cannot have any local realistic description—
manifesting the nonlocal phenomena. Such nonlocal behavior
can be witnessed through a violation of some local realistic in-
equality known as a Bell-type inequality. The Clauser-Horne-
Shimony-Holt (CHSH) inequality is one such celebrated ex-
ample [2]. The CHSH inequality considers the simplest 2 −
2 − 2 scenario that involves two spatially separated parties,
each performing one local measurement (out of a possible
two), each measurement having two possible outcomes (the
2 − 2 − 2 scenario is a special case of the general m − n − k

scenario, i.e., m parties, each with n possible measurements
having k outcomes). While the local bound of the CHSH
expression is 2, the maximum achievable value of this expres-
sion in quantum theory (QT) is 2

√
2, known as the Cirel’son

bound [3]. However, nonlocality is not a salient feature of
QT alone. In 1994, Popescu and Rohrlich designed a cor-
relation, famously known as PR correlation, which satisfies
the relativistic causality or more broadly the no-signaling
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(NS) principle but at the same time depicts stronger nonlocal
behavior as it achieves the algebraic maximum of the CHSH
expression [4]. This observation brings up a very important
question, namely whether there exists some other fundamental
principle(s) (different from no-signaling) limiting the nonlo-
cal strength of QT.

In the past few years, several information-theoretic as well
as physical principles, viz., nontrivial communication com-
plexity [5], information causality [6], macroscopic locality
[7], relativistic causality [8], and local orthogonality [9], have
been proposed that successfully explain the limited CHSH
violation of QT. These principles also identify a part of the
boundary between the set of quantum correlations and the
postquantum NS correlations [10,11]. Furthermore, the appli-
cability of these principles has also been proved useful in more
general m − n − k scenarios to witness postquantum correla-
tions [12–17]. In a different approach, it has been shown that
the limited CHSH nonlocality of QT can be connected to other
fundamental features of the theory: Heisenberg’s uncertainty
principle [18,19], Bohr’s complementarity principle [20,21],
and preparation contextuality [22]. Not only do these connec-
tions hold true in QT, but they are also plausible in a larger
class of theories.

A great deal of research has been done on quantum
and postquantum nonlocal correlations in the discrete input-
output scenario [23–26]. In the quantum domain, these studies
mainly consider finite-input finite-output correlations arising
from finite-dimensional quantum systems. Although nonlo-
cal correlations have been studied for infinite-dimensional
continuous-variable (CV) systems [27–32], those results are
fundamentally not different from the finite input-output

2469-9926/2019/99(1)/012105(9) 012105-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.012105&domain=pdf&date_stamp=2019-01-08
https://doi.org/10.1103/PhysRevA.99.012105


J, MUKHERJEE, ROY, BHATTACHARYA, AND BANIK PHYSICAL REVIEW A 99, 012105 (2019)

scenario as discrete binning of continuous outcomes has been
considered there. A notable exception, in this regard, is the
CV Bell inequalities introduced by Calvalcanti-Foster-Reid-
Drummond (CFRD) [33]. There the authors derived a class
of nonlinear Bell inequalities that apply for the continuous
outcome spectrum without any need of discrete binning of
the outcomes. A natural question of interest in this context
will be the notion of postquantum nonlocal correlations. Very
recently, Ketterer et al. developed a formalism to address
this question for generic NS black-box measurement devices
with continuous outputs, and they also provided a class of
postquantum nonlocal correlations when only two sites or
modes are involved [34].

A relevant question in the continuous outcome scenario
is as follows: how can we certify postquantum nonlocality
of a given correlation? The authors of Ref. [34] used the
fact that for a two-mode scenario there is no quantum
violation of the CFRD inequality [35], i.e., CFRD violation
at the same time works as a nonlocal witness as well as a
postquantumness witness. However, this is a very specific
feature of the two-mode case that does not hold for a higher
number of modes in general [36]. On the other hand, the
principle-based methods [6,7,9] that have been proven to
be useful for studying postquantum correlations in the
discrete outcomes scenario have yet to be generalized for the
continuous outcome spectrum.

Apart from the aforementioned foundational aspect of
postquantum nonlocality in the CV scenario, there are motiva-
tions to explore it even from the perspective of applications.
In the case of quantum information processing tasks, one of
the most important notions is the device-independent (DI)
scenario. In DI protocols, the experimenters do not possess
the exact working knowledge of the apparatus and can only
acquire the input-output statistics from the apparatus. In
the discrete variable scenario, the use of nonlocality makes
many DI tasks possible, such as DI quantum key distribu-
tion (QKD), DI randomness certification, etc. [37–44]. In
general, the benefit of CV-QKD over discrete variable QKD
manifests in a higher efficiency and key rate [45]. CV QKD
also has the advantage of being compatible with standard
telecommunication technology. Recently, long-distance CV
QKD has been achieved for as much as 80 km [46]. In the
CV scenario, measurement-device-independent (MDI) QKD
has been recently introduced [47]. The advantage of MDI
protocols over the standard quantum cases is that trust in the
measurement devices is not needed for the former. However,
MDI protocols need a trustworthy quantum state preparation
device, which is not required in corresponding DI protocols.
To further investigate various DI tasks in the CV scenario, the
notion of nonlocality is of vital importance. Since nonlocal
correlations can provide cryptographic security not achievable
within classical theory, and they can be used to certify the
presence of randomness and outperform classical communica-
tion at communication complexity problems, it is important to
identify which nonlocal correlations are possible in a physical
theory (more particularly, in quantum mechanics). Our study
is thus significant in order to witness and rule out postquantum
correlations in the continuous outcome scenario.

Developing a systematic approach to study postquantum
nonlocal correlations for the continuous outcome scenario in

multimode cases is thus quite important. Interestingly, we
find that the Robertson-Schrödinger (RS) uncertainty relation
has a role to play in this regard. We construct a class of
continuous outcome postquantum nonlocal correlations for
the generic m-mode scenario. While the nonlocality of the
proposed class of correlations is certified through violation of
CFRD inequalities, the postquantum nature is guaranteed by
violation of the RS uncertainty relation.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the framework introduced in [34] for CV
outcomes. In Secs. III and IV, we review CV Bell’s in-
equalities and the Robertson-Schrödinger uncertainty relation,
respectively. Our main results are presented in Sec. V, and
finally we draw our conclusions in Sec. VI. Some details of
the calculations are given in the Appendixes.

II. THE FRAMEWORK

The standard m − n − k Bell scenario considers m space-
like separated observers or sites denoted as Ai , with i ∈
{1, 2, . . . , m}, each observer performs one out of n possible
local measurements denoted by Xi , with Xi ∈ {0, 1, . . . , n −
1}, and each measurement has k distinct outcomes denoted
by A

j

i , with j ∈ {0, 1, . . . , k − 1}. Now, we consider that
the outcomes are continuum instead of k distinct values. As
pointed out by Ketterer et al. in [34], it is convenient to
adopt the language of probability measures while considering
continuous outcomes.

A probability space consists of three elements: (i) a sample
space (�), (ii) the Borel σ -algebra [B(�)] of events on �, and
(iii) a valid Borel probability measure ξ : B(�) → [0, 1]. In
our case, the sample space would be � = �1 × �2 × · · · ×
�m, with each �i = R being the outcome sample space of
the ith site. The probability measure satisfies the normal-
ization condition ξ (R × R · · · × R) = 1, and it also satisfies
the additivity property: ξ (∪iωi ) = ∑

i ξ (ωi ), for all countable
sequences {ωi}i of disjoint events ωi ∈ B(�). The relation
between a probability measure ξ and a probability density p

is given by

ξ (A1 × · · · × Am) :=
∫

A1×···×Am

dξ (a′
1, . . . , a

′
m)

=
∫

A1

· · ·
∫

Am

p(a′
1, . . . , a

′
m)da′

1 · · · da′
m.

(1)

Here A1 × · · · × Am ∈ B(�), each Ai ∈ B(R), and
p(a′

1, . . . , a
′
m) denotes the corresponding probability density

to ξ . We will denote the set of all probability measures on
B(�) as MRm .

From now on we consider that one of two possible local
measurements will be performed on each site, i.e., Xi ∈
{0, 1},∀ i. In such a scenario, an m-mode Bell behavior is
defined as the collection of joint conditional probability mea-
sures {ξA1···Am

X1···Xm
|X1, . . . , Xm = 0, 1}, where each ξ

A1···Am

X1···Xm
∈

MRm . Whenever there is no confusion we will avoid the
superscript notation denoting the modes. The collection of all
m-mode Bell behavior will be denoted as M2m

Rm . Consider any
arbitrary grouping of m modes into two disjoint (nonempty)
sets K, Kc with K ∪ Kc = {A1, . . . ,Am}. The NS condition
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puts the restrictions that measurement choice of one set does
not determine the outcome probability of another set for any
of the above groupings. In measure theoretic language, these
conditions read

ξ{Xi }i∈K∪{Xj }j∈Kc

⎛
⎝∏

i∈K
Ai ×

∏
j∈Kc

Rj

⎞
⎠

= ξ{Xi }i∈K∪{Xj ⊕1}j∈Kc

⎛
⎝∏

i∈K
Ai ×

∏
j∈Kc

Rj

⎞
⎠ (2)

for all Ai ∈ B(R), where ⊕ denotes modulo 2 sum. The set of
all no-signaling correlations MNS is naturally a strict subset of
M2m

Rm . A behavior will be called quantum iff it can be obtained
according to the Born probability rule, i.e., ξX1···Xm

(A1 ×
· · · × Am) = Tr[⊗m

i=1MXi
(Ai )ρ],∀Ai ∈ B(R), where ρ is a

density operator acting on some tensor product Hilbert space
⊗m

i=1Hi , with Hi being the ith site’s Hilbert space (in this
case infinite-dimensional), and MXi

(Ai ) : B(R) �→ L+(Hi )
are the positive operator valued measures on Hi . A behavior
{ξX1···Xm

}Xi=0,1 will be called postquantum if {ξX1···Xm
}Xi=0,1 ∈

MNS but {ξX1···Xm
}Xi=0,1 /∈ MQ, the set of quantum behav-

iors. Local-realistic correlations are those where the outputs
are locally generated from local inputs and some preestab-
lished classical correlations encoded in some shared vari-
able λ ∈ �. Such behaviors are of the form ξX1···Xm

=∫
�

δa1(X1,λ),...,am(Xm,λ) dη(λ), where η : B(�) → R�0 is a
probability measure and δa1(x1,λ),...,am(Xm,λ) is the CV version
of the λth local deterministic response function: δa1,...,am

(A1 ×
· · · × Am) := 1 if ai ∈ Ai and 0, otherwise. The set of all local
behaviors ML is a strict subset of MQ, and behaviors not
belonging to ML manifest nonlocal features.

III. CONTINUOUS-VARIABLE BELL INEQUALITIES

The initial study of the Bell test for CV systems was based
upon coarse graining of the continuous outcome spectrum into
discrete domains [30–32,48]. One of the main motivations of
studying the CV Bell scenario is to achieve better detection
efficiency as the homodyne detection method is a highly
efficient detection technique [48–50]. Another way to increase
the detection efficiency is to use the idea of continuous
realizations of outcomes instead of discrete ones. The idea
was initially motivated by the CV version of the EPR paradox
[51]. In Ref. [33], Cavalcanti, Foster, Reid, and Drummond
(CFRD) derived a class of local realistic inequalities without
any assumption on the number of measurement outcomes and
therefore their inequalities are directly applicable to CV sys-
tems with no need of discrete binning of the outcomes. They
have focused on the correlation functions of observables for m

sites or observers, each equipped with n possible local mea-
surement settings, and considered any real, complex, or vector
function F (X1, X2, . . . ) of the local observables. All such
functions, in a local hidden variable (LHV) theory, are func-
tions of hidden variables λ ∈ �. The average over the LHV
ensemble P (λ) is given by 〈F 〉 = ∫

�
P (λ)F (X1, X2, . . . )dλ.

Using the fact that any function of random variables has
non-negative variance, the class of CRFD local realistic in-
equalities read |〈F 〉|2 � 〈|F |2〉. For the two-site scenario it

was first shown that it is impossible to violate the CFRD in-
equality with quantum phase-space quadrature operators [35].
Subsequently, this result has been generalized for arbitrary
quantum measurements [29]. However it is possible to obtain
violation of CFRD inequalities in QT with higher number of
modes, in particular, explicit violation has been shown for
multipartite GHZ like states [36]. We will use this particular
class of inequalities to establish nonlocal feature of a contin-
uous outcome correlation. Before arriving at our result, let us
digress to Robertson-Schrödinger (RS) uncertainty relation a
bit which plays a crucial role for our purpose.

IV. ROBERTSON-SCHRÖDINGER UNCERTAINTY
RELATION

A proper mathematical formulation of Heisenberg’s prepa-
ration uncertainty relation was first introduced by Kennard
[52]. Schrödinger rederived this idea for two observable corre-
lations in a more refined way [53], which was further extended
for more than two observables by Robertson [54]. For an
m-mode quantum state denoted by ρ, the noncommutativity
of the canonical operators and the positive semidefiniteness
of the state leads to the famous restriction—the RS uncer-
tainty relation: V + ι� � 0 [55], where V is a 2m × 2m real
symmetric matrix, namely the covariance matrix (CM), and
� is the symplectic form and ι = √−1. CM is calculated
from the second moments of position (q̂i ) and momentum
(p̂i ) operators, which we denote as elements of a vector α̂ =
(q̂1, p̂1, . . . q̂m, p̂m)ᵀ. Then we have Vij := 1

2 〈{�α̂i ,�α̂j }〉ρ ,
where �α̂i := α̂i − 〈α̂i〉, {., .} denotes anticommutator, 〈.〉ρ
is the expectation value with respect to the state ρ, and
� is defined as 2ι�ij = [α̂i , α̂j ]. Whether any given real
symmetric matrix corresponds to a bona fide quantum CM
can be verified by the RS uncertainty relation. This criterion
is necessary and sufficient for Gaussian states, while for more
general non-Gaussian states it is only a necessary criterion.

V. ROBERTSON SCHRÖDINGER UNCERTAINTY
RELATION AS A WITNESS OF POSTQUANTUMNESS

Equipped with all the required tools, we now introduce
continuous outcome postquantum nonlocal correlations for
the m-mode scenario.

A. Three-mode scenario

First, we give an example in the three-mode case. Consider
the following Bell behavior:

ξ
A1A2A3
111 = 1

4 [N(l,l,−l),σ + N(l,−l,l),σ

+N(−l,l,l),σ + N(−l,−l,−l),σ ], (3a)

ξ
A1A2A3
rest = 1

4 [N(l,l,l),σ + N(l,−l,−l),σ

+N(−l,l,−l),σ + N(−l,−l,l),σ ], (3b)

where rest ∈ {0, 1}3 \ {111}, with 0 and 1 denoting po-
sition and momentum measurements, respectively. Na,σ

is the normal (Gaussian) probability measure defined
through (1) with probability density centered around
a := (a1, a2, a3) with width σ , i.e., pa,σ (a′) = 1/(σ

√
2π )3

exp [−∑3
i=1(ai − a′

i )
2/(2σ 2)]. It is straightforward to show
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FIG. 1. The blue region denotes the values of l and σ for which
three-mode CFRD inequality (5) is violated. The region bounded by
the smaller green half-circle denotes the values of l and σ of (3),
which violates the RS uncertainty relation with the product choice of
joint probability distribution (i.e., c = 0). The region bounded by the
larger green half-circle represents the RS violation for a nonproduct
choice of marginal distribution (here, we have considered c = 1).
The overlap of the blue region with the region bounded by the
half-circles indicates three-mode postquantum nonlocal correlations.
Clearly, c = 0 corresponds to the minimum region violating the
RS relation. The units of l and σ correspond to the measurements
chosen. Refer to Appendix A for details.

that the above behavior is indeed a NS behavior. The CFRD
inequality for three modes is defined as [33]

〈X̃3〉2 + 〈Ỹ3〉2 �
〈

3∏
k=1

((
Xk

0

)2 + (
Xk

1

)2)〉
, (4)

where X̃3 and Ỹ3 are obtained from X̃3 + ιỸ3 = ∏3
k=1(Xk

0 +
ιXk

1 ). Here k denotes the mode. For the correlation (3), the
CFRD expression (4) turns out to be

5l6 � 2(l2 + σ 2)3. (5)

For suitable choices of (l, σ ), correlation (3) can violate
inequality-(5), as shown in Fig. 1, and hence establishes
nonlocality of those correlations. Naturally the question arises
whether such nonlocal correlations are quantum realizable or
whether they are postquantum in nature. One way is to find the
two-mode marginal correlations and check whether the two-
mode marginals violate the two-mode CFRD inequality. But
in this case, the two-mode marginals being a local correlation
satisfy the corresponding CFRD inequality (see Appendix A).

So, at this point we utilize the RS uncertainty relation,
which puts necessary conditions on a distribution to be quan-
tum realizable: if the RS uncertainty relation is violated, then
the given distribution cannot be a quantum realizable one.
To calculate the CM from (3), we require the single-mode
marginals ξ

Ai

Xi
as well as the 2-mode marginals ξ

AiAj

XiXj
, which

can be readily calculated by integrating out the appropriate
mode(s). But calculation of CM also requires single-mode
position-momentum joint distribution ξ

Ai

(Xi=0,Xi=1). Note that

given marginal probability distributions ξ
Ai

Xi=0 and ξ
Ai

Xi=1, the

choice of joint distribution ξ
Ai

(Xi=0,Xi=1) is not unique. With

a (trivial) product choice of joint distribution ξ
Ai

(Xi=0,Xi=1) =
ξ
Ai

Xi=0 × ξ
Ai

Xi=1, we have 〈q̂i p̂i〉 = 0, which in turn gives that
the RS uncertainty relation will be violated if l2 + σ 2 < 1
(see Appendix A), i.e., describing a half-circle region on the
l-σ plane (see Fig. 1). In Fig. 1 the overlapping region of a
blue curve and the inner half-circle violates both the CFRD
inequality and the RS relation (calculated with a product
choice of distribution) and hence establishes postquantum
nonlocality of those correlations. At this point one can ask
whether the values of l and σ lying outside the inner circle but
within the blue region denote quantum realizable probability
distribution. However, it is not straightforward to answer
this question. First of all, if we calculate CM with some
nonproduct distribution ξ

Ai

(Xi=0,Xi=1) �= ξ
Ai

Xi=0 × ξ
Ai

Xi=1, we have
〈q̂i p̂i〉 = c, with c being a real number (c = 0 corresponding
to the product choice), and consequently the RS uncertainty
relation will be violated if l2 + σ 2 <

√
1 + c2. Therefore, the

area of the postquantum region increases, as shown in Fig. 1
by the larger green half-circle (for c = 1). Even if one can
specify the value of c, it will not be possible in general to
guarantee quantumness of the correlations outside the green
half-circle region as the RS relation is a sufficient criterion
for bona-fide CM only for Gaussian distribution. However,
this calculation asserts the existence of postquantum nonlocal
correlations independent of whether we take a product or a
nonproduct form of joint position-momentum distribution for
each of the modes.

B. m-mode scenario

We now generalize the above three-mode example to m

number of modes. Consider a vector Pi ∈ Rm with the first
i number of elements being −l and the following (m − i)
number of elements being +l. Denote by Pi the set of all
vectors obtained from Pi by permuting its elements. Consider
now an m-mode Bell behavior defined as

ξ
A0A1···Am

11···1 = 1

2m−1

∑
i ∈ No
i � m

∑
Pi∈Pi

NPi ,σ , (6a)

ξ
A0A1···Am

rest = 1

2m−1

∑
i ∈ Ne
i � m

∑
Pi∈Pi

NPi ,σ . (6b)

Here, No(Ne ) denotes the set of odd (even) inte-
gers, and Na,σ is the normal (Gaussian) probability mea-
sure defined through (1) with probability density centered
around a ≡ (a1, . . . , am) with widths σ , i.e., pa,σ (a′) =
1/(σ

√
2π )m exp{−[

∑m
i=1(ai − a′

i )
2]/(2σ 2)}. The expression

of the m-mode CFRD inequality with this probability measure
takes the following form (see Appendix B): when m is even,
we get[[

2m/2 cos

(
mπ

4

)
+ (−1)

m
2 +12

]2

+ 2m sin2

(
mπ

4

)]
l2m

� 2m(l2 + σ 2)m. (7)
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FIG. 2. For different numbers of modes (m = 3, 4, 5, 6, 12, 19),
the corresponding CFRD inequalities violation has been depicted
by different shades of blue, as shown. The smaller and larger half-
circular regions denote RS uncertainty violations for c = 0 and 1 as
in Fig. 1. Units of l and σ are the same as in Fig. 1.

For odd m, it is found to be

[(
2m/2 sin

(
mπ

4

)
+ (−1)

m−1
2 +12

)2

+ 2m cos2

(
mπ

4

)]
l2m

� 2m(l2 + σ 2)m. (8)

For suitable choices of l and σ , the m-mode probabil-
ity measure of Eq. (6) violates the corresponding CFRD
inequality (see Fig. 2). A similar calculation to that given
in the three-mode example shows that the RS uncertainly
relation, calculated with single-mode product [non-product]
joint distribution, will be violated by the probability measure
Eq. (6) if l2 + σ 2 < 1(l2 + σ 2 <

√
1 + c2). Correspondingly,

the choices of l and σ that violate both the CFRD inequality
and the RS uncertainty relation give the m-mode postquantum
nonlocal correlations.

C. Two-mode scenario

So far, we have shown that the RS uncertainty relation
plays a crucial role in certifying postquantumness for m-mode
CV correlations, with m � 3. What will be the implication
of our approach for the two-mode case? We find that for
the two-mode case, the probability measure (6), originally
considered in [34], yields the CFRD expression as 2l4 − (l2 +
σ 2) � 0. In this case, the RS uncertainty relation, calculated
with product and nonproduct single mode joint distribution,
will be satisfied if (l2 + σ 2) �

√
1 + 2l4 and (l2 + σ 2) �√

1 + l4 + (l2 + c2)2 , respectively. From these expressions, it
is evident that any such correlation-violating CFRD inequality
indeed violates the RS uncertainty relation (see Appendix C).
Therefore, the postquantumness of those correlations can
be asserted from the RS uncertainty relation even without
referring to the results of [35].

VI. CONCLUSIONS

The usefulness of the Robertson-Schrödinger uncertainty re-
lation in detecting multimode entanglement has already been
demonstrated in [56]. On the other hand, the work by Oppen-
heim and Wehner [18] is also quite worthy of mention in the
context of the present work. In the 2 − 2 − 2 scenario, they
have shown that quantum mechanics cannot be more nonlocal
with measurements that respect the uncertainty principle in
fine-grained form. In the continuous outcome scenario, the
role of the uncertainty principle in certifying postquantumness
has been explored in the present study. Our work also raises
several interesting questions. Will it be the case that any
postquantum nonlocal correlation violates some form(s) of
the uncertainty principle? Another curious avenue to explore
is to construct a genuine nonlocal inequality for the m-mode
scenario with a continuous outcome, which can be used to
certify the inbuilt genuineness of the correlation presented
here. Although our work employs the uncertainty relation
and the CFRD inequality to detect postquantum nonlocal
correlation in the continuous outcome scenario, it is worth-
while to determine whether one could do the same with some
operational task.
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APPENDIX A: THREE-MODE SCENARIO

1. Calculation of the CFRD inequality

Given a probability measure ξ with probability density p,
the expectation 〈∏k (Xk

ik
)nk 〉 can be calculated according to the

following: 〈∏
k

(
Xk

ik

)nk

〉
:=
∫ ∏

k

(
Ak

ik

)nk
dξ, (A1)

where k ∈ {1, 2, . . . , m}, ik ∈ {0, 1}, nk ∈ {1, 2}.
For the three-mode case, given the probability measure (3),

we find〈(
X1

i1

)2(
X2

i2

)2(
X3

i3

)2〉 = (l2 + σ 2)3,∀ i1, i2, i3 = 0, 1;〈
X1

i1
X2

i2
X3

i3

〉 = l3 when i1i2i3 = 0;〈
X1

1X
2
1X

3
1

〉 = −l3.

Finally using the above expressions, the CFRD inequality is
calculated as (5).

2. Calculation of the RS uncertainty relation

Denoting the position and momentum observable for the ith

mode as (q̂i , p̂i ), the vector �α for three modes looks like

α̂ = (q̂1, p̂1, q̂2, p̂2, q̂3, p̂3)T ≡ α̂i |i=1,...,6 . (A2)
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The covariance matrix (CM) V is defined as Vij =
1
2 〈{�α̂i ,�α̂j }〉, where, �α̂i = α̂i − 〈α̂i〉, and {., .} is an an-
ticommutator. We can find the single-mode and two-mode
marginals from (3) by integrating out the appropriate modes,
and they turn out to be

ξ
Ai

Xi
= 1

2 [Nl,σ + N−l,σ ],∀ i = {1, 2, 3}, Xi = {0, 1},
ξ
Ai ,Aj

Xi ,Xj
= 1

4 [N(l,l),σ + N(l,−l),σ + N(−l,l),σ + N(−l,−l),σ ],

where ∀ i, j = {1, 2, 3}; i �= j ; Xi,Xj = {0, 1}.
While calculating terms like 〈q̂i p̂i〉, we require the

position-momentum joint probability distribution ξ
Ai

(Xi=0,Xi=1)
for the ith mode. But given ξ

Ai

Xi=0 and ξ
Ai

Xi=1, the choice of
ξ
Ai

(Xi=0,Xi=1) is not unique. First we consider a (trivial) product

choice ξ
Ai

(Xi=0,Xi=1) = ξ
Ai

Xi=0 × ξ
Ai

Xi=1. In this case, 〈q̂i p̂i〉 = 0
and the CM becomes

Vp =
3⊕

i=1

[
l2 + σ 2 0

0 l2 + σ 2

]
. (A3)

For a nonproduct choice 〈q̂i p̂i〉 = c, where c is some nonzero
real number. In this case, CM becomes

Vnp =
3⊕

i=1

[
l2 + σ 2 c

c l2 + σ 2

]
. (A4)

A bona fide CM needs to satisfy the RS uncertainty rela-
tion V + i� � 0, where � = ⊕3

i=1 [ 0 1
−1 0]. Respectively, for

product and nonproduct choices the RS uncertainty relation
will be violated if

l2 + σ 2 < 1 (for product), (A5)

l2 + σ 2 <
√

1 + c2 (for non-product). (A6)

By comparing Eqs. (A5) and (A6), it is obvious that the region
of (l, σ ) violating the RS uncertainty relation for a product
choice is strictly inscribed by the region of (l, σ ) violating the
RS uncertainty relation for a nonproduct choice.

APPENDIX B: m-MODE SCENARIO

1. Calculation of the CFRD inequality

For m-mode CFRD, inequality was defined in terms of the
kth mode local observables {Xk

0, X
k
1} as

〈
X̃m

〉2 + 〈
Ỹm

〉2 �
〈

m∏
k=1

((
Xk

0

)2 + (
Xk

1

)2)〉
, (B1)

where X̃m and Ỹm can be obtained from

X̃m + ιỸm =
m∏

k=1

(
Xk

0 + ιXk
1

)
. (B2)

The key point while calculating the m-mode CFRD inequality
for correlation (6) is

〈
X1

i1
X2

i2
· · ·Xm

im

〉 = lm if
m∏

k=1

ik = 0, (B3)

〈
X1

1X
2
1 · · · Xm

1

〉 = −lm, (B4)

〈(
X1

i1

)2(
X2

i2

)2 · · · (Xm
im

)2〉 = (l2 + σ 2)m,

∀ i1, · · · , im ∈ {0, 1}. (B5)

Thus, the right-hand side of (B1) is readily seen as〈
m∏

k=1

((
Xk

0

)2 + (
Xk

1

)2)〉 = 2m(l2 + σ 2)m. (B6)

Calculation of the left-hand side of (B1) requires us to know
the number of terms with negative signatures in X̃m and Ỹm

which we define as am and bm respectively. am and bm follow
recursion relations that can be specified from the following
expressing:

X̃m + ιỸm =
m∏

k=1

(
Xk

0 + ιXk
1

)

=
m−1∏
k=1

(
Xk

0 + ιXk
1

)(
Xm

0 + ιXm
1

)
= (X̃m−1 + ιỸm−1)

(
Xm

0 + ιXm
1

)
= (

X̃m−1X
m
0 − Ỹm−1X

m
1

)
+ ι
(
X̃m−1X

m
1 + Ỹm−1X

m
0

)
,

⇒ X̃m = (
X̃m−1X

m
0 − Ỹm−1X

m
1

)
,

Ỹm = (
X̃m−1X

m
1 + Ỹm−1X

m
0

)
.

Thus we have the following coupled recursion relations,

am = 2m−2 + am−1 − bm−1, (B7)

bm = am−1 + bm−1. (B8)

Closed-form expressions for am and bm turn out to be

am = 1

2

[
2m−1 − 2m/2 cos

(
mπ

4

)]
, (B9)

bm = 1

2

[
2m−1 − 2m/2 sin

(
mπ

4

)]
. (B10)

We also need to know the signature of the term X1
1X

2
1 · · · Xm

1
as well as whether it is included in X̃m or Ỹm. We notice
that,

(−1)m/2X1
1X

2
1 · · · Xm

1 ∈ X̃m, if m is even,

(−1)(m−1)/2X1
1X

2
1 · · · Xm

1 ∈ Ỹm, if m is odd.

The required expectation values of X̃m and Ỹm thus become:

〈X̃m〉 = [
2m−1 − 2am + (−1)

m
2 +12

]
lm,

〈Ỹm〉 = [2m−1 − 2bm]lm for even m; (B11)

〈X̃m〉 = [
2m−1 − 2am

]
lm,

〈Ỹm〉 =
[
2m−1 − 2bm + (−1)

m−1
2 +12

]
lm for odd m.

(B12)
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Finally, when m is even the CFRD inequality is given by[[
2m/2 cos

(
mπ

4

)
+ (−1)

m
2 +12

]2

+ 2m sin2

(
mπ

4

)]
l2m

� 2m(l2 + σ 2)m, (B13)

and for odd m it is found to be[(
2m/2 sin

(
mπ

4

)
+ (−1)

m−1
2 +12

)2

+ 2m cos2

(
mπ

4

)]
l2m

� 2m(l2 + σ 2)m. (B14)

2. Calculation of the RS uncertainty relation

As in the three-mode case, for the general m-mode case
also we have single-mode and two-mode marginals of the
following forms:

ξ
Ai

Xi
= 1

2 [Nl,σ + N−l,σ ], ∀ i = {1, . . . , m}, Xi = {0, 1},
ξ
Ai ,Aj

Xi ,Xj
= 1

4 [N(l,l),σ + N(l,−l),σ + N(−l,l),σ + N(−l,−l),σ ],

where ∀i, j = {1, . . . , m}; i �= j ; Xi,Xj = {0, 1}.
As in the three-mode case, the product and non-

product choices of single-mode position-momentum joint
distributions give the respective CM matrices: Vp =⊕m

i=1 [l
2 + σ 2 0

0 l2 + σ 2] and Vnp = ⊕m
i=1 [l

2 + σ 2 c

c l2 + σ 2]. And

consequently the RS uncertainty will be violated if l2 + σ 2 <

1 and l2 + σ 2 <
√

1 + c2, respectively.

APPENDIX C: TWO-MODE SCENARIO

Consider the two-mode correlation introduced in Ref. [34]:

ξ
A0A1
00 = ξ

A0A1
01 = ξ

A0A1
10 = 1

2 [N(l,l),σ + N(−l,−l),σ ], (C1)

ξ
A0A1
11 = 1

2 [N(l,−l),σ + N(−l,l),σ ]. (C2)

In this case, the CFRD inequality turns out to be 8l4 � 4(l2 +
σ 2)2. With product and nonproduct choices of single-mode

FIG. 3. The blue region denotes violation of the CFRD inequal-
ity. Deep and light green regions correspond to violation of the RS
uncertainty relation for product and nonproduct (with c = 1) choices
of single-mode position-momentum joint distribution. Units are as in
the previous figures.

position-momentum joint distribution, the CM becomes

Vp =

⎡
⎢⎢⎣

l2 + σ 2 0 l2 l2

0 l2 + σ 2 l2 −l2

l2 l2 l2 + σ 2 0
l2 −l2 0 l2 + σ 2

⎤
⎥⎥⎦,

Vnp =

⎡
⎢⎢⎣

l2 + σ 2 c l2 l2

c l2 + σ 2 l2 −l2

l2 l2 l2 + σ 2 c

l2 −l2 c l2 + σ 2

⎤
⎥⎥⎦.

Respectively, the RS uncertainty relation will be violated if

(l2 + σ 2) <
√

(1 + 2l4) (for product), (C3)

(l2 + σ 2) <
√

1 + l4 + (l2 + c2)2 (for nonproduct). (C4)

From the expressions of the CFRD inequality and the RS
uncertainty relation, it is evident that any (l, σ ) that violates
the CFRD inequality also violates the RS uncertainty relation
(both the product and nonproduct forms), as shown in Fig. 3.
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