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We investigate the detailed properties of observational entropy, introduced by Safranek et al. [Phys. Rev. A
99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve
multiple coarse grainings, even those that do not commute with each other, without losing any of its properties. It
is well-defined out of equilibrium, and for some coarse grainings it generically rises to the correct thermodynamic
value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions
as special cases, it has interesting information-theoretic interpretations, and mathematical properties—such as
extensivity and upper and lower bounds—suitable for an entropy. Here we describe and provide proofs for many
of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations
and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may
thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second

thermodynamical law in quantum mechanics.
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I. INTRODUCTION

The second law of thermodynamics is widely regarded as
one of the most fundamental in nature. Yet there is a striking
lack of consensus as to exactly what its content is. Taking as
its basic definition that “entropy is nondecreasing in a closed
system,” there is disagreement as to how to define entropy,
about to what systems the second law applies, and on what
“nondecreasing” means. Let us consider these in turn.

“Entropy” has a host of thermodynamic, statistical-
mechanical, and information-theoretic definitions. As moti-
vation for this paper consider four common entropies from
physics:

(1) Thermodynamic entropy, defined by dS =dQ/T
for a reversible change to a system receiving heat dQ at
absolute temperature 7', within an axiomatic set of thermo-
dynamics definitions.

(2) Classical Gibbs entropy, defined up to a multi-
plicative constant for a discrete state space by Sg(p;) =
- Zj pjln p;, where p; is the probability of being in a state
Jj; the sum is extendable to an integral over phase space given
a phase-space state density p.

(3) Classical Boltzmann entropy, defined by Sz(V;) =
In V;, where V; is the number (or phase space volume) of
classical microstates belonging to the ith macrostate A;.

(4) von Neumann entropy, defined by S(p)=
—tr[p In p], with p being the density matrix of a quantum
system.

Equilibrium classical and quantum statistical mechanics
draw a host of connections between these concepts. Gibbs and
Boltzmann entropies are related if the microstates are given
equal probability; thermodynamic entropy is expressible as
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Gibbs entropy [1]; and von Neumann entropy is a natural
generalization of Gibbs entropy.

In terms of being “closed,” a system can be closed in
practice if its interactions with its environment are sufficiently
weak that the system is well described for all practical pur-
poses by a Hamiltonian operating on just the system’s degrees
of freedom. A system might be in principle closed if it were,
for example, the entire Universe, or if it were closed due to
causality constraints.? In addition, but often unmentioned, a
closed system undergoing measurement or observation may
have the observer within the system or external to the system.
Observers within a system are tricky to treat because much
physics formalism implicitly assumes an external observer.
And an external observer performing a measurement on a
closed system must necessarily interact with the system; by
definition the system is then no longer closed. While this is not
a problem in classical systems because properties of classical
systems are considered to be robust against such interaction
in principle, and do not change when measured, in quantum
systems any such interaction disturbs the system and changes
its inherent properties.

A related issue is that in quantum theory different observers
should not disagree about the quantum state of a system,
which is regarded as un-improvable knowledge of the system.
Uncertainties in the state are described using the density

As S(p) can be written as — Y, p; In p; if the p; are probabilities
for elements of the spectral decomposition of p.

2The domain of dependence of a compact achronal surface would
constitute such a system at the classical level and at the level of
quantum fields in a fixed space-time background. Such a system
generally (but not in all cases) has a finite lifetime. It is unclear
whether fully closed subsystems exist at the quantum gravitational
level.
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matrix g, upon which observers can disagree, for example due
to different states of knowledge. The meaning of the proba-
bilities inherent in the density matrix is subject to the same
interpretative issue as for probabilities in general: they may
be interpreted as subjective credences, or relative frequencies
in an ensemble, or otherwise. In any case, p can be altered not
just by the system’s evolution, but also by conditioning and/or
by marginalizing. Conditioning would correspond to the ob-
server performing some measurement or taking into account
additional data. Marginalizing would correspond to tracing
over some degrees of freedom, for example when considering
a quantum subsystem, or computing an expectation value of
an observable depending on only a subset of the degrees of
freedom.

Finally, let us turn to the “nondecreasing” nature of en-
tropy. In classical thermodynamics, this is taken as axiomatic.
However, the thermodynamical quantity defined by dS =
dQ/T can fluctuate, and “fluctuation theorems” (e.g., [2,3])
for open systems quantify these fluctuations and indicate that
over a time At, the relative probability of a downward versus
upward change in entropy of magnitude AS is given by
p(—=AS)/p(+AS) = exp(—AS), so that decreasing entropy
in a given system is exponentially suppressed, rather than
impossible.

In marked contrast, the Gibbs or von Neumann entropy for
a closed system undergoing classical or quantum Hamiltonian
evolution stays strictly constant; this expresses the preserva-
tion of information in the evolution of the density matrix 0
or density of states p, which in either case provide a full
encoding of the statistics of the system. Flows of information
into or out of a system are represented by changes to S¢(p)
or S(p). This may occur as mentioned above, if the observer
gains additional information (generally decreasing entropy)
or marginalizes over more degrees of freedom (generally
increasing entropy) [4].> In terms of observer-independent
time evolution, an open system (e.g., a subsystem of a closed
system) S;(p) or S(p) obtained by marginalizing (or tracing
out) the rest of the closed system tends to increase toward a
maximal value under some general conditions [5—15], which
are reviewed in [16,17], although some recent work has shown
that this increase does not happen for every initial state [18].

In the absence of external influences, however, we still
expect an increase in some sort of entropy (or “disorder”):
a closed house tends to get messier even if nothing comes
in or leaves! Dissatisfaction with the fact that von Neumann
entropy does not increase* has led papers to propose different
measures in order to better capture the essence of the second
thermodynamical law.

30r via similar redefinitions of the statistical ensemble underlying
the density matrix or density of states.

“von Neumann wrote himself [19]: “The expressions for entropy
given by the author [von Neumann] are not applicable here in the
way they were intended, as they were computed from the perspective
of an observer who can carry out all measurements that are possible
in principle, i.e., regardless of whether they are macroscopic (for
example, there every pure state has entropy 0, only mixtures have
entropies greater than 0!).”

One approach is to take the Shannon entropy of diagonal
elements of the density matrix written in an eigenbasis of the
instantaneous Hamiltonian [20-22]. This approach has been
extensively studied recently and the entropy named the “di-
agonal entropy” [23]. In its native form, this entropy remains
constant in genuinely closed systems, which evolve through
a time-independent Hamiltonian, and therefore suffers the
same problem as the von Neumann entropy. However, it has
been shown to increase for systems evolving through a time-
dependent Hamiltonian due to nonzero transition probability
between different instantaneous energy levels.

Another way of getting a physically relevant entropy is
to trace out parts of the density matrix, leading to a reduced
density matrix that looks locally thermal. At this point one can
either take the von Neumann entropy (entanglement entropy),
or the diagonal entropy of these reduced density matrices, and
the results will be very similar. The resulting sum of local di-
agonal entropies will generically increase even for genuinely
closed systems, and it models local regions equilibrating with
each other [23]. We discuss later on in Sec. IX how this sum
differs from the factorized observational entropy (FOE) with
energy coarse graining introduced in this paper. FOE keeps
correlations between different regions.

Instead of defining entropy by an instantaneous Hamil-
tonian, it is also possible to consider a more general case
defined by any conceivable observable. The Shannon entropy
of the diagonal elements of the density matrix written in an
eigenbasis of an observable, which has been named “entropy
of an observable,” has been introduced in the 1960s [24,25]
and studied recently [26-28]. This entropy is similar to what
we study in this paper, however it does not take into account
different sizes of the respective macrostates, and weights each
of them the same, making it much less like the Boltzmann
entropy; rather, it describes the statistics of measurement
outcomes.

Another path to understanding thermodynamics of a closed
system leads through use of entropies that directly measure
certain features the density matrix. One such entropy is the
entanglement entropy. The system is divided into two subsys-
tems A and B. Considering the reduced density matrix g4 =
trpPap, we define the entanglement entropy to be the von
Neumann entropy of g4, S4 = —tr[p4 In p4]. For pure states,
this quantity measures mutual information between systems
A and B. Although the entanglement entropy S4 was shown
to be the same as the thermodynamic entropy of A in the
limit of large system size [29-31], it still primarily measures
the information exchange rather than heat exchange. Another
common entropy of a similar information-theoretic type is the
quantum relative entropy [32], which measures how close two
quantum states are to each other, and max entropy [33], which
measures maximum fidelity of p4p with a product state that
is completely mixed on A. However, although these entropies
have been connected to certain parts of thermodynamics, such
as entropy production [34,35] and the minimal thermody-
namic cost of information erasure [36], they are not directly
related to macrostates and macro-observable quantities such
as energy or angular momentum.

We will thus pursue a different approach, inspired by clas-
sical thermodynamics, where it is the Boltzmann entropy that
most clearly addresses the spontaneous creation of disorder
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in a closed system. In classical thermodynamics, a microstate
that evolves unitarily without regard to the definition of the
macrostates A; will tend to enter progressively higher-entropy
macrostates; it is then natural to expect evolution to higher-
entropy macrostates to be exponentially more common than
evolution to lower-entropy macrostates.

Somewhat surprisingly, until recently a quantum general-
ization of Boltzmann entropy along these lines has not been
well developed. In this paper we extend the results of Ref. [37]
by the current authors, which developed a measure of en-
tropy called the “observational entropy.” We provide detailed
definitions and proofs to theorems published there. Unlike
previous studies involving a quantum coarse-grained entropy,
we show how to generalize observational entropy to include
multiple coarse grainings, even those that do not commute
with each other. In addition, we provide a comparison to other
kinds of entropies, detailed interpretation, discussions of open
systems, convergence, and extended simulations including the
integrable systems. We show that observational entropy has a
number of desirable properties, is defined out of equilibrium,
generically increases with time under unitary evolution (in
given cases to the correct thermodynamic value), can be inter-
preted in terms of macroscopic measurements chosen by an
observer, and has a compelling thermodynamic interpretation.

Insofar as Boltzmann entropy gives a measure of the spon-
taneous increase in disorder in a fully closed classical system,
this paper argues in detail that observational entropy provides
a closely analogous measure in the quantum case.

The main results of this paper are: (1) Set of definitions
that introduces the framework of observational entropy. (2)
Theorems showing numerous properties of observational en-
tropy with general coarse grainings (equivalency to Boltz-
mann entropy, monotonicity with finer coarse graining, lower
and upper bounds, extensivity, conditions for it to be constant
in time, and conditions for it to rise). (3) Finding two types of
coarse graining that leads to definition of entropy consistent
with thermodynamics (they describe subsystems equilibrat-
ing with each other, they rise to the correct thermodynamic
value, even in isolated quantum systems described by a time-
independent Hamiltonian). (4) Simulations that support our
analytical findings. (5) Discussion and comparison with other
entropy measures.

The paper is structured as follows. Section II lays out the
motivation and basic definitions of the proposed entropy mea-
sure, which takes as input both a density matrix and a coarse
graining. Section III enumerates a number of properties this of
this entropy, including limiting behaviors, bounds, extensivity,
and time dependence in particular circumstances. Section IV
describes what “entropy increase” means in terms of the
observational entropy, provides a simple example in terms of
positional coarse graining, and briefly discusses observational
entropy with more general coarse grainings. Section V treats
the issue, particular to quantum rather than classical physics,
of multiple coarse grainings using variables that may or
may not commute, and discusses properties of observational
entropy with multiple coarse grainings. In Sec. VI we intro-
duce the two aforementioned thermodynamically promising
observational entropies (the factorized observational entropy,
and the observational entropy of measuring position and
energy). We show that these special cases of observational

entropies have a number of desirable properties: mainly, they
are perfectly defined out of equilibrium, they are bounded by
the thermodynamic entropy, and they converge to thermody-
namic entropy in the long-time limit, even in genuinely closed
quantum systems. Section VII presents numerical simulations
of evolving quantum systems that provide evidence for the
analytical claims presented in the previous section. In Sec. IX
we bring all of this together, comparing with other entropy
measures and providing several useful interpretations of the
observational entropy. Finally, in Sec. X we summarize our
results and point out interesting avenues of future research. A
number of mathematical proofs and technical results are left
for the Appendixes.

II. BACKGROUND AND THE DEFINITION

Let us first describe the partitioning of the state space of
a quantum system into a discrete set of “macrostates.” Let
{P;}; be a trace-preserving set of nonzero projectors acting
on a Hilbert space H. This set represents a measurement that
an observer can choose to perform on a quantum state. Each
element P; of the set corresponds to obtaining outcome i from
the measurement, and the set itself represent the measurement
basis chosen by the observer. This measurement may not be
complete: it does not necessarily project onto a pure state.
(Equivalently, there may be some projector P; in the set with
rank larger than 1.) This set of projectors splits the Hilbert
space into smaller subspaces #; = P, P;. The Hilbert space
is then a direct sum of these subspaces H = P, H;. Any
subspace H; may have a bigger dimension than one, and this
dimension is equal to the rank of the associated projector,
which is itself equal to its trace,

dim#; = rank P; = tr[P;]. (1)

Each subspace H; represents a macrostate,’ and its dimension
can be viewed as its volume. In quantum mechanics the state
of the system is described by the density matrix g, which is a
positive semidefinite operator acting on the Hilbert space .
The probability of finding the state of the system in subspace
‘H; isequal to p; = tr[ﬁi,é].

We now assume that the observer has access to information
about the system only by making measurements of the type
represented by the projectors P;. Thus the observer cannot
distinguish between different states inside the subspace H;
by learning the outcome of the measurement. We therefore
assume that the observer considers the quantum state having
equal chances of being in any basis state of this subspace,
which gives probabilities ﬁfk) = ;—}5, k=1,...,trP. (The
corresponding assumption in the classical context is some-
times termed “democracy of states.”)

We define the observational entropy as the Shannon en-
tropy of these modified probabilities:

Definition 1. Let H be a Hilbert space, let C = {15[},-,
> P, = I, be a trace-preserving set of non-zero projectors,

>These subspaces and the corresponding projectors are denoted
“properties” in the decoherence literature (see, e.g., Ref. [38]), which
is an approach to coarse graining broadly similar to that adopted here.
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which we call the coarse graining, and p; = tr[Isiﬁ] the prob-
ability of measuring the density matrix to be in one of the
subspaces H; = P,H P;. We define the observational entropy
with coarse-graining C as

A Pi
S = — i In ——, 2
o) () Ei p TP ()

1

where the sum goes over all elements such that p; # 0.

The idea of coarse-grained projections is mentioned very
early on by von Neumann [19] with an expression similar to
this for the particular case of coarse-grained energies that he
attributes to Wigner. It is mentioned later in his book [39] for
general coarse grainings, and it has appeared several times
after that, for example, in qualitative arguments supporting
the emergence of macroscopic behavior [40], in connection
with developing a quantum mechanical master equation [41],
or in connection with fluctuation theorems [42]. However, this
definition by itself does not partition phase space sufficiently
to define the equivalent of a coarse-grained classical entropy
that is defined for the system out of equilibrium, and corre-
sponds to thermodynamic entropy in equilibrium. For that we
need either multiple coarse grainings, or partitioned coarse
graining, both of which will be introduced later.

The observational entropy elegantly generalizes the Boltz-
mann entropy to quantum mechanics.® In our notation #;
plays the role of a macrostate and p plays the role of a
microstate. According to Boltzmann, if a physical system is
in a certain microstate, then the entropy we associate with it is
equal to the log of the phase-space volume of the macrostate
the microstate belongs to. We obtain a similar statement for
the observational entropy.

Theorem 1. (Observational entropy is a quantum equiv-
alent of the Boltzmann entropy.) If the density matrix is
contained in one of the subspaces H;, i.e., 131- ,5131- = p, then
So)(p) = IntrP; = Indim H;.

A key difference between the observational entropy and
the classical Boltzmann entropy is that via superposition, the
quantum system can be in a superposition of microstates
belonging to different macrostates at the same time.

The above theorem also suggests an additional interpreta-
tion of the observational entropy. Rewriting the observational
entropy as

Sow () ==Y pilnpi+ Yy pilnth, 3)

we can interpret it as the sum of two contributions. Consider
an observer who chooses to perform a measurement on the
system in the basis given by the coarse-graining C. Then the
first term represents the expected amount of “macroscopic”

®For an initial microstate belonging to a macrostate of phase-space
volume V;, we associate entropy with the Boltzmann entropy Sz =
In V;. Theorem 1 is then in a loose analogy to Boltzmann entropy.
However, it is possible to imagine an exact classical analog of the
observational entropy, defined as Sgo(m) =—73_, p;In tr”—“,", where
p; denotes the probability of microstate m being in ith macrostate
of volume V;. This kind of classical entropy has been previously

considered in literature, see [43].

information—i.e., regarding the macrostates—that the mea-
surement gives. In other words, this term measures the mean
uncertainty as to which macrostate the system is in, and the
mean reduction in uncertainty that would occur were the mea-
surements performed. The second term represents the mean
value of uncertainty an observer has about the system after the
measurement outcome is learned, assuming he or she does not
have an ability to distinguish between different microstates in
a given macrostate. This can be also seen as follows.

First, note that i f the observer had access to the density
matrix p, it would make sense to attribute von Neumann en-
tropy S(4) to the system. Then, after obtaining a measurement

P oP
tr(lg,p ﬁ]}’?)’
would attribute entropy S(0;) to the system, which is lower
than S(0) on average [4].

However, an observer does not generally have access to the
density matrix unless they have knowledge or control over the
system’s preparation, or access to an ensemble of identically
prepared systems and the ability to measure its members in
sufficiently many different bases.” This being so, after mea-
suring outcome p; the observer should, following the logic
of Boltzmann entropy, attribute to the system the maximally
uncertain density matrix compatible with the knowledge that
the system is in macrostate 7{;, and thus attribute to it entropy
Indim H;.

Considering then the spectrum of possible measurement
outcomes, the average uncertainty about the system after
the measurement is then equal to ), p; In tr 2, which is the
second contribution in Eq. 3).8

There are additional ways of interpreting observational
entropy, which are collected in Sec. IX.

Note that for a single coarse graining, it is possible to view
the observational entropy as the von Neumann entropy of a
density matrix constructed out of the coarse graining and the
probabilities,

outcome i, the observer would update p to p; = and

So)(P) = S(Z %P) @

However, we have not found an analogous expression for
observational entropy with multiple coarse grainings (defined
in Sec. V below).

III. PROPERTIES

We move on to studying the mathematical properties of the
observational entropy. First, we introduce two definitions that
will be useful for the theorems to come.

"We consider the density matrix to encode all information nec-
essary to make predictions about the system, as well as all of the
information in principle—but generally not in practice—extractable
by an observer making a sequence of measurements.

8Note that the observational entropy decreases on average when
measuring the basis given by the coarse-graining C. However, that
means that the measurement always decreases the entropy. The
entropy can increase when the observer obtains a very unlikely
outcome i, p; < 1, which is connected to a large macrostate H,;.
Then SO(C)(ﬁ,') = Indim H,‘ > So(g)(,ﬁ).
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Definition 2. (Relations between coarse grainings.) We say
that coarse-graining C, is finer than coarse-graining C; (and
denote C; < C,) when for every 13,l € Cl there exists an
index set 10 such that P;, = D ierin P,,, P, € C,. (That is,
each element of C; can be partitioned using elements of C5.)
We correspondingly say that coarse-graining C; is rougher
than coarse-graining C,. Two coarse-grainings C; and C, are
said to commute when for all {; and i,, [131'1, 13,-2] =0.

Note that relation < represents a partial order on the set
of all coarse grainings. There is a common maximal element
C; = {I},i.e.,C; — C for every coarse-graining C.

Definition 3. (Coarse graining defined by an observable.)
Let A= >.a IA’ui, where a; # a; for i # j, be the spectral
decomposition of an observable’ A. We define coarse graining
given by the observable A as C; i = {P }a;- We say that coarse-
gralmng C commutes with an observable A if [Pk A] = 0 for
all P, € C.

The spectral decomposition is unique when written in
terms of projectors associated with different eigenvalues,
therefore also coarse-graining C; is uniquely defined. If
coarse-graining C commutes with an observable A then the
coarse-graining C also commutes with C4. This is because two
Hermitian operators commute if and only if projectors from
their spectral decomposition commute [44].

Intuitively, we would expect that an observer with access
to more information about a quantum system will attach a
lower entropy to this system. This is described in the following
theorem, which says that the observer with a higher resolution
in measurement (a finer coarse graining) attaches a lower
entropy to the same density matrix.

Theorem 2. (Observational entropy is a monotonic func-
tion of the coarse graining.) If C; < C,, then

Soc)(P)- @)

It turns out that the observational entropy is a bounded
function: it is bounded below by the von Neumann entropy
S(p) and above by the logarithm of the volume of the entire
Hilbert space. This shows that the von Neumann entropy
represents the ultimate knowledge that can be obtained about
a quantum state. After achieving a certain resolution no better
resolution can help to obtain better information.

Theorem 3. (Observational entropy is bounded.)

S(p) < IndimH (6)

for any coarse-graining C and any density matrix p. S(p) =
Soey(p)ifandonly if C; — C. Sp(p) = Indim# if and only

if Vi, pi = 4
im# * . . . A

C; is the coarse graining given by the density matrix p, as

defined in Def. 3. Let us explain the equality conditions. The

observational entropy is the same as the von Neumann entropy

when the measurement represented by coarse-graining C is

performed in the eigenbasis of the density matrix, and the

SocH(P) =

So)(P) <

"More generally, we can use any Hermitian matrix A to define a
coarse graining since every Hermitian matrix has a spectral decom-
position. Later in Theorems 3 and 7 we will use coarse-graining C,
given by the density matrix p although the density matrix is not
usually considered as to be an observable in a physical sense.

resolution of the measurement is sufficient to distinguish
between different eigenvalues of the density matrix. In other
words, the two entropies are equal when a measurement
performed on an eigenvector of the density matrix is enough
to predict the eigenvalue associated with this eigenvector. On
the other hand, the entropy is maximal when probabilities of
obtaining measurement result i are linearly proportional to the
volumes of the respective subspaces H,.

The previous theorem also suggests that obtaining the max-
imal observational entropy is largely unrelated to the purity
of the state. The observational entropy does not distinguish
between pure and mixed states, but only between different
probability distributions of measurement outcomes. In other
words, it distinguishes only between different probability
distributions over macrostates given by the coarse graining.
This is illustrated in the following corollary.

Corollary 3.1. (Pure states can achieve the maximal en-

tropy.) Both p = W (Wl 1) =2, dﬁfyll/h where |;) €
H;, and piq = I give the same maximal entropy,

dlmH
So)(P) = Soc)(Pia) = IndimH. @)

Any entropy describing a physical system should be ex-
tensive. This is because an entropy measures the amount of
uncertainty about a physical system, and the total amount of
this uncertainty should not change just because we consider
two or more systems at the same time. Thermodynamic en-
tropy is extensive, and we would expect that if interactions
between systems are sufficiently weak or local, the total un-
certainty about them should not change by considering them
combined into a single system. The following theorem says
that the observational entropy is extensive, i.e., it is additive
on separable states.

Theorem 4. (Extensivity.) Let H = HP @ --- @ H"™ be
a Hilbert space of a composite system with the coarse graining
defined as C=CY®.-..-@C"™ ={P, ®---® P, };
For a separable state p = pV ® --- ® 5 we have

m

Sow)(B) =Y Socw(p™). ®)
k=1

Thus So(c) is an extensive quantity.

When an observer decides to track degrees of freedom that
do not change in time, we would expect the observer to see no
change in entropy. This is described by the following theorem.

Theorem 5. (Constant observational entropies.) Let H be
a Hamiltonian governing the evolution of the system, p, =
U)poU (), U(t) = e ", If coarse-graining C commutes
with the Hamiltonian, then

So)(P1) = Soc)(po) = const. 9)

Specifically, if [A, H] =0, then Soc;)(Pr) = Soc;)(Po) =
const. Thus if a coarse graining is defined by an observable
that is a conserved quantity, the observational entropy remains
constant in time for any choice of the initial state.

In later sections we extensively investigate the tendency of
observation entropy to be nondecreasing under generic time
evolution. Here we give a relevant analytic result that applies
when starting in a macrostate.
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Theorem 6. (Nondecreasing entropy for a macrostate over
short times.) If the density matrix is initially contained in one
of the subspaces H;, i.e., P; o P; = po, then

Sow)(Pr) = Socy(Po) (10)

for any ¢ that is small enough to satisfy

[ A A T ( tr[ﬁl] )]_1/2
t S|\l — POHpoHI[1 + ———— . (1D
~ min;; tr[ P;]

The approximate relation < comes from the proof where
we have neglected terms of order O(¢*) and higher, in the big-
O notation. However, an exact statement of a different form
is obtained there. Why this increase happens becomes clear
when looking at the general shape of the observational entropy
as depicted in Fig. 1.

Note that this property is not strictly true of classical Boltz-
mann entropy (defined as the log of the number or volume of
microstates in a macrostate): starting in a given macrostate,
there is a small probability of immediately evolving into
a macrostate of lower entropy. For observational entropy,
the corresponding potential decrease due to evolution into a
macrostate of a lower volume, which would be in the second
term of Eq. (3), is more than compensated for by the increase
in uncertainty in the macroscopic information (the first term
of that equation), leading to a net entropy increase, at least for
a short time.

IV. ENTROPY INCREASE FOR GENERAL
COARSE GRAINING

As an example, we consider observational entropy with
a position coarse graining. Given a one-dimensional system
with N indistinguishable particles, we can coarse grain them
into p bins, each of width §. We wish to make observations
that will give us the bin that every particle is in. To do this, we
denote the binned particle positions by ¥ = (x(V, ..., x™)),
where each element can take one of the equally spaced
values xi, ..., xp.lo For example, when the second particle
is contained in the first bin, we write x® = x;. Vector X
therefore contains information about to which bin every par-
ticle belongs. For indistinguishable particles, any permuta-
tion w of elements of X constitutes the same vector, X =
m(xM, ..., x™)). We define a set of coarse-grained projectors
indexed by ¥,

Cyo = { PP}, where P = Y " R)(F|  (12)

xeC;

X

and Cy represents a hypercube of dimension N and width
8 = xj41 — xj. Vector |X) contains the exact position of each
particle, and corresponds to a basis vector in the Hilbert space.
Each hypercube defines one macrostate, which by the above

10T his example considers a one-dimensional lattice. We could,
of course, consider a more general example, such as a three-
dimensional lattice. Then for each particle we would attach a three-
dimensional vector, for example, for the second particle contained
in the bin at the bottom corner of the lattice, we could write x® =
(x1, x1, x1).

FIG. 1. (a) Sketch of Hilbert space, (b) evolution of probabilities,
and (c) graph of observational entropy, in 12-dimensional (12D)
Hilbert space with subspaces of dimensions 1, 3, and 8, respectively.
Blobs in (a) represent the amount of probability projected into each
Hilbert subspace, but it should be kept in mind that the right picture
is projecting a density matrix that lives in 12D space into these
lower-dimensional subspaces; this cannot be depicted here. The blue
curve in (b) represents a possible evolution of probabilities p;(t) =
tr[ P p,], with density matrix starting in the 1D subspace Hilbert
subspace ;. (c) Observational entropy as function of probabilities
p> and p; (where p; =1 — p, — p3), and the blue curve is the
corresponding entropy So(c)(f;) from evolution (b). Observational
entropy is a strictly concave function; since each corner of its graph
represents one of the subspaces, the entropy must increase at least for
a short time when starting in one of them.

definition is formed by vectors of position |%) that correspond
to the same vector of positional bins X. Our coarse-graining
Cge then represents measurements that can be done that
would characterize the system positional macrostate at a scale
of §.
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FIG. 2. Evolution of the observational entropy with positional
coarse graining of the nonintegrable system of size L = 16, coarse
grained into p = 4 parts of size § = 4, starting at ¢ = 0 in a state of
N = 4 particles contained in the left side of the box (sites {1-8}).
As time passes, particles expand through the entire box and the
observational entropy quickly increases, reaching a value not far
from the maximal value Sp,x = Indim#, where dimH = (11\‘,) =
1820, depicted by the straight green line.

For indistinguishable particles, this coarse graining can be
also understood as follows. It coarse grains the space into
boxes, and counts the number of particles in each box. For
example, on a one-dimensional lattice of length L = 9 of with
N = 4 indistinguishable particles coarse grained into p = 3
boxes of size § = 3, the first particle could be in the box {1-3},
the next two could be in box {4-6}, and the final one could be
in the box {7-9}. This represents one projector of this coarse
graining by the “signature” [1,2, 1], which represents the
number of particles in each box. The set of coarse-grainings
projectors C g is isomorphic to the set of allowed signatures,
[4,0,0], [3,1,0], etc. In other words, these projectors represent
a measurement that measures the number of particles in each
box, and we can write Cy») = Cg..en, = Cq, ® - ®Cy .
When a projector P; € Cge acts on a wave function, it is
projecting out the components of the wave function with P;’s
signature.

We illustrate evolution of the observational entropy with
this positional coarse graining in Fig. 2, starting in a state
that is confined to the first half of the lattice, subject to
the Hamiltonian describing a nonintegrable system, Eq. (46),
that will be discussed later in detail. As we can see, par-
ticles quickly spread over the entire Hilbert space, filling
it almost uniformly, and approximating the maximal value
Smax = Indim #.'" This observational entropy measures how

"However, it is important to note that closed quantum systems are
not in general ergodic in the classical sense, and the observational
entropy does not usually reach the maximal value S,x = Indim H.
For example, starting from an energy eigenstate, this state never
evolves and therefore the observational entropy remains constant for
any choice of coarse graining. More precisely, the wave function of
a closed system is contained on the surface of the hypersphere that is
given by the decomposition of the wave function into eigenvectors of
the Hamiltonian, and the system is then ergodic on this hypersphere

uniformly distributed the particles are over the macrostates.
The fact that it almost reaches the maximal value means that
in the long-time limit, the probability of each particle being in
a given macrostate is linearly proportional to the macrostate’s
volume, as shown by Theorem 3.

The question of to what value the observational entropy
increases is interesting and not fully resolved for general
coarse grainings of closed quantum systems such as the
system considered in the above example.

For open systems, which we model as systems interacting
weakly with a thermal bath, the convergence can be readily
calculated. We allow the system to exchange (for example)
energy, number of particles, momentum, and angular momen-
tum with the thermal bath. Considering the system and the
thermal bath being a closed system as a whole, according to
strong eigenstate thermalization hypothesis [53], at some long
time in the future, the system of interest is very likely to be
in a state that for all practical purposes closely resembles the
generalized thermal density matrix gy, introduced in Ref. [22].
We can therefore write

A =00

1 .
P = exp | =) A (13)
J

where A ; describes the observable of a conserved quantity
(such as energy or a particle number), A; is its respective La-
grange multiplier (such as inverse temperature or a chemical
potential), and Z is the partition function. The relation sym-

bolized by "25° should be read as “approximately approaches”
and might not be strictly a convergence in the mathematical
sense. For example, if we consider the system and the thermal
bath together as being a closed system, there is a timescale
over which the closed system returns arbitrarily closely to the
initial state [54]—the Poincaré recurrence time. Hence, this
convergence should be rather understood in a physical sense
that the system spends exponentially more time at this entropy
than at lower entropies.

For such an open system, the probabilities of finding the
density matrix in the Hilbert space H; for a general coarse-
graining C will then approach a value given by this limiting
density matrix,

pi(t) = [ Bp,] ' =5 p™

The time-dependent observational entropy

= tr[ P pn]. (14)

pi(t
tl'p,‘

Sow(p) ==Y pit)In (15)

then converges (in the same sense) to the value

(th)
N Pi
So@(P) =" So ==Y p™In _trlﬁ . (16)
i

1

The situation in closed quantum systems, which is the main
topic of this paper, is more difficult to analyze, since the
density matrix does not approach the generalized canonical

[19,45]. The details of quantum ergodicity are still a topic of ongoing
research [46-52].
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density matrix py,. In a closed quantum system the amplitudes
of the wave function written in an eigenbasis of the Hamil-
tonian stay fixed, and only the respective phases change. The
relevant figure of merit is then the microcanonical ensemble
rather than canonical, and the situation is described by argu-
ments similar to the eigenstate thermalization hypothesis, as
we will discuss in detail below in Sec. VI and Appendixes D
and F. Generally, in closed quantum systems the observational
entropy will tend to a limiting value that depends on the initial
state, although entropy for many initial states will converge to
a similar value.

Although not much can be said about the convergence
of entropy in closed systems for general coarse grainings,
we have observed that even in closed quantum systems the
observational entropy tends to increase for most initial states.
And as shown by Theorem 6, it always increases or stays
the same, at least for a short time, for states that start their
evolution contained in one of the macrostates. One instance
of where the entropy increases is shown in Fig. 4, and such an
increase can be observed for almost any initial state. It is true
that one can find states where the entropy decreases, but such
states are rare and have to be either carefully designed (and
fitted to the particular coarse graining) or found as rare cases
in a large number of random trials.!?

We can now further discuss the meaning of the observa-
tional entropy. An observer chooses a coarse-graining C =
{P;}; that defines macrostates of interest. This choice may be
given for example by a coarse-grained measurement that can
be in principle performed, or by coarse-grained (macroscopic)
degrees of freedom that the observer wants to track. The time-
dependent observational entropy, Eq. (15), then describes the
increasing amount of disorder in the system with respect to
these chosen macrostates.

Low observational entropy means that the state of the
system is localized in a few small macrostates. The observer
conceives of such a situation as a highly ordered state in his
or her subjective point of view. This can be seen as an ability
to say a lot about the system without the actual knowledge of
the density matrix.

High entropy means that the state of the system is con-
tained within a large macrostate, or spans across many small
macrostates. Even though the system might be in a pure state,
the fact that this pure state cannot be localized in a few small
macrostates means that the such a system is considered as
disordered. With such a disordered system, only a little can be
said about the system from the observer’s perspective. Given
the arbitrary choice of macrostates, this entropy may or may
not be connected to any particular thermodynamic quantity;
this depends entirely on the choice of coarse graining.

When the observational entropy achieves (approximately)
its maximum, we say that the system has thermalized with
respect to coarse-graining C. Growth of this entropy describes
the loss of perceived order due to the time evolution. The state
of the system spreads into more and larger macrostates, and
the observer loses the ability to say much about the system as
time passes.

12The statistical characterization of downward fluctuations in ob-
servational entropy is a topic of current investigation by the authors.

The exception to this is if the observer chooses to track the
degrees of freedom that do not change in time, i.e., [C, H] =
0. According to Theorem 5, the observational entropy then
remains constant. However, choosing macrostates that lead
to rising entropy is often unavoidable and/or desirable, for
example when coarse-grained quantities represent collective
degrees of freedom in which the system can be understood
well, or when coarse-grained quantities determine the amount
of work that can be extracted, or when we want to describe
thermalization between initially separated systems. We will
detail the latter in Sec. VI.

There is also one important point to make. In infinite-
dimensional Hilbert spaces, such as that of the quantum har-
monic oscillator, there can be subspaces with infinite dimen-
sion. Clearly, if there is a nonzero probability that the density
matrix belongs in such a subspace, then observational entropy
is formally infinite, indicating an infinite amount of uncer-
tainty about the particular state of the system if only probabili-
ties of macrostates are known. An infinite-dimensional Hilbert
space is very unlikely to be relevant in real physical systems, '
but it is desirable to apply our formalism to an in-principle
infinite Hilbert space nonetheless. This can be achieved by
choosing a coarse graining in such a way that none of the
subspaces is infinite dimensional. In many physical situations,
the high-dimensional subspaces will be then exponentially
suppressed by low probabilities p;. This is for example the
case of the physically relevant entropies that we are going to
introduce in Sec. VI, which are provably bounded from above.
There, the space is coarse grained in energy, and even though
the Hilbert space can be in principle infinite dimensional, the
high energy subspaces are exponentially suppressed due to the
constraints on energy of the initial state. In such situations, it
can be desirable to truncate the infinite-dimensional Hilbert
space, and stop considering subspaces with low enough prob-
abilities p;. Then the observational entropy on this truncated
Hilbert space will approximate the observational entropy on
the full space. (It is straightforward to show that when p; = 0
for subspaces that have been taken away, both observational
entropies coincide.)

But before we take a closer look at the use of observational
entropy in thermodynamics, we first have to introduce obser-
vational entropy with several coarse grainings.

V. OBSERVATIONAL ENTROPY WITH MULTIPLE
COARSE GRAININGS

Imagine an observer with the ability to perform two distinct
measurements on the system. In an ideal case the second
measurement would provide additional information about the
system that the observer was unable to obtain from the first
measurement. Since each measurement is represented by a
coarse graining, two measurements are represented by two
coarse grainings. Considering these two coarse grainings to-
gether should give rise to a new definition of the observational

3The Beckenstein bound [55], for example, indicates that for a
system to have an infinite entropy it must be infinite in either extent
or energy, and this entropy is often interpreted to refer to the (log of
the) number of accessible microstates.
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entropy that describes this additional ability to perform the
second measurement. We first discuss the simple case when
two coarse grainings nicely fit together, i.e., they commute.
We then generalize the definition of observational entropy to
noncommuting coarse grainings.

Definition 4. Let C; and C, commute. We define the joint
coarse-graining C;, as the roughest coarse graining that is
finer than both C; and Cy, i.e., C) 5 is such that

Ci = Cip, Cy = Cip,
and (VC|C; — C,C; — C)(C12 — O). (17)

The joint coarse graining always exists for any set of
commuting coarse grainings, and is uniquely defined by them,
per the following lemma.

Lemma 1. Let coarse-grainings C; = {13,-] }i, and Cy =
{Jf’,-z},-2 commute. Then the joint coarse graining is uniquely
defined and it is given by C; » = {P;, P,,};, i, \ {0}, where \ {0}
means that the zero element has been taken out.

This lemma says that that elements of the joint coarse-
graining C;, are given by products of elements of coarse-
grainings C; and C,. Although the joint coarse-graining C;
has been constructed from two different coarse grainings, it is
still a single coarse graining. Therefore, we can use the above
lemma and Def. 1 to compute the observational entropy with
the joint coarse graining as

. Piiy
S - _ iip I ————. 18
O(CLz)(p) Z Piriz tT[Pi Plz] o
11,12
The sum goes over all elements such that p;;, =

tr[P;, P, p] # 0.

When the coarse grainings do not commute,'* the issue
becomes somewhat more complicated. It can be easily shown
that noncommuting coarse grainings do not have a joint coarse
graining,'> and do not correspond to a single direct sum of
subspaces, hence the original Def. 1 of the observational
entropy cannot be directly applied. However, Eq. (18) moti-
vates a more general definition that applies even for coarse
grainings that do not commute. The most compelling way'® is

“The decoherence or consistent histories approach explicitly es-
chews noncommuting coarse grainings [38]. However, this seems
overly limiting, as our usual macroscopic description of the world
is quite comfortable with coarse-grained variables that do not techni-
cally commute but for which the noncommutation is a tiny effect
in the large-mass or many-particle limit. Thus where possible we
attempt to extend our results to the noncommuting case.

5We assume that P, € C;, P,, € C, do not commute and that
Ci, = {P?}; is the joint coarse graining. Then P, = 3", i) P’
and P, = ¥, i» P*. Because P, and P, do not commute, then
there must exist projectors ﬁk"z and 13,;‘2 that also do not commute,
which contradicts with the fact that they are orthogonal projectors.

1Considering Eq. (1), other possible ways that could be considered
are: (1) Taking the generalization of the dimension of the correspond-
ing subspace; this fails, because projectors that do not commute do
not correspond to a subspace. (2) Taking the rank of projector 13;1 IA’,-2
as the volume; this is not a desirable definition, since these ranks do
not add the volume of the entire Hilbert space in a noncommuting
case. (3) An alternative way is to make use of von Neumann entropy

to simply take tr[ 2, P; P;,] and the corresponding generaliza-
tion of probabilities p;,;, = tr[f’,‘2 13,-, ,613,-, f’,-z]. This is because
Vivi, = tr[lﬁ,-2 f’il 13,-2] has a clear interpretation as a volume of
a small part of the Hilbert space—a multimacrostate (i, i»).
It is always positive and it sums up to the volume of the
entire Hilbert space ) ; ; Vi, ;, = dim H. p;,;, represents the
probability of obtaining result i; in the first measurement
while obtaining result i, in the second measurement when two
consequent measurements in bases C; and C, are performed
on the state described by the density matrix g. Moreover, this
definition gives an intuitive answer to the thermodynamical
behavior that we describe in the next section. This discussion
leads to the following definition.

Definition 5. Let (Cy, ..., C,) be an ordered set of coarse
grainings, and let V;,_; =[P, --- P, --- P, ] denote vol-
ume of macrostate (iy, ..., i,). We define observational en-
tropy with coarse-grainings (Cy, ...,C,) as

S0 c)(P) ==Y Py N T (19)

whgre theA sum goes over elements such that p; ; =
tr[ P, --- P pP;, --- P, ] #0.

When the coarse grainings commute, this definition coin-
cides with commuting case, i.e., So,....c,)(#) = Soe, .)(P).
(Note the admittedly subtle notational difference.) However,
it is important that the order of the coarse grainings mat-
ters when they do not commute: in general So, c,)(0) #
Sow,.c)(p). We will see an example of observational en-
tropy implementing two different coarse grainings in the next
section.

As is the case for the observational entropy with a single
coarse graining, the more general version is bounded by the
same values. To show this, we first need to generalize Def. 2
and define a finer set of coarse grainings.

Definition 6. (Finer set of coarse grainings.) We say that
an ordered set of coarse-grainings (Cy, ..., C,) is finer than
coarse-grainings C [and denote C < (Cy, ..., C,)] when for
every multi-index i = (iy, ..., i,) exists 13j € C such that!”

A A A

P ---P,P,=P, - P, (20)
whereﬁik eC,k=1,...,n.

Intuitively, the set of coarse-grainings (Cy, ..., C,) is finer
than coarse-graining C, if each element P, --- P; from the
set projects into one of the subspaces H; given by the
projectors from coarse-graining C, before possibly projecting
somewhere else. In other words, measuring the system first
in the basis given by coarse-graining C is redundant, if the
sequence of measurements given by the set (Cy,...,C,) is
performed afterwards. This is because all information the

ﬁizﬁg[’f){] ﬁiz
ulBy, By pBi, Piy1”
with the interpretation of the volume and does not yield desirable
properties. Generalizing the volume using trace tr[lﬁ,-2 1’3,-1 13,-2] is then
the most meaningful, and it yields many desirable properties.

""Looking at Eq. (20), it is also suggestive to say that P; “dis-
solves” in P, --- f’,-l, or that coarse-graining C dissolves in the set

n

(Cla .. wcn)-

of the reduced state but this does not connect well

012103-9



SAFRANEK, DEUTSCH, AND AGUIRRE

PHYSICAL REVIEW A 99, 012103 (2019)

first measurement could provide will be also obtained just by
performing the sequence of measurements.

For P, --- P, # 0 in Def. 6, the index j that is mapped to
each multi-index i is unique, i.e., i — j forms a map. We also
note that if C — (Cy, ..., C,), then for any additional coarse-
graining C, 4, also C — (Cy, ..., C,, Cy+1). The reader may
have noticed that Def. 6 does not look very similar to Def. 2.
Despite this, these two definitions coincide for n = 1. We
show all of these properties in Appendix B.

The theorem follows:

Theorem 7. (Observational entropy with multiple coarse
grainings is bounded.)

S(P) < So....cH(P) < IndimH (21)

.....

for any ordered set of coarse-grainings (Cy, ..., C,) and any
density matrix p. S(0) = So(,,...c,)(0) if and only if C; —
(C1,...,Cp). So(p) =IndimH if and only if Viy,..., i,
Piy.oin = _A;f{iﬁxi .

The observational entropy is therefore equal to the von

Neumann entropy when the set of coarse grainings is fine
enough to distinguish between eigenvectors of the density
matrix associated with different eigenvalues. To understand
this, consider an observer that is given an eigenvector of
the density matrix. The observational entropy is equal to the
von Neumann entropy if performing n consequent measure-
ments in measurement bases (Cy, ..., C,) on this eigenvector
is enough to determine the eigenvalue associated with this
eigenvector with certainty, no matter what eigenvector it is.
The observational entropy is equal to the maximal value when
probabilities of obtaining measurement outcomes iy, ..., i,
are linearly proportional to the volumes of the respective
multimacrostates V;, ;. .

One could expect that performing more measurements of
the system should give the observer better knowledge about
the system, at least on average, corresponding to a decrease in
entropy representing this knowledge. Observational entropy
has this property, as follows.

Theorem 8. (Observational entropy is nonincreasing with
each added coarse graining.)

Soc,...co(P) Z So,...Co.Cor) (D) (22)

for any ordered set of coarse-grainings (Cy, ..., C,, C,+1) and
any density matrix . The inequality becomes an equality if

. . . _ ingl
and only if Viy, ..., inq1s Piy,iny = v,—"fpz‘, ..... i

This has the interesting interpretation that entropy is unaf-
fected by additional coarse-graining C, if the corresponding
measurement is “uninformative” in the sense that the condi-
tional probability of the outcome i, is given by the ratio of
the volumes of macrostates.

There are two notable cases in which this is the case.
The first is when measurements corresponding to the set
of coarse-grainings (Cy,...,C,) project onto a pure state,
meaning that performing an additional measurement on the
system about which the observer already has the perfect
knowledge, does not provide any new information about the
prior system. For example, if the first coarse graining is given
by operator A that has a nondegenerate spectrum, then for any
coarse-graining Ca, Soc;)(0) = So(c;.c,)(P). The inequality
becomes an equality also when C,1; < (C,,...,C;) (note

the reverse order in the set), meaning that the last mea-
surement is redundant in a sense that all the information it
could provide has been already provided by its preceding
measurements.

Note that we could also define a relationship < be-
tween two sets of coarse grainings and derive other theorems
analogous to those stated in the previous section, such as
monotonicity of the observational entropy as a function of
sets of coarse grainings, or extensivity with multiple coarse
grainings. Another possible task would be finding sets of
coarse grainings that lead to a constant observational entropy.
This will be left for future work. Instead, we use this theory to
introduce observational entropies with multiple coarse grain-
ings that have compelling interpretation in quantum thermo-
dynamics.

VI. OBSERVATIONAL ENTROPY AS THERMODYNAMIC
ENTROPY

In this section we introduce two entropies that are well-
defined out of equilibrium, and correspond to thermodynamic
entropy in equilibrium, even in closed quantum systems. This
provides a compelling answer to the question of what kind
of entropy increases in closed quantum systems. These two
entropies are similar in spirit, but they employ different coarse
graining and are mathematically distinct.

First we introduce an entropy that corresponds to mea-
suring the coarse-grained position of particles, and then the
total energy of the system. This entropy measures whether
the system is in a positional configuration that corresponds
to many different energies; it thus describes how energy is
distributed over many possible configurations of the system.

The second entropy employs coarse graining in local
quantities. We primarily treat “local” energy, but the tech-
nique could additionally treat the number of particles, angular
momentum, etc. This entropy describes whether the total
quantities are evenly distributed over the local systems. Both
entropies are schematically summarized in Fig. 3.

Interpretation of these two entropies are very similar. In
Appendix E we show that these entropies are closely related
analytically for small interaction strengths between partitions,
or equivalently between positional coarse-grained bins. This
similarity will be illustrated in Sec. VII, where we numerically
evolve a system of fermions on a one-dimensional lattice.

A. Observational entropy of position and energy

Consider an observer who wishes to measure coarse-
grained position of the particles (or equivalently, local particle
number measurements) and energy of the system. The two
relevant coarse grainings are

Cyo = {PO);. PP = 1E)A (23a)
,%EC;
Cy =1{Pple, Pr=|E)E|, (23b)

where Cze), which corresponds to coarse graining in po-
sition space with p number of bins of size §, has been
already explained in detail in Eq. (12). For indistinguishable
particles, this coarse graining is equivalent to measuring a

012103-10



QUANTUM COARSE-GRAINED ENTROPY AND ...

PHYSICAL REVIEW A 99, 012103 (2019)

AW it 0@
N A
4 \% N
‘....,/\
| 1 @ | @ | o | \ | @ | |

- Measure local number of particles,
Sep O ny=3 A no =1

then total energy.
H: FE

Sk
[

FIG. 3. Schematic depiction of two relevant observational en-
tropies for thermodynamics, illustrated on a model of fermionic
chain used in our simulations. We consider situation of p =m =
2 regions (subsystems or partitions), evolving through Hamilto-
nian H = AV @ [ + 1 @ A® 4+ ¢ A, uses positional coarse
graining, which for indistinguishable particles correspond to mea-
suring local particle densities, and then coarse graining in total
energy. Factorized observational entropy S uses local energy coarse
graining, corresponding to measuring energy of the first and the
second region, respectively. Dashed curves represent interparticle
forces, solid curves represent particle hopping.

Measure local energies.

ﬁ(l)l E1 IA{(Q)I E2

number of particles in each box, and can be written as
Cyo =Cl,g.en, =Cx, @+ ®Cy . Cy consists of projec-
tors from the spectral decomp0s1t10n of the total Hamiltonian
H= >iE Pyg. There are two different types of observational
entropies that can be considered.

The first, Sgx (D) = So(c,.c0)(P), corresponds to measur-
ing the energy and then coarse-grained position. It remains
constant for any initial state and therefore does not have a
meaningful interpretation describing the dynamics of a closed
quantum system. One could also imagine a coarse-grained
measurement of energy, but as we explain in Appendix H,
even this more general choice does not lead to something
thermodynamically meaningful.

On the other hand, we can switch the order of the noncom-
muting coarse grainings, instead considering

Se£(P) = So(cy cp) () (24)

which corresponds to first measuring the coarse-grained po-
sition and then energy of the system. This yields an en-
tropy that rises in a closed system and reaches the correct
thermodynamic value given by the microcanonical ensemble
(microcanonical entropy) for initial pure states that are super-
positions of energy eigenstates strongly peaked around a given
value of energy (denoted PS states; peaked superposition
states), and reaches a value that is between the canonical
entropy and the mean value of the microcanonical entropies
(the mean given by the initial state) for other initial states.
This is shown in simulations in Sec. VII, and analytically in
Appendix F.

Denoting by p.r the probability of observing a given
position macrostate x then energy state E, and denoting

the corresponding Hilbert space volume V,p = tr[ﬁE ISX],
Theorem 7 implies that S, is maximized when p,g « Vyg.
In general, S, is large if p,g is high for large volumes V, g
while low for small volume; S,g is small if p,g is low for
large volumes V, g, and large for small volumes V, g. That is,
Sy 1s low to the extent the state is localized in a small region
of space with a well-defined energy, and high otherwise.

As an example, imagine the positional coarse graining on
a one-dimensional lattice of length L =9 of with N =3
indistinguishable particles coarse grained into p = 3 boxes
of size § = 3 [for detailed explanation, see example below
Eq. (12)]. A state of all three particles contained in the first
box of sites {1-3} corresponds to signature [3,0,0], which
is a very small subspace of dimension 1. The number of
energy states (of the full Hamiltonian) corresponding to this
positional configuration is also small, in fact proportional to
the interaction strength between the first and the second box.
Therefore, the state is localized in a small region of space
and has a relatively well-defined energy, resulting in low
observational entropy S g.

We will see in simulations (Sec. VII) that observational
entropy S, g is maximized by the evolution of the system, i.e.,
evolution of the system leads to positional configurations that
have the highest uncertainty in energy. As mentioned before,
and described in Appendix E, this entropy is also closely
connected to the factorized observational entropy that will be
introduced shortly—in fact, they are identical when the inter-
action strength between different positional bins is zero (i.e.,
different bins partitions do not interact), and they are closely
connected for very small interaction strengths.'® Therefore
many of the properties of factorized observational entropy
we show below, such as its convergence to thermodynamic
entropy, are also expected to hold for S, g.

B. Factorized observational entropy

Now we introduce the second relevant entropy. Compared
with Syg, while more complex in its definition, this entropy
is more theoretically tractable, and it can be easily gener-
alized to include several conserved quantities in addition to
energy—for example particle number, momentum, or angular
momentum. This then leads to definitions of nonequilibrium
entropy converging to thermodynamic entropy of generalized
ensembles such as grand-canonical ensemble.

We start by considering Hilbert space divided into two
parts H" and H®, the joint system being H = H @ H?.
The Hamiltonian H can then be separated into three terms:

A=AVQi+I®@A® +eq™, (25)

where A" and H® are the Hamiltonians that describe inter-
nal interactions in the first and second systems, respectively,
and A is an interaction term. For large subsystems and
local interactions, contribution of this term to the total energy

8For this equivalence, we assume that the coarse-grained posi-
tional bins in S,z match the partitioning of the Hilbert space for the
factorized observational entropy. Trivially, this assumption implies
that number of positional bins p matches the number of partitions in
FOE m, p = m.
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is expected to be small and hence we have introduced a
parameter (interaction strength) e to indicate this. Consider
a coarse graining that projects to the eigenstates of the local
Hamiltonians A and H®; this corresponds to simultaneous
measurements of local energies. The observational entropy
built up from this coarse graining, which we call the factorized
observational entropy (FOE), can be formally written as

SF(B) = So(c,m¢,e)D)- (26)

Explicitly, this factorized coarse graining is given by {1‘31;1 ®
I3E2} EE,» and the projectors are given by spectral decom-
positions of local Hamiltonians, H" = >k Ei Pp,, H? =
> E, EzﬁEz. Later we will generalize this definition to an
arbitrary number m of local Hamiltonians, and additional
observables representing other conserved quantities.

1. Properties

This entropy has many interesting properties. In this sec-
tion we will show that:

(1) FOE is extensive on separable states. In other words, if
the total density matrix is separable, p = ) ® p, then the
FOE is the sum of entropies of the subsystems.

(2) FOE is upper bounded by the von Neumann entropy
of the diagonal density matrix, defined as the diagonal part of
the density matrix written in an energy basis. This entropy is
in turn upper bounded by the canonical entropy. This upper
bound is achieved by a thermal (canonical) density matrix.

(3) In the long-time limit for closed nonintegrable sys-
tems, the FOE of a superposition of states peaked around a
given value of energy (“PS states”) converges to the micro-
canonical entropy. The FOE of other states (that span across
many energy eigenstates) converges to the von Neumann
entropy of the diagonal density matrix.

(4) FOE converges to the canonical entropy in systems
that weakly interact with a thermal bath.

Property 1. The first property follows immediately from
Theorem 4, which says that observational entropy with a
factorized coarse graining is extensive on separable states,
hence

So(cymecyw) P @ D)
= SO(C (1))()0 ) + SO(CH(Z))( ’\(2)) (27)

Physically, this equation means that if an observer is able to
describe and study the two systems separately (i.e., the coarse
graining is factorized), and the two systems are noninteracting
(and do not contain any correlation), then it does not make a
difference whether these two systems are described separately
from the observer’s point of view, or together. This property
also ensures that one can indefinitely extend the Hilbert space
by adding more particles, or more sites to the system, while
the corresponding factorized observational entropy of the
entire system will be always a continuous function of time,
even during sudden (discontinuous) changes of the Hamilto-
nian representing turning on the interactions between the old
system and the new added subsystems.

Property 2. We start with some motivation. In a closed
quantum system, the amplitudes of the initial state written in
the eigenbasis of the full Hamiltonian do not change. This is

a consequence of the identity

pe(p) = t[Pep] = [ PrU (1) poU (1)']
= tr[U(t) P poU (t)'] = tr[ P pol = pe(po), (28)

where U(t) = exp(—i Ht) represents the unitary evolution
operator of the system. The above equation shows that all
such probabilities are conserved. For closed quantum systems,
it therefore makes sense to introduce the diagonal density
matrix p, that contains the information about these conserved
quantities. This density matrix is defined to be diagonal in
the energy basis, with its diagonal elements to be equal to the
diagonal elements of the original density matrix written in the
energy basis. However, we will average the diagonal values of
0a over the degenerate subspaces of the Hamiltonian, in order
to reflect the fact that coarse-graining Cp cannot distinguish
between different eigenvectors with the same eigenvalue E.
Mathematically, assuming the system is described by den-
sity matrix p,, we define g, by its elements in the energy basis

as (E|p4|E") = ’:E[I(j"] 8, equivalent to

Pe(Pr) p
= 2
Pa = E [Pl E (29)

which, per the above, is a constant density matrix for closed
quantum systems, defined fully by gy.

If the diagonal coefficients are strongly peaked around one
set of invariants, such as energy and number of particles,
then this density matrix is microcanonical. If the diagonal
coefficients are spread out so that there is significant weight
in many states with macroscopically different invariants, then
this density matrix represents a macroscopic superposition
of different thermal states [56]. Such superpositions are real
features of quantum mechanics that have been observed exper-
imentally [57]. If we concentrate on the former case, then this
microcanonical density matrix is known to be equivalent to
the canonical density matrix, in the limit of large system sizes
and large local observables, meaning that relative differences
between the von Neumann entropy of the microcanonical
density matrix (which approximates the microcanonical en-
tropy computed from the density of states) and von Neumann
entropy of canonical density matrix (thermodynamic entropy)
vanish as the system size grows to infinity [58]. The von
Neumann entropy of the diagonal density matrix S(0,) is
one of the two entropies that figure into the bound we define
below. As per Eq. (4), we can see that this quantity can be also
simply written as observational entropy with coarse graining
given by the total Hamiltonian,

S(0a) = Soc,)(P). (30)

For nondegenerate and time-independent Hamiltonians, this
entropy corresponds to diagonal entropy [23]. For the sec-
ond, assume the mean energy of the system is given by
E = tr[H 0] = tr[H Pal. We can then define a correspondmg
canonical density matrix as pg = = exp( BH), where par-
tition function is defined as Z = tr[exp( ,BH )], and inverse
temperature f is defined as solution to equation E = — 2182
The canonical (thermodynamic) entropy is then defined as von
Neumann entropy of the canonical state Sy, = S(ow)-
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As we show in Appendix C, FOE is bounded by the
von Neumann entropy of diagonal density matrix up to a
correction term of order € representing the interaction strength
between the subsystems; this entropy is in turn bounded by the
corresponding canonical entropy. Thus

SF(P) + 0(€) < S(pa) < S(Pm)- €29

Having Egs. (26) and (30) in mind, this inequality shows that
observational entropy given by coarse graining defined by
the local Hamiltonians is always lower than the observational
entropy given by the global Hamiltonian. The first inequality
is derived using the particular form of the factorized observa-
tional entropy and the properties of finer coarse graining ex-
pressed by Theorem 2 and equality conditions in Theorem 3,
while the second equality comes from the usual maximization
procedure. At the same time, we have also derived

Sk(Pa) + O(€) = S(Pa). (32)

The canonical density matrix is diagonal in the energy basis,
therefore it is a special case of the diagonal density matrix.
Thus also

Sr(n) + O(€) = S(Pwm). (33)

The correction term O(e€) is a finite size correction, and
generically is expected to be negligible for systems which
are sufficiently coarse grained, i.e., if the energies of the
subsystems are large enough in comparison to the energy of
interaction between the subsystems. However, there are few
exceptions to this: if the density matrix g in Eqs. (31) or
(32) consists of a single energy eigenstate p = |E)(E| (or
is a mixture of very few energy eigenstates), then S(p9,;) =0
(assuming the Hamiltonian is nondegenerate), but as shown
in Appendix D, FOE is proportional to the microcanonical
entropy Sr(0) & Smicro(E) [defined in Eq. (35)], resulting
in 0(€) ~ Snicro(E) and Sp(p) > S(py). Similarly, if the
density matrix p = |E_)(E_| is an eigenstate of the Hamil-
tonian without the interaction terms H_ = H — e H@™ then
S(Pa) ~ Smicro(E) and Sg(p) = 0. In these cases, amplitudes
of the perturbative expansion diverge, so such expansion is not
valid, and O (€) cannot be considered a first-order correction.
In all other cases, the perturbative expansion O(€) is well
defined, is expected to be small, and represent a finite-size
correction.

We managed to find the exact form of the first-order
correction in Eq. (33), which turns out to be

0(e) = —2ep*(HH™) ¢ (34)

plus a quantum term (which we neglected) that comes
from noncommutativity of A and A, The covariance
(HAM™) e = (AHM™) ;. — (H) 5, (H™) ., where (A) 5, =
tr[A,éth], is proportional to the correlation length. The O(¢)
term represents a finite-size correction, since it scales as N
with the particle number in the thermodynamic limit, but it
goes to zero when the coarse-grained regions are sufficiently
large. See Appendix C for more details.

Property 3. The third property is that for an initial PS
state, FOE converges to the microcanonical entropy for closed
quantum nonintegrable systems. This emerges from similar
arguments as the eigenstate thermalization hypothesis. Let

us first mention the essential difference between integrable
and nonintegrable systems. In integrable systems the form
of interaction does not sufficiently mix particles, resulting
in a large number of constants of motion that prevent full
thermalization. An example of such a system is a fermionic
chain with only nearest-neighbor interactions. Nonintegrable
systems have a form of interaction that is sufficient to result in
full thermalization, an example being a fermionic chain with
both nearest-neighbor and next-nearest-neighbor interaction.
Both systems have been studied [30,31,59], and we will exam-
ine them both in the next section in relation to observational
entropies.
We define microcanonical entropy as [60]

Smicro(E) = ln[p(E)AE], (35)

where p(E) denotes the (energy) density of states, and AE
is the typical energy.'”-?" In Appendix D we show, using
the connection between nonintegrable systems and random
matrix theory, that for both energy eigenstates |E), and PS
states with random phases pg, the FOE of such states gives
the same value as the microcanonical entropy,

Sr(E)) =~ Sp(PE) ~ Smicro(E). (36)

This is also illustrated in Fig. 7, which shows FOE for such
states in comparison with the microcanonical entropy.

Because of the evolution, after some time all phases of
the state (written in the energy basis) will become random,
and thus states with random phases are typical states of
the system some time in the future. As a consequence of
Eq. (36), considering a PS state pg as the initial state, the
FOE of an evolved state p; = U(¢)pzU(t)! converges to the
microcanonical entropy

A =00

SF(P1) '~ Suicro(E). 37)

In an alternative scenario, when the initial state of the

system is a superposition of many energy eigenstates (not a

PS state), the FOE converges to the von Neumann entropy of
the diagonal density matrix,

SE(p) =57 S(pa). (38)

The above convergences can be combined, and we can
write

Sr(p) "5 max 3 Y pe(Po) Smicro (E), S(ﬁd>}. (39)
E

That is, in closed nonintegrable systems and for any ini-
tial state, FOE will converge to the mean value of the
corresponding microcanonical entropies, or the von Neumann
entropy of the diagonal state, whichever is bigger, up to

19This typical energy is there to give it the right units, and is usually
taken to be AE = o (E)/+/N, where o computes the standard devi-
ation and N is the number of particles. This choice of AE is rather
arbitrary as it is unimportant in the thermodynamic limit.

2For initial states that have a spread in energy of order AE, such as
a uniform superposition of states [Vz) = >z pyap | ) Where
N denotes the normalization constant, we have Spicro(E) ~ S(54),
where pg = p = |Yg)(Vel.
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some order-unity corrections that become irrelevant in the
thermodynamic limit (see Appendix D for details). In ad-
dition to previous cases, the above equation also applies to
the macroscopic superpositions of different microcanonical
states. We also remind that this maximum is still smaller
than the canonical entropy [up to order O(¢)], as shown by
Eq. (31).

The differences between microcanonical and canonical en-
tropy disappear in the “thermodynamic” limit of large system
sizes [58]. We can therefore conclude that for both typical
(microcanonical) and atypical (macroscopic superpositions)
states, and in nonintegrable systems, the FOE of any state
converges to a value that closely approximates the thermo-
dynamic entropy.

Property 4. We now turn to systems interacting with a
thermal bath. As described in Eq. (13), in such systems
the density matrix resembles the thermal density matrix at
most times in the future. According to Eq. (32), the FOE of
the thermal density matrix is the thermodynamic (canonical)
entropy. Combining these two equations we conclude that for
systems interacting with the thermal bath, the FOE converges
to the thermodynamic entropy,

SE(p) 57 S(pw) + OC(e), (40)

up to order € (which denoted the strength of the interaction
between partitions inside of the system of interest).

2. Generalization of FOE

The idea of FOE can be generalized to multiple observ-
ables (beyond energy), and multiple partitions. To keep the
notation compact, we identify

oV=ig -@le0"""Veig oI (41)

for any operator O® with the upper number index, where
Okloca) §g on the kth position. Operator O*) acts only on
the kth system via operator O®*1°%) and it leaves other
subsystems intact. We assume that the evolution of the joint
system is governed by a Hamiltonian with local terms and the
interaction between subsystems,

H=HAY +...+ A™ 4 A, (42)
We will also assume that there are thermodynamic quantities
Aj=AD+. .+ A" j=1..n 43

that can be measured locally, and that are conserved globally.
We introduce the following definition.

Definition 7. We define the generalized factorized obser-
vational entropy (GFOE) on Hilbert space H = HV ® - - - ®
H with conserved quantities A, ..., A, as

Soc,...cH (Do), (44)

where
Cj = CA”(bl.local) ® e ® CAA(‘m.]ocal), j = 1, (B (45)
The above definition inherits many of the properties of the
original definition (in whichn = 1, m = 2,and A| = H)—in

fact, all of those properties when the local conserved quan-
tities commute, [Aik’local), A;k’k’cal)] =0 for all k and j # j.

This is a consequence of the fact that in such a case, a common
eigenbasis exists. (Also, in such a case the canonical density
matrix will be replaced by the generalized thermal density
matrix.)

The situation becomes more difficult when these observ-
ables (coarse grainings) do not commute.”! For example, it
can be shown that the generalized thermal density matrix
does not necessarily maximize the GFOE, and therefore an
equivalent of Eq. (33) might not hold in general.

C. Interpretation

Finally, let us turn to the interpretation of FOE in the light
of above properties, and compare it to Syg.

FOE, as any observational entropy, is generally small when
the state described by the density matrix is localized in a small
subspace in the Hilbert space, corresponding to a projector
of a small rank (trace), or when the state is localized over
a few of such small subspaces (see Theorem 1 or Sec. IV).
Therefore, FOE is small for example when for a projector
P g, = Pg, ® Pg, of a small trace P, g, p P, g, = p holds.
But this means that the state has a well-defined energy (low
uncertainty and low variance) in the basis of local Hamil-
tonians, i.e., has a well-defined energy in each subsystem.
When the system starts to evolve from such a state, due to
the interaction between the subsystems, the local energies stop
being well defined, and the factorized observational entropy
starts to rise, until it reaches the thermodynamic entropy of
the entire system.

Thus the FOE measures how local subsystems exchange
heat with each other (and in case of GFOE corresponding
flows connected to other observables), until they become
thermalized. The FOE, and GFOE respectively, measures
thermalization of the entire, possibly closed, system, in terms
of local subsystems becoming equilibrated with each other.

FOE and S,g are rather similar: they can be both inter-
preted as measures of how close are subsystems to thermal
equilibrium. These subsystems, or we could say physical
regions or partitions, are defined by the positional coarse
graining [Eq. (23)] in case of Syg, and by the separation of
the total Hamiltonian into local Hamiltonians [Eq. (26) and
Def. 7] in the case of FOE. In practice, both entropies will
be maximal when the total energy is uniformly distributed
over these regions. This is because macroscopic state where
all the local energies are equal, (E;) = (E;) = ---, has the
highest number of possible configurations (microstates) that
correspond to it of all macrostates that are allowed by the
conservation of total energy. This will be generally true up
to some pathological cases: for example, state consisting
of eigenstates of local Hamiltonians |¢) = |E{)|E,) - -+ will
have FOE equal to zero, even when all the energies are equal.

Therefore, up to these pathological cases, we can say that
entropy is maximal when each region contains roughly the
same energy; and this is exactly what we could call thermal-
ization. It is then not a surprise that both S,z and FOE then
correspond to the thermodynamic entropy. The dynamical

21Some aspects of noncommutativity in quantum thermodynamics
have been recently studied in Refs. [61-63].
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process of rising entropy then describes thermalization of
different regions (in our simplest case, two regions) with
respect to each other. In other words, it demonstrates heat
exchanges between the two regions until the flow between par-
titions is zero on average, which we can intuitively describe
as a macroscopic state where the temperature of the first and
temperature of the second partition became identical.

What is special about these two entropies? And why do
we consider entropies that need coarse graining in position
and energy, or coarse graining in local energies? Since ther-
modynamic entropy is fundamentally connected with energy,
a coarse-grained entropy definition that matches thermody-
namic entropy must have coarse graining in energy. However,
if the coarse graining is only in total energy then the entropy
is preserved, reflecting the conservation of information under
unitary dynamical evolution. This is not the kind of entropy
that models dynamics of thermalization, but rather has to do
with information. Coarse graining in some other observable
that does not commute with energy yields a kind of entropy
that has second-law-like behavior and is some measure of
disorder, but by itself cannot be quantitatively connected to the
thermodynamic entropy. Position is special in that interactions
in physics tend to be local in position rather than in mo-
mentum or other variables, and therefore a positional coarse
graining creates a locally conserved quantity and associated
entropy that both evolve on the dynamical timescale of the
system.

This is why we need to define entropy using either a combi-
nation of two noncommutative coarse grainings, first in posi-
tional configuration, and then in energy (which gives S,g), or
by a single coarse graining that is, however, constructed from
local energy coarse grainings (which gives FOE). Intuitively,
both such entropies contain both locality, and energy, which
seems to be the two crucial ingredients for finding a meaning-
ful definition of a nonequilibrium thermodynamic entropy.

VII. SIMULATIONS

In this section we examine observation entropy using
explicit numerical simulations of simple N-qubit quantum
systems. We examine primarily the factorized observational
entropy with local energy coarse-grainings S, and observa-
tional entropy of measuring the coarse-grained position and
then energy S, g, but we also add some results for entangle-
ment entropy Sey for comparison.

We consider a one-dimensional lattice model of spinless
fermions, with both nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping and interactions. This model is
illustrated in Fig. 3. Following the notation of Santos and
Rigol [59], the Hamiltonian H*~" that describes fermions
moving between sites number k and [ is

1

A%*D = Z [- t(finiJrl +H.c.)+ Vn;fn;il
i=k

—0(f! figr +He) + Vinlnl,]. @)

fiand f;r are the fermionic annihilation and creation operators

f

for site i. n; = ﬁ fi is the local density operator. Opera-

tors anticommute on different sites. We employ hard wall

boundary conditions for our numerical experiments so that we
can study the expansion of a gas from a smaller to a larger box.
The Hamiltonian of the full system is H = HYD where
L is the length of the chain; however we will also require
“local” forms of the Hamiltonian using smaller ranges (k — [).
We compute the eigenvalues and eigenvectors of relevant
Hamiltonians using exact diagonalization.

The NN and NNN hopping strengths are, respectively, ¢
and ¢’. The interaction strengths are V and V', respectively.
We always take i =V =t =1. We choose V' =+ =0 to
investigate the integrable system, and V' = ' = 0.96 to study
the nonintegrable (generic) system. We have chosen these
parameters because they have been studied extensively in
previous work [30,31,59] relevant to our paper. Evolution
of the integrable system is solvable by ansatz [64,65]. The
nonintegrable system displays level spacing statistics in good
numerical agreement with the Wigner-Dyson distribution
[66,67]; these parameters were also used to study thermaliza-
tion [59,68-70], and found to obey the eigenstate thermaliza-
tion hypothesis [71,72], which has been successfully tested in
experiments (e.g., [73-75]), reviewed in [76].

We first test this model where initially the system of
N = 4 particles is confined by hard walls to L = 8 sites
and evolves through Hamiltonian A(®. At time = 0 we
change the position of the right hard wall to L = 16, and
allow the fermionic gas to expand through evolution of the full
Hamiltonian H~'©). We investigate the FOE and S, for two
different coarse grainings, first when the full system has been
coarse grained into p = m = 4 sites, and then coarse graining
into p = m = 2 sites. The initial state is always taken to be
the 11th energy eigenstate of the Hamiltonian A~ reduced
system. We also investigate both nonintegrable and integrable
dynamics. Because the full Hamiltonian has an interaction
term between the first and last eight sites, the local energy
representation quickly populates many other basis vectors.
As a result the entropy rapidly increases. Evolution of these
observational entropies is shown as a function of time in Fig. 4
for both the nonintegrable (generic) and integrable cases, and
for the two different types of coarse graining. We also plot the
thermodynamic entropy S(/y). This entropy is always above
the curves, which corresponds with the theory, Eq. (31).

As a comparison, we also calculate the entanglement en-
tropy for both the nonintegrable and integrable systems above.
We measure this as a function time, starting at ¢+ = 0, where
the right hand wall is moved from position 8 to 16. We
measure the entanglement between the first eight and last
eight sites. This is shown in Fig. 5. The entanglement entropy
starts at zero because initially the wave function is zero on the
right-hand side of the box. The entanglement entropy grows
and is expected for generic systems to go to 1/2 of the total
thermodynamic entropy of the system [30].

We now consider a different initial condition, and a slightly
different scenario. We start the system in a pure state that
models the canonical ensemble. We consider our initial wave
function as the sum over all energy eigenstates

W) =Y delE), (47)
E

with coefficients dp that are complex random values so that
|de|* o exp(—BE). This state correspond to what we could
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FIG. 4. (a) The factorized observational entropy Sy (dark blue
lines) and observational entropy S,z (light red lines) with noninte-
grable dynamics (¢ = V' = 0.96; full lines) and integrable dynamics
(t' =V’ =0.0; dashed lines). The system of length L = 8 with
hardwall boundary conditions starts in the 11th energy eigenstate
of the reduced Hamiltonian H®. At r = 0 the right wall is ex-
panded so that L = 16 and the system evolve. Coarse graining is
given by local Hamiltonians for Sr, and local position operators
for Sk, respectively. We coarse grain into p = m = 2 partitions,
corresponding in FOE to C = Cga-s) ® Cye-16. The thermodynamic
entropies are 7.389708 in the nonintegrable case (straight green line),
and 7.301491 in the integrable case (straight green dashed line).
Because the system is initially in an energy eigenstate of the reduced
Hamiltonian, which corresponds to the coarse graining in FOE, the
FOE only has one probability value that is nonzero. Hence this
entropy is initially zero. (b) The same quantities as in (a) but with
the coarse graining to four partitions, which for FOE corresponds to
C =Cpaws ®Chus ® Chs12 @ Charie.

call a “pure thermal state,” since the amplitudes have been
taken randomly from the ensemble that imitates the canonical
ensemble. In this case, we set the inverse temperature 8 = 1.

0.5/

0.0

0 5 10 15 20 25 30
t

FIG. 5. The entanglement entropy between the first and last eight
sites is measured as a function of time for the same systems as in
Fig. 4. In the nonintegrable case (' = V' = 0.96), the entanglement
entropy is expected to asymptote to 1/2 of the thermodynamic
entropy of the complete system (shown as green straight lines), in
the limit of large system sizes. The curve for nonintegrable system
(full line) is above the integrable one (dashed line).

At t =0 the system in the smaller box with L = 8 sites
and let it evolve. At t = 30, we expand the box to size L =
16. Both entropies increase rapidly but smoothly, and in the
nonintegrable case they quickly reach equilibrium. Figure 6(a)
shows observational entropies S,z and S as functions of
time. Figure 6(b) shows the same situation for the integrable
case. The horizontal lines show the thermodynamic entropy
S(Pwm)- This differs from the computed limit values of the S, g
and S by approximately 10%, which we attribute to finite-
size effects. In both Figs. 4 and 6 the fluctuations in S,z and
Sr are substantially larger for integrable system dynamics, as
expected [30,71].

To investigate behavior of these two entropies in more de-
tail, we also plot S,z and Sr as functions of energy for various
equilibrium states as shown in Fig. 7 for both integrable and
nonintegrable system; this is particularly relevant for studying
the long-time limit. Both entropies are coarse grained into
four subsystems (p = m = 4) of the full system of size L =
20, and computed for energy eigenstates, random PS states
peaked around energy E, and microcanonical mixed states
peaked around energy E. The random PS states were obtained
by superposing k = 30 neighboring energy eigenstates with
complex amplitudes drawn uniformly from the unit disk,
then normalizing. The microcanonical states were obtained by
adding together the density matrices of k = 30 neighboring
energy eigenstates with equal weights. In the nonintegrable
case, all shapes fit very well the microcanonical entropy
Smicro(E), defined in Eq. (35). This is expected, because all
states considered represent a microcanonical ensemble, since
they are all peaked around a given value of energy, and con-
firms our analytical results presented in the previous section.
One can also notice the order-unity differences between en-
ergy eigenstates, random superpositions, and microcanonical
mixed states. These differences come from the randomness of
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FIG. 6. (a) The factorized observational entropy Sr (dark blue)
and observational entropy S, (light red) that start in a “pure thermal
state” with inverse temperature 8 = 1, in the system of size L = 8.
Att = 30, the right wall is expanded to double the system size so that
L = 16 and the system continues to evolve. The straight green lines
represent the thermodynamic (canonical) entropy S(fy,) before and
after the expansion. We coarse grain into p = m = 4 partitions that
for FOE corresponds to C = Cpa+ ® Chus ® Chs-12 @ Char-ie.
This graph shows nonintegrable dynamics (#' = V' = 0.96). (b) The
same as (a) but for integrable dynamics (+' = V' = 0).

phases and amplitudes and are predicted by the theory using
central limit theorem [see Appendix D, Eq. (D34)]. A graph
that adjusts for these theoretically estimated differences is
depicted in Fig. 8. The integrable case shows much larger fluc-
tuations, signifying that such systems do not thermalize well.
We also plot the thermodynamic (canonical) entropy S(0)
for comparison. This entropy has a different shape: this is be-
cause for middle-range energies, the thermodynamic density
matrix Oy, contains many more non-negligible energy states,
while towards the ends of the energy spectrum, the number of
non-negligible energy states dwindles and the thermodynamic
density matrix practically becomes the microcanonical state.

10

FIG. 7. (a) The red and blue curves in the middle show observa-
tional entropies S, g (light red) and Sr (dark blue) for microcanonical
states (line), random superpositions of neighboring energy eigen-
states (crosses), and energy eigenstates (dots), from top to bottom.
The lowest (full light green) curve is the microcanonical entropy
Smicro(E) given by logarithm of the density of states. The top (full
dark green) curve that has a slightly different shape than the other
curves is the thermodynamic (canonical) entropy S(pu), with the
inverse temperature calculated such that the mean value of energy
of the thermal state py, corresponds to the energy E depicted the
horizontal axis. This graph shows nonintegrable system (' = V' =
0.96). (b) The same but for integrable system (¢’ = V' = 0). (For
increased visibility, we decided not to plot observational entropies
for microcanonical states.)

Contrary to the usual rule, Sp(p)  S(bm) [see Eq. (31)],
thermodynamic entropy also drops below the FOE and S, g
towards the ends. This happens because as the number of
non-negligible energy eigenstates in thermal density matrix
Om goes to zero (which happens when we try to push the
mean value of energy towards the end of the spectrum), the
von Neumann entropy S(0) approaches zero, and attains that
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FIG. 8. FOE of a microcanonical state Sy (ﬁgicm) (line), adjusted
FOE of a random PS state Sr(pg) + n>Inn? — |¢|>In|¢|? (crosses),
and adjusted FOE of energy eigenstates Sr(|E)) + n?Inn? (dots).
Order 1 corrections n2Inn? and |¢|*1n|¢|? have been calculated
from the theory, and are given by Egs. (D29) and (D30). According
to the theory, Eqgs. (D33) and (D34), the above functions should be
approximately equal. The plot shows that the curves nicely overlap,
demonstrating that the observed differences between FOEs of differ-
ent states match precisely our predictions of order 1 corrections. The
parameters of the model are the same as in Fig. 7(a).

value when py, becomes a single energy eigenstate. But in
such a situation, FOE is still nonzero, and is approximated by
the microcanonical entropy. Similar arguments for exceptions
to the rule Sr(p) < S(Pm) have been already presented below
Eq. (31). This unusual effect becomes less evident for larger
system sizes, and coarser coarse grainings. Then Sp(p) <
S(pm) holds for almost any energy E. For example, in Fig. 7
presented here, we used coarse graining into four parts, p =
m = 4, to explicitly show this pathological but easily under-
standable behavior. But when we focused on coarse graining
only into two parts, p = m = 2, this effect was much less
obvious, and Sr(p) < S(Pm) was violated only at the very
ends of the energy spectrum.

Because the microcanonical entropy and thermodynamic
(canonical) entropy are equivalent in the thermodynamic limit
[58], and since FOE and S, of random PS states (meaning
that both amplitudes and phases are random, which represent
typical states of the system in the long-time limit) approximate
well the microcanonical and thermodynamic entropy, this
graph further supports the claim that has been presented in the
previous section, that in the long-time limit, both FOE and S, g
converge to the thermodynamic entropy in closed quantum
systems.

VIII. CONNECTION WITH EXPERIMENTS

Experimentally, it would be interesting to probe both the
FOE and S,g, particularly in systems out of equilibrium.
In cold atom experiments, it is possible to measure den-
sity, both of individual atoms and at a coarse-grained scale
[74,75,77,78]. There have also been proposals for how to
measure a system’s total energy [79].

For the FOE we must perform a measurement in the
local energy basis. Experimentally, this can be accomplished
by increasing the height of the barrier separating the wells
between the two regions. In a one-dimensional model, this
requires the creation of a secondary light field that can act as
a potential barrier. Since nonperiodic light fields are used in
cold atom experiments [80], this appears to be feasible. Then
the energy is measured for each region separately. Because of
the potential barrier, these two regions are now noninteracting,
so such measurements would constitute an extension of the
total-energy method [79]. Alternatively, other approximate
estimates, based on local quantities [77] could be employed.
Measurements would be performed, multiple times, each giv-
ing an energy for each region. These measurements would
give us the probability distribution over energies, from which
we can compute FOE of this system.

To determine S,g experimentally, two measurements are
performed: first of the coarse-grained density of the system,
and then its energy. The denominator in the observational
entropy requires also knowing the volume V,g = |(x|E)|*.
This is the probability of observing a coarse-grained density
for an energy eigenfunction. If we call the measured coarse-
grained density as a function of position n(x), this implies
we need to estimate the probability density of obtaining a
particular n(x). If we confine ourselves to coarse graining
over length scales longer than the correlation length, density
fluctuations for different x should be independent. Therefore,
the part of the observational entropy involving the denomina-
tor can be estimated theoretically from equilibrium statistical
mechanics. The numerator (the probability distribution p,g)
can be measured experimentally by repeatedly measuring
coarse-grained density and then energy. This gives data points
in a space containing density bins for each coarse-grained
region, and energy bins. After many repeated measurements,
we would obtain the probability distribution p, g and compute
Syg. With small enough system sizes, comparable to ones
currently employed [77], it might be within the bounds of
current technology to perform such measurements. Even if it
turns out that the resolution of the apparatus is not fine grained
enough to get individual eigenstates, an observational entropy
with finite energy coarse graining can still be calculated
theoretically, and compared with experimental data.

IX. COMPARISON WITH OTHER MEASURES AND
INTERPRETATION

In this section we compare the observational entropy to
other information-theoretic and thermodynamic quantities.
Then we highlight the most prominent interpretations of the
observational entropy that we have encountered in this paper.

The relations between the observational entropy and other
quantities are collected in Table 1. We have already discussed
several such relations: we have shown that the observa-
tional entropy is a quantum analog of the Boltzmann entropy
(Theorem 1), that it is bounded below by the von Neumann
entropy, and that it is bounded above by the maximal entropy
(Theorems 3 and 7). We have also shown that both S,g and
the factorized observational entropy in nonintegrable closed
quantum systems converge (in a physical sense) to the mi-
crocanonical entropy for initial states that are a superposition
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TABLE I. Relation and connection of the observational entropy to other measures

Information-theoretic or thermodynamic quantity

Relation(s)

Boltzmann entropy Sz(V;) = In V; for a macrostate i.
von Neumann entropy S(p) = —tr[p In ]

Maximal entropy Sy = S(0iq) = Indim H
Microcanonical entropy Smicro(E) = In[p(E)AE]

Thermodynamic entropy Sy = S(fn) =InZ + 3, riA;
(Thermodynamic entropy is equal to microcanonical

entropy in the thermodynamic limit.)

Diagonal entropy Sgiag(0) With “instantaneous” Hamiltonian A

(Assuming that the Hamiltonian is nondegenerate
and time independent.)

Sum of local diagonal entropies Y ;- | Saiag(5:)
Kullback-Leibler divergence Dy

Entropy of an observable S;(5)

In analogy, So(c)(p) = Indim H, for p € H,.
Soc,..co(P) Z S(P), S(P) = Soc,(P)
SO(C[,..,,Cn)(ﬁ) < Smax
Sr(P) " Smiero(E), Scr(pr) '~ Sicro (E)
in closed quantum nonintegrable systems, for a
superposition of states peaked around energy E,
and Sp(|E)) = Scp(|E)) X Smicro(E) for energy
eigenstates |E).

Sr(pr) é Sin» SF(Pm) ~ S, and
Sr(pr) 28 S in quantum nonintegrable systems
interacting with a thermal bath.

Saa(P) = Soicy (D). Sr(p1) S Saag(P). and
Sr(br) 2% Sdiag(0) in closed quantum nonintegrable
systems for states with a high variance in energy.
Z;‘":l Sdiag()éi) = SF(ﬁ) + C(Elv cees Em)
Soey....cn(P) =IndimH — DKL[P(ﬁ)|LP(ﬁid)]
Sé(ﬁ) = SO(CA)(la) - Za Pa lntrPa

of close energy eigenstates [Eq. (37)], and that S, and
FOE of energy eigenstates are approximately equal to the the
microcanonical entropy [Eq. (36), Appendixes F and D, and
Fig. 7]. FOE is approximately bounded by the thermodynamic
(canonical) entropy [Eq. (31)], up to an order € representing
the interaction strength between partitions. In nonintegrable
quantum systems weakly interacting with a thermal bath,
the FOE of the system converges to the canonical entropy
[Eq. (40)].

Now we turn to connection with entropy-related measures
not detailed in previous sections. First, there is an impor-
tant connection with the Kullback-Leibler divergence, which
measures a distance between two probability distributions
P ={p;}; and Q = {qg;}; and is defined as Dk (P||Q) =
> ipiln 2— Assuming that the dimension of the Hilbert space
is finite, from the definitions it directly follows that

So@...cn(P) =IndimH — D [P(D)I|P(pia)],  (48)

where piq = m and the probability distributions are de-

fined as

A A

Pi.iy(D) = piyiy =[Py - Py pP - Bl (499)

« Vii...., 5 5 oA B 5
Py i, (Pa) = ilml =[P, - P paly - P,]. (49b)

This identity shows that maximizing the observational en-
tropy is equivalent to finding the density matrix that produces
statistics of measurement outcomes that is the closest to the
statistics produced by the uniform (maximally uncertain) state
Dia- Various tasks and uses of the observational entropy in
Secs. IV, VI, and VII have shown that evolution of the system
maximizes the observational entropy subject to constraints.
This provides the following prescription that is an interesting
general statement about physical systems. Consider a set of
density matrices that are in correspondence with the mean
values of conserved quantities. Then “the density matrix
evolves towards a density matrix from this set that has a

probability distribution of measurement outcomes that most
closely resembles the probability distribution produced by the
uniform state.”

Observational entropy is also connected to diagonal en-
tropy, which has been introduced in [20,21], mentioned in
[22], and developing in depth in [23]. Diagonal entropy is the
Shannon entropy of diagonal elements of the density matrix
written in what is referred to as the “instantaneous energy
basis.” By instantaneous it is meant that in the ideal case when
the system is genuinely closed, the system is evolving accord-
ing to the instantaneous Hamiltonian H. The diagonal entropy
can be then defined as Sqiag(4) = — Y (E|P|E) In(E|p|E),
where |E) are eigenvectors of the instantaneous Hamiltonian
H. Assuming that the Hamiltonian is nondegenerate, which is
a typical assumption for nonintegrable systems, the diagonal
entropy can be written as the observational entropy with the
coarse graining given by the instantaneous Hamiltonian, as
listed in Table I. Assuming that the system is genuinely closed
and the system evolves according to the time-independent
Hamiltonian H, the diagonal entropy is identical to entropy
S(pa) [see Egs. (30) and (31)], and according to Theorem 5, it
must stay constant. This behavior is mentioned in the pioneer-
ing paper [23], however, it is argued that it is impossible avoid
transitions between different energy levels in the thermody-
namic system of many particles. Therefore, a more general
case of a time-dependent Hamiltonian is considered that may
lead to such transitions, and the diagonal entropy defined by
the instantaneous Hamiltonian [by which is meant H (r=
0)] increases. This is not in contradiction with Theorem 5,
because in such a scenario the instantaneous Hamiltonian
H that defines the coarse graining does not commute with
the actual Hamiltonian governing the evolution. The diagonal
entropy has been also found to increase in other scenarios,
for example when external operations are performed on the
system [81]. In comparison to the diagonal entropy, both S, g
and FOE rise even in a genuinely closed system described
by a time-independent Hamiltonian, without the need to
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introduce transitions between different energy levels, or ex-
ternal operations.

A different situation occurs when we look at the sum of
the local diagonal entropies, studied in the same paper [23].
This sum is time dependent even for genuinely closed systems
evolving through a time-independent Hamiltonian. We define
diagonal entropy of region i as Saiag(5;) = So(c, ) (), With
local Hamiltonian H defined by Eq. (25), and the local
density matrix defined as p; = tr—;[p], where the partial trace
goes over all subsystems but i. For m subsystems it turns out
that

ZSdiug(ﬁi)Z Sp(P)+ C(Ey, ..., Ep), (50)

i=l1

where C(Ey, ..., E,) = Dko(pE,.-g, || PE, - - - PE, ) 1s the to-
tal correlation. In case of m = 2 regions, this quantity reduces
to mutual information /(E;; E;). This shows that while FOE
takes into account correlations in energy of different subsys-
tems, the sum of local diagonal entropies ignores them, and
therefore overshoots the total entropy. This is also explains
why the sum of local diagonal entropies is larger than the total
entropy in simulation performed in [23], while FOE is lower
[Eq. (31), Figs. 4 and 6]. Let us take a look at what this means
in practice. Consider a situation where interaction between
the regions is severed. In such a situation, both Z;"zl Sdiag(Hi)
and Sr(p) become constant. Since the diagonal entropy is a
good measure of thermodynamic entropy, elements Sgiag(5;)
model thermodynamic entropy of each region, as if they were
treated separately. Therefore, the sum corresponds to the total
entropy of the system, treating the regions as independent.
Qualitatively, such entropy then describes possible extractable
work from the system, if one extracted work from each region
one at the time, while ignoring correlations between them. S,
on the other hand, corresponds also to the total entropy of
the system, but without neglecting the correlations between
the regions, leading to a lower total entropy, and therefore
possibly larger extractable work. Thus we can speculate that
FOE corresponds to the amount of extractable from the entire
system as a whole, where the protocols for the extraction
from each region may be interdependent. For example, if one
extracts some amount of work from the first region, value
of this amount may affect the protocol in which the work is
extracted from the second region.

A mild generalization of the diagonal entropy is the entropy
of an observable [24-26], which is the Shannon entropy of
probability outcomes obtained by measuring an observable
A. Assuming the observable has spectral decomposition A =
> a P, the probability of measuring outcome a is given by
Pa = tr[ﬁa 0], and the entropy of an observable is defined as
Si(p) = —>_, pPaln p,. Unlike the observational entropy, en-
tropy of an observable does not take into account uncertainty
within a macrostate H, = ISaHﬁa, which is why these two
entropies do not coincide in general. The relation can be easily
derived to be S4(p) = Soc;)(P) — X, paIntrPy.

It is also worthwhile briefly comparing the above approach
of observational entropy with a well-known entropy used for
closed quantum systems, the entanglement entropy in a system
divided into subsystems A and B. Entanglement entropy can
be interpreted various ways. For pure states, this entropy

measures the mutual information between A and B, and is
defined as the von Neumann entropy of the reduced state
Sa = —tr[paln pa], where o4 = trg[pap]. In the context of
qubits, the entanglement entropy is the number of entangled
bits between A and B. For a generic (i.e., nonintegrable)
system at nonzero temperature, we expect this entanglement
to be very close to its maximum, and theoretical and numerical
results indicate that for a homogeneous system in equilibrium,
this is the case. Taking system A to be of lower dimension than
B, one can think of B as a bath for A, with A corresponding
to a system at some temperature chosen to match the system’s
total energy. The entanglement entropy S4 was then shown
by [29-31] to be the same as the thermodynamic entropy
of A in the limit of large system sizes. But it is a distinct
quantity that is fundamentally different from S,z or FOE.
For example, if the state is a product state of A and B,
then the entanglement entropy is zero, but S,g is not. We
expect that even in such product states, the thermodynamic
entropy of the complete system should still be large, and
thus the entanglement entropy cannot give us a sensible
measure, at least in this case, for the thermodynamic entropy.
Sxe is largely unaffected by this lack of entanglement for
short ranged systems. Entanglement entropy also bears only
indirect connection to macrostates and macro-observables that
can be tracked and measured by an observer of the system,
and its relation to classical entropy is somewhat less clear.

To complete the picture, we collect the most prominent
interpretations of the observational entropy encountered in
this paper, as follows.

(1) (information-theoretic) Given a set of measurements,
the observational entropy represents the mean uncertainty
in the measurement outcomes (in the sense of the mean
information that would be gained by performing them) plus
the mean remaining uncertainty about the system after these
measurements [Eq. (3)].

(2) (statistical) The observational entropy measures how
closely the probability distribution of outcomes (of measure-
ments given by the set of coarse grainings) resembles the
probability distribution of outcomes produced by the maxi-
mally uncertain state [Eq. (48)].

(3) (physical-subjective) The observational entropy mea-
sures how much the state of the system differs from what the
observer thinks of as an ordered state, where the perceived
(subjective) order is given by the choice of the coarse grain-
ing. (The system is ordered when it is contained within a
small macrostate.) Growth of the observational entropy then
describes the loss of perceived order of the system due to the
time evolution [Sec. IV and Eq. (15)].

(4) (information theoretic or physical-subjective) Obser-
vational entropy measures how much information an observer
would obtain about the system, if he or she would measure the
system in the bases given by the macrostates. The von Neu-
mann entropy then describes the lowest uncertainty observer
can have about the system (Theorems 7 and 8).

(5) (thermodynamic) Considering a system consisted of
smaller subsystems, where the coarse graining of the system
is given by a tensor product of thermodynamical observables
of subsystems, the factorized observational entropy measures
how close these subsystems are to being in thermal equilib-
rium with each other [Sec. VI, Def. 7, and Eq. (39)].
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X. CONCLUSIONS AND PROSPECTS

In this paper we have developed the theory behind obser-
vational entropy, introduced in Ref. [37]. Although similar
ideas have occasionally been mentioned since von Neumann
in 1927 [19], this approach was until now essentially unex-
plored. The quantity is crisply defined in terms of a Hilbert
space partitioned by one or more ordered sets of operators
corresponding to sequences of potential measurements, and
the probabilities of outcomes of those measurements. The
partitioning provides an operational definition of macrostates
in terms of an observer’s potential measurements; the obser-
vational entropy is related to the uncertainty inherent in those
unmade measurements as given by their outcome probabili-
ties, combined with the uncertainty that would remain after
making them.

We have argued that this captures the real physical effect
that macroscopically defined “disorder” tends to increase in
physical systems, even under unitary evolution describing the
closed-system dynamics. Underlying this argument are a large
number of formal mathematical results revealing desirable
and appropriate properties of the definition for describing
entropy, as well as a suite of numerical investigations of sim-
ulated quantum systems that connect observational entropy to
standard quantities such as thermodynamic entropy.

While analogous to the classical Boltzmann entropy, Ob-
servational entropy has crucial differences stemming from
its quantum context. Boltzmann entropy is generally defined
on a phase space (with an appeal to the quantum effect of
noncommuting position and momentum to regularizing the
minimal size of phase-space bins.) It is thus not obvious
how to generalize Boltzmann entropy to quantum systems
defined using Hilbert space. Observational entropy does so in
a general and rigorous way. But rather than “glossing over”
fundamentally quantum effects, we find that they are crucial
in the particular forms of observational entropy that we have
found to correspond to thermodynamic entropy.

For example, we have found that observational entropy
corresponding to measuring coarse-grained position, and then
measuring energy, defines a nonequilibrium entropy (denoted
Sye) that converges to the thermodynamic entropy. On the
other hand, switching the order of operations immediately
gives the total entropy of the system (which is constant) in
case of nondegenerate Hamiltonian, but is difficult to interpret
in case of degenerate Hamiltonian. Another special case of
observational entropy, which we called the factorized observa-
tional entropy (FOE), is based on a factorization of operators
corresponding to conserved quantities (energy in particular)
and generally describes situations where local systems are
equilibrating with each other. Similarly to S, g, this entropy is
well-defined out of equilibrium, and converges to the thermo-
dynamic entropy even for genuinely closed quantum systems.
Moreover, this entropy naturally incorporates microcanonical,
canonical, grand-canonical, and other ensembles, based on the
specific physical situations.

Both S,g and FOE “work” very well in the sense of
giving a close approximation to thermodynamic quantities
even in quite small quantum systems. Even for as few as four
particles contained on 16 sites, the difference between the
relevant observational entropies and thermodynamic entropies

fell within 10%, and the relative change of such entropies
from one equilibrium situation to another was under 5% as
compared to change in equilibrium entropies. From general
arguments, these differences are expected to become unimpor-
tant as a system is scaled up in number of constituents. Thus,
for thermodynamic systems where the number of particles
cannot be counted on one hand, these entropies should give
an extremely accurate measure of thermodynamic entropy
(indeed we might argue that these are the quantities ther-
modynamically measured) while also being well defined and
applicable in small systems and out of equilibrium.

An open question is the precise connection between the
entropies we have discussed and work extraction. Considering
a system consisted of smaller subsystems, we have speculated
that the factorized observational entropy measures the amount
of extractable work from the system as a whole, including
correlations between the subsystems.

While this paper has focused on developing the mathemat-
ical framework and basic properties of observational entropy,
the theory merits further development and there could be a
great number of applications for it.

Experimentally, the definition could be quite directly ap-
plied to simple “closed” systems resembling those we have
simulated. In cold atoms, experiments on isolated quantum
systems are now becoming feasible [75,77], and as we explain
in Sec. VIII, measuring thermodynamically relevant observa-
tional entropies in such systems could be within experimental
reach.

Theoretically, there are many important results—including
fluctuations theorems, limits on work extraction, computation,
etc.—that are formulated in classical statistical mechanics and
are lacking a convincing quantum generalization. Observa-
tional entropy and its related formalism could supply a frame-
work for creating such generalizations. This could eventually
have practical applications in thermodynamic systems using
few quantum particles (such as nanoengines) or in refriger-
ation at extremely low temperatures. Observational entropy
may also elucidate situations in which “the observer” plays
a major role, such as in Maxwell’s demon and information
engines in general, or in the difference between thermody-
namic entropies ascribed to the same physical system by two
observers with different knowledge (the “Gibbs paradox”).

Finally, there is a great amount of work in fundamental
physics, including gravitational physics and cosmology, con-
cerning entropy of black holes, general horizons, the Uni-
verse as a whole, etc. Most of these works take entropy to
correspond to either the size of the full Hilbert space, or
entanglement entropy. In some subset of these investigations,
however, we suspect observational entropy may be the more
appropriate notion. It will therefore be very interesting to
see if black-hole thermodynamics, the cosmological arrow of
time, and other vexing issues might be elucidated by this new
framework.
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APPENDIX A: PROOFS

In this Appendix we are going to provide proofs for all
theorems in the main text. To prove Theorems 2, 3, 7, and 8
we use the well known Jensen’s inequality, which we state as
follows:

Theorem 9. (Jensen) Let f be a strictly concave function,
0<a; <1,),;,a; =1. Thenforany b; € R,

f(Za,-bl) > aif(b). (A1)

F, aib) =Y, a: f(b;) if and only if (Vi, jla; # 0, a; #
0)(b; = b;).

1. Proof of Theorem 1

Proof. If PipPi = p, then p; =tu[PpP]=t[p]=1.
Using Eq. (1) and trP; = dim#H; we immediately obtain
So(p) = Indim H;.

2. Proof of Theorem 2

Proof. Let C; < Cy. Then Py =Y, i Py, forall P €
Ci. Inequality follows

Soc)(P) = —
i trP;
1] 1
A wl[p> . i P
== u|p > by in 1P Leren P
i 1 i tI'P,'
i el .
p Piy Pi,
= trP; —_ = In i
Z 1 Z o l Z trP
h el 1 el
=Y ub |- > b, LR wh, P
i el trP trP o tr])l.l trPiz
A trP Di i
= trP;, | — o 3
>Yub| = X i
h irel ) ,
= 2 In =%~ =Soe(®) (A2)

i lz€1(11)

where we have chosen a strictly concave function f(x) =

ll‘ﬁ,’ i . ;
—2 and b, = L2 for i, € I for the
trP,’l 2 trPiz

Jensen’s inequality, which proves the theorem.
The equality conditions from the Jensen’s inequality show

that SO(C|)(/3) = So(cz)(,b) if and only if
= c<il>>. (A3)

—xInx, a;, =

p12 _ p;z

tr P

(Vi) (Via, Ip € 1<“>)<
by WPy,

To determine the constant ¢’ we multiply the equation by
tr Py, and sum over all Vi; € 1", which gives

i) _ Pi
c = —=. A4
tI'Pi] ( )
Therefore, SO(CI)(ﬁ) = SO(CZ)([)) if and on]y if
. trP,
(Vi)(Viz € [N pi, = —2piy |- (A5)
- tI'P,'1

3. Proof of Theorem 3 and Theorem 7

Proof. Since Theorem 3 is a special case of Theorem
7, we are going to prove only Theorem 7. First we prove
S(P) < So,...c,)(p) plus the equality condition and then
Soc;...c,)(P) < Indim H plus the equality condition. Before
we start we define necessary notation. We define the spectral
decomposition of the density matrix in terms of its eigenvec-
tors as p = ) py|x)(x| where eigenvalues p, do not have
to be necessarily different for different x, and therefore this
decomposition is not unique. We also define of the density
matrix in terms of its projectors p = Y 0 ,of’p, where eigenval-
ues p are now different from each other. This decomposition
is unique. It follows that for each x there exists A such that
Px = A. We define a multi-index i = (iy, ..., i,), probability
of the state being in multimacrostate i,

pi=tu[P, - P pP - P, (A6)
and volume of multimacrostate i,

Vi=u[P, P, - P (A7)

In

Now we prove S(p) <
condition. Defining

So,...c,)(p) plus the equality

W _ <x|13i1...13. ...13i1|x)

In

Vi

(A8)

for V; # 0and @) = 0 for V; = 0, and then using the spectral
decomposition of p we have

pi _ prx(x|ﬁil...ﬁin...ﬁ
Vi Vi

x) = pra)(ci). (A9)

Using the cyclic property of trace, V; = [P 131-”
py1= do. (x| B, - P, --- P, |x), we derive

Zafj) =1
X

Using the fact that sets of projectors form a complete set,
2 P, = I, we also have

3

Zvia)(ci) = Z(xlf’il --.ﬁin
i

i

(A10)

Pylx) = (xlx) = 1.

(Al1)
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Series of equalities and inequalities follow:

Zp,ln—
=_Zv,-7’1
13

Vi <_ Y pafiny pmi”)
> Z Vi <_ Z a)((i)px In Px>
i x
== (Z Viaii))px Inpx = S(p). (A12)

i

Soe,..cH(P) =

The third equality comes from Eq. (A9), and the last equality
comes from Eq. (A11). We have applied the Jensen’s theorem
(Theorem 9) on strictly concave function f(x) = —xIlnx to
derive the inequality. We have chosen a, = a¥) and b, = p,
for the theorem. This is a valid choice because of 0 < al’) < 1
and Eq. (A10). This proves the first inequality.

According to the Jensen’s theorem, the inequality becomes
equality if and only if

(Vi)(Vx, x|(x|P,
('xlpl] o

Pl] |'x>5é0
l,, Pi] |-x> #O)(px = :02)

To explain, the inequality becomes equality when for a
given multi-index i, all eigenvectors of the density matrix
|x) such that (x|f’,-] f’, e Isi] |x) # 0 have the same as-
sociated eigenvalue p, with them. In other words, we can
associate this unique eigenvalue to the multi-index i itself,
pi = px, Where p, is given by any representative x such
that (x| B, --- P, --- P, |x) # 0. For the inequality to become
equality this must hold for every multi-index i. Thus we have
a unique map which attaches some eigenvalue of the density

matrix to each multi-index i. In addition, realizing that from

(A13)

the deﬁnitiop of norm follows (x|f’,-l e f’, e f’il |x) # 0 if
and only if P; --- P; |x) 75 0, we can write Eq. (A13) as
(Vi)(Vx, X| P, P, |x) #0,
P 1%)£0)(px = ps = pi).  (Al4)
Defining set
19 = {x]px = pi}, (A15)

using the above condition, and ) |x)(x| = I, we can write

P,Ich ) (x| = ZP,,,
=Y P Px)(xl =P, - Py Y 1x)(x]

xel® xel®

=p ..

In

A A
B, P, =P, - Py |x) (x|

P, By, (A16)

The third equality holds because for every x ¢ I¥),
P, --- P, |x) =0, so these terms disappear in the sum. P
denotes a projector associated with eigenvalue p; from the
uniquely defined spectral decomposition of the density ma-
trix p = Z ,oP For every multi-index i we have found a

projector ﬁpi € C; such that Eq. (A16) holds, which by Def. 6
means that C; — (Cy, ..., Cy).

Now that we have shown implication S(p)=
So,..cn(P)=Cs = (Ci,...,Cy), we will make sure
that the opposite implication also holds. By multiplying
Eq. (A16) by f’p, where p # p;, from the orthogonality of
projectors we find

N

Piu"'pilﬁp:pin"'ﬁhﬁpipp:o' (Al7)
Therefore, assuming Eq. (A16) holds, we compute
=l BB Cohh R
= ,O,'tI'[Pi” s 131’, pﬁi pi] cee ﬁin]
=Pit1”[13i,,"'pi,"'pi,l]=,0iVi~ (A18)

Moreover, using Eq. (A16) we have

wlB) = Y u[B, - BB,B, - B,

iel®
— Ztr[ﬁi”...ﬁil...ﬁln]: Z ‘/i’ (Alg)
icl® iel®

where 1®) = {i|p; = p}. The second equality holds because
B .- P Pp = 0fori ¢ I/”). Combining the above two equa-
tions we derive

A 0i Vi
Soc.... cn)(P)=_2i:p"‘/iln ;/il

—Z(Z V),oln,o

icl®

= - ulPlplnp = S(p).

p

(A20)

This concludes the proof of the equality conditions S(5) =
Soci,...cn(P)-

Now we prove So,....c)(P) <
condition.

In dim H plus the equality

Soc,...cH(P) =

Z p,ln—

i:pi#0

<In (Z V,-) =Intr] = Indim H. (A21)

The first inequality comes from the Jensen’s theorem applied
on strictly concave function f(x) = Inx when choosing a; =
pi and b; = 1‘/7’ for the theorem. 0 < a; < 1and Zi a; =1so
this is a valid choice. The second inequality comes from V; >
0 and the fact that logarithm is an increasing function. The
second equality comes from ), P, = I and the definition
of V;.

Zp,

imzo i
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The first inequality becomes identity if and only if

.. Vi V;
Vi, jlpi #0, p;j # 0)<— =—= C>, (A22)

Pi Pj
where c is some real constant. To determine this constant we
express the condition as V; = ¢p; and sum over all multi-
indexes i such that p; # 0, which gives c =) ;. .0 Vi- The
first equality condition can be then written as

(Vpi # O)(Pi = (A23)

Vi
Zi:p,—;é() vi |’

Since logarithm is a strictly increasing function, the second
inequality becomes equality if and only if for all i such
that p; =0 also V; = 0. Assuming the second condition
is satisfied, we can write } ;o Vi =3} V; = dimH for
the first condition, which comes from ), P, =1 and the
definition of V;. Combining both equality conditions yields
that So(c,...c,)(0) = Indim H if and only if

i) Vi
pi pl_dim?—[ ’

which completes the proof.

(A24)

4. Proof of Corollary 3.1

Proof. We have p; = "PH for both p and piq. The state-
ment therefore follows directly from Theorem 3.

5. Proof of Theorem 4

Proof. The statement follows from tr[lf’,»l ®---®
P pV @ - @p™ =ulP,p V] ul P, p™],  u[P, ®

- ® P L= tr[P,] tr[P,,], and from the properties of
logarlthm

6. Proof of Theorem 5

Proof. Since for all P e C,A [P,H]1=0 we have
pi = u[PU@)poU (1)'] = tr[U (1) P, poU (1)'] = tr[ P; o)
which proves the first part of the theorem. Hermitian
operators commute if and only if projectors from their
spectral decompositions commute [44]. In other words,
assuming A = > a; P; and [A, A] =0 implies [P;, H] =0
for every i which concludes the proof. ]

7. Proof of Theorem 6

Proof. We assume that

1
(max) _
pi = tr[Pth] pl 1 mink# tr[ﬁk] ) (AZS)
(A1)
where p™™ is the point where function
—Di
f(pi) = —pi e (= pi ming s 1 Py] (

achieves its maximum. Then

So)(br) = Z prln

[ﬁ ]
= —piln T~ D pclnpe+ > pilntr( B
ulf]l iz ki
= _pl - Z Pk
i k#i

Pk Pk
* ; (Zk¢i Pk) tn <Zk¢i Pk)

- Zpk In Z prt Z prIntr[ ]

ki ki ki
>—pzln +0 Zpkanpk
k#i k#£i
+ Z pirIn mm tr[ Py
k#i
=l - pyn—2

tr[IA’,-] ming; tr[ﬁk]

> Intr[P;] = So(e)(po)- (A27)

The first inequality holds because the second term after the
third equal sign is positive (it is a Shannon entropy) and
because logarithm in the fourth term is an increasing function.
We have used ), 4 Pk = 1 — p; for the equality that follows.
The second inequality holds because of assumption (A25) and
because function f from Eq. (A26) is a decreasing function on
(max)

interval p; <pi <1

All we have to do now is to find how small time ¢ must
be such that the assumption (A25) holds. Since P.po P = po,
then tr[ 2 py] = 1 and Eq. (A25) can be rewritten as

1

u[P]
ming.; tr[Py]

tr[ i (po — )] < (A28)

Expanding the left-hand side up to the second order in # using
pe=UWpU @', Ut) = e and P;poP; = po, we find
= t[(f — P)Hpo A1 + o(t?),

tr[ i (po — Aol (A29)

where o(72) denotes scaling in the little-o notation,
u(t)

lim;_q = 0. Inserting this expression into Eq. (A28) and

ignoring ‘term o(t?) yields
tr[ P e
AL as0)
minj; tr[P;]

which proves the theorem. |

= [tr[(i = é)ﬁﬁom<1

8. Proof of Lemma 1

Proof. We prove the uniqueness first. We assume that

two joint coarse-grainings c§‘2> = {ﬁk(l)}k and szz) = {ﬁl(z)},
both satisfy Eq. (17). Then by definition Cflz) — C§22) and
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C(z) > Cf}z), thus

(2) ZP(I) ZZP@)

kel kel Jer,

(A31)

Both index sets [; and /; must contain a single element. If they
did not, then there would be an index [ # [ and a nonzero vec-
tor [y/) € Hsuchthat0 = B |y) = 3, S, P2y) =
|1). Therefore, for every / there exists exactly one k such that
13}(2) = Pk(l) and vice versa. In other words, sets C(l) and C(z)
are identical.

Now we prove the second part of the theorem. Clearly,
coarse graining given by {Pi, P,-z},-],,-2 \{0} is finer than both C,
and C,. All we need to prove that it is the roughest such coarse

graining. Let C {Pk}k be such that C; — C and C; — C.

We choose P , 7 0. Then
PR, = BY A= Y A
kel lel;, kel el
= Y b= ), P,  (A32)
kel lel;, kel NI,

which by definition means (P, P}i, i, \{0} = C and there-
fore C 2 = {P;, Py }i,,i, \{O}. u

9. Proof of Theorem 8

Proof. We  will denote

Piy,.insingr = Piing and

Vitoosimsings = Vijiny,- Other notation remains the same.
Using trivial identities,
Pi =Y Piip: (A33a)
in+1
Vi=> Vi (A33b)
int1
and Jensen’s Theorem 9, we derive
So,.,...cH(P)
== Z pin v
Z' Pii,
[ n+
L Ipyl
_ Z V. Z Piing Vi,l'n+1 In Pi.ing Vi,im—l
- 1
i in+1 Vi’i"H Vi int1 Vi’i”“ Vi
> Z Vi Z Viini (_ Piviner 1 Pi,i,,+1)
ln+l ‘/iai/x+] ‘/i«i/Hr]
Piips A
== PpiiIn = S0@uCrC(P): (A34)
ii ‘/isinH
sln+1
Vii
where we have used f(x)=—xIlnx, @, = —*, and

Di
i = v “2+L for the Jensen’s theorem.
fipgl

The equality condition from the Jensen’s inequality turns
into an equation that is similar to Eq. (A3). After some simple

b;

algebra, one finds that So,...c,)(0) = So,,...c..coo)(P) if
and only if

. . ‘/ivin+l

(vw(wnH)(pi,w = Tp")' (A35)
l

Assuming that p; # 0, and rewriting the above condition
as p(iy41li) = p’p—“ = %, the above equality says that the
entropy will not decrease with additional coarse-graining C,,
if the conditional probability of the outcome i, is given by
the ratio of the volumes of macrostates.

The above equality condition is for example satisfied when
the set of coarse-grainings (Cy, ..., C,) projects onto a pure
state, i.e., for all density matrices and every i we can write

| ) (Wi | = PPy By Py (note that the left-hand side does

pi
not depend on p anymore). Since this holds for every density
matrix, it also holds for pig = -+ mH —L_J which gives Vi) (Y| =
By, P,

in

B P,
-1 Then

7
= [P, 1v:) (il pi

= tr|iPinH e V” l :|Pi = —";“ pi-

i i

Pi iy

(A36)

Another example when the equality condition is satisfied
is when C, 11 — (C,, .. Cl) By definition, for every multi-

index i there exists mdex i , such that P, P Pm =

’H‘ r1+]

A

P - P It follows that for every other index i, 7é i
p. ... 13» P. = 0. Then for index i"

n+1’

1 [ VeS| n+1°
pi o = w[B, - P, pP, - P, 13,531]
~ ~ ~ ~ ‘/l i(l)
=tulP, - P pP, - P = —pi. (A37)
i
Vi
because ‘}‘*‘ = 1, and for every other index i, # zn +1’
Diiny = tI‘[P[“ o I)ilﬁpil e Pin Isiwl]
V. .
=0=—"p;, (A38)

Vi

Vii
because V”“ =0.

APPENDIX B: PROPERTIES OF DEFINITION 6

First we show that attachment i — j in Def. 6 is
unique for P, P,, # 0. For contradiction, we assume that
there are two projectors P;, P €Csuchthat P, --- P, P, =
B ...B, P - P,IPJ =P, ---P,. Then multlplymg the
first equation by ﬁ/ and using orthogonality of the projectors
we obtain

0=p, - B PjP;i=P,-- P P;=PF, - B, #0, B])

which is a contradiction.

Assummg that C — (Cl, .. gn), i.e., for every i exists j

such that P P,, P = P P;,, then for the multi-index
(i1, ..oy in, z,,+1) we take the same j that is obtained from the
first n indexes. Then

pin+|ﬁin"'pi1pj=Al‘n+|ﬁin"'ﬁi|’ (B2)
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which by definition means C < (Cy, ..., Cy,, Cy11).

Finally, we are going to show that Defs. 2 and 6 coincide
forn = 1. Assuming thatC < C; by Def. 6, for every i; exists
j such that P;, P = P, . Using that for every other P we have

A

Pth:PiP _—Oandz . =1, we have
Pi=) Pbi=) PPi=3 B, (B3
i irel® ivelW)

where we have defined 1V) = {i)| B, P; # 0}. The above
equation means that C < C; by Def. 2.

Now let us consider the opposite implication, assuming
that Eq. (B3) holds. For each i, we find j such that P, P #*
0. Such j must exist, because the set of projectors form a
complete set. Multiplying Eq. (B3) with this j by P;] and
using orthogonality of the projectors, we find

=Y &..,bB =P, (B4)

1161(/) ivelW)

which means that C < C; by Def. 6.

APPENDIX C: BOUNDS ON THE FACTORIZED
OBSERVATIONAL ENTROPY

Here we are going to prove Egs. (31), (32), (33),
and (34), ie., Sp(p)+ O(€) < S(Pa) < S(Pwm), Sr(Pa)+
0(€) = S(pa), Sr(pm)+ O(€) = S(pm), and the explicit
form of O(¢) term in this last equation.

The following sequence of inequalities and identities
holds:

Sr(p) = SO(C;,(I)®Cm2))(ﬁ)
< Socy)(P) + O(e)
= Soc;(Pa) + O(€)
= S(pa) + O(e). (C1)

The first inequality is a consequence of identities:

Pp = Pr g —£ + O(e),

. A (C2)
Pp_ = Z 8e_.E\+E, PE,®PE,,
E\E;
where  H =3, EP, I:I(I)ZZEI E\Pp, H®=

> p E2Pp,, and H =H-eAM™ =Y, E P
denotes the full Hamiltonian without the interaction
part. By definition, we have Cp < Cpo ® Cge (and
Cpy =Cpo ®Che when H_ is nondegenerate), i.e., the
factorized coarse graining is finer than the coarse graining
by the full Hamiltonian without the interaction part. From
Theorem 2 we have

So(Cpnacyn) ) < Soey (D). (C3)

and by explicit computation?? using Eq. (C2) we obtain
Soe; (P) = Soe,;)(p)+ O(e), (C8)

which is valid up to pathological cases, when p is either eigen-
state of A_ or eigenstate of H. In the first case Soc, (P) =

0 and So(,(p) is potentially large, while in the second
Soc;)(P) =0and Soc, )(p) is potentially large.

The following identity Soc,)(P) = Socc,)(fa) holds
because from the definition of Ay, pr(p)=tr[Ppp]=
tr[ Pepal = pe(Pa).

The last identity So(c,,)(Pa) = S(Pa) comes from Cp, <
Cy and the equality condition in Theorem 3.

The second inequality from Eq. (31),

S(Pa) < S(pm) (€9)

is a simple consequence of the fact that gy, maximizes the
von Neumann entropy with the constraint on energy E =
tr[H p,] = tr[H pa] [22].

Now we prove the equalities. Given definition of the diag-
onal density matrix py = Y, 2220 P, we define its minus

ulPr]
>, ’;’E“P(”' . Since by Eq. (C2),
Cs, = Chpu ®Che, hence from equahty condition in
Theorem 3 we have

counterpart as pfy =

SF(Pa) = Soym ey (Ba) = S(ha). (C10)

22For simplicity, assuming that both H_ and H = A_ + e H™ are
nondegenerate, and assuming structure
E=E_+¢eED, (C4)

pe = pe_+epl, (C5)

we derive

Soey(h) = —Zm— In pe
Z pe_+epd)
_ZPE In pg_ —6217(51)111}75, 2:175,61315

PE-

In(pe_ +epy)

= Sowcy (D) —€ Y pp'nps_, (C6)

E

where we have used ZE p(l) 0. We have pp_ = tr[PEf,ﬁ], and

using standard perturbation theory we derive

Re(tr[Pp_pP; A1)
P =23" = g ) (C7)

E+E

Correction amplitude ), p EI) In pp_ can be quite large, especially
when pr = 0 while p“) # 0, which happens for example when
state p ~ | )(¥| is an eigenstate of Hamiltonian H_, ie., [yr) ~
|E1)|E>). In that case it can be easily checked that Soc,, ,(p) ~ 0,
while So(c,)(p) can be some nonzero and possibly large number.
This problematic behavior of diverging amplitude points to cases
when perturbative expansion of entropy is not valid, at least not in
this form. We can still see, however, than even in this pathological
case of |Y) = |E1)|E,), inequality Sp(p) < S(4,) holds.

012103-26



QUANTUM COARSE-GRAINED ENTROPY AND ...

PHYSICAL REVIEW A 99, 012103 (2019)

Since py4. = pq + O(€), we have Sr(pa_) = Sr(pa) + O(€)
and S(04_) = S(04) + O(€), which in combination with the
above equation proves Sr(9y) + O(€) = S(pq).

The second equality Sr(pn) + O(e) = S(Pn) is a direct
consequence of the previous equality, because py, is a spe-
cial case of p,; due to its form Py, = %ZE exp(—ﬂE)f’E.
This inequality can be also obtained directly, by max-
imizing the observational entropy Srg(p) with condi-
tion on the mean energy E = tr[pH_] + O(e), which
gives p™™) =13 . exp[—B(E| + E2)1Pg, ® Pg,, and
Sp(A™) = S(pm) + O(e).

Finally, we derive explicit form of correction term O(€) in
equation Sg(pm) + O(e) = S(Pm) [}?q. (33)] in terms phys-
ical quantities. We recall py, = e #¥/Z, Z = tr[e#"], and
define py;, = e’ﬂH*/Z,, Z_ = tr[e”mf]. Moreover, we de-
note mean of an operator A as (A) 5= tr[Ap] for any density
matrix p. We have

0(€) = S(pn) — Sr(pm)
= S(Pn) — S(Py) + S(By,) — Sk(Pwm)

= 01(€) + Ox(e). (C1D)
We will study separately the terms O;(¢) and O (¢€).
First, we study term
01(¢) = S(Pm) — S(Pg,)- (C12)

Assuming that H_ and H™ commute (which means that
we effectively study the classical corrections), we can write
Taylor expansion

P = Py + €Boy ((H™);, — H™).

th

(C13)

If pp and PV in expansion p = pp + €p! commute, we
can write S(p) = S(py) — etr[p" In py] [similar to Eq. (C6)].
Therefore, we have

O1(€) = —eptrlpy ((H™),. — H™)In py ]
= —epulpn ((H™);, — H")(—pA_ +1n Z_)]

h

= —ef(H_A™),. — (H_),-(H™),.)

= —ef*(H_A™)c, (C14)
where we have defined covariance as (H_H@). =
(H_H) 0 — (H_) o (HO) 50

Now we move onto term O;(¢). For simplicity we assume
that both A_ and A are nondegenerate (although it makes
no difference if they are degenerate—it just makes for a
complicated notation), and that H_ and A commute. Then
we can write

pe_(pw) = (E_|pwlE-) = (E_|py|E-)
+eB(E_|py | EC)((H™) 5o — (E_|H™|E_))
= pe_(Py) +€Bpe_ (D) (H™) 5

—(E_|H™|E_)) (C15)

and using Eq. (C6) we have

Sr(pn) = Sr(py) —€B Y pe Inpp ((H™),
E_

—(E_|H™)|E_)), (C16)

where we have used a simplified notation pr_ = pg_(0fy,)-
Considering Sr(0y,) = S(Py,) [Eq. (C10)], we derive

Ox(e)=eB Y pr Inpr (H™),- — (E_|[H™|E)).
E_

(C17)

(H ) 5~ Tepresents the canonical average of operator H,

and (E_|H|E_) represents the microcanonical average.
To signify the dependence on temperature, energy respec-
tively, we denote (ﬁ(im))[,[; = (A1) g and (E_|HM™|E_) =
(H@Y) . . For the purposes of simplifying notation of the
following derivation, we also write simply E instead of E_
(so pg_ turns into pg, all averages are averages in reduced
Hamiltonian H_). We can turn the sum into an integral and
write

01(€) = €B / p(E)pe In pp((H™)g — (A™) ) dE,

(C18)

where p(E) denotes the energy density of states, i.e., p(E)dE
denotes number of energy eigenstates with energy E in in-
terval E < E < E + dE. Since the energy density of states
can be written using the microcanonical entropy S(E) =
Smicro(E) as p(E) = e5®) [Eq. (35); while ignoring the
unimportant term A E], we can expand exponent of function
pep(E) around its maximum E, [which turns out to be
defined implicitly by 8 = 9 S(E,)],

f(E - E,)
e BE+S(E)
= pep(E) = —

o BE+S(E)+39S 6=, (E—EnY+§ 08 S p=p, (E—Ey) 4

V4

et (E-E) <1 . 1835
V2ol e P
=g(E— E)(1+c(E—EJ’ +---),

where 0 = (03S|g=£,)""/* and ¢ = }93.5|p—g,. The second
term in the expansion of the exponent was zero, because we
expanded around the maximum. We can derive explicit form

of o and ¢ as
72 0 [0S 0 (1
o = —| — = —
dE\OJE OE\T

18T 1

T29E T3¢k

1 0 1
c=—-—| ——,
60F T?cg

where 7T is the temperature, and cg is the specific heat.
Although we are not going to use this form for our final

(E—E*>3+-~-)

(C19)

, (C20a)

(C20b)
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result, it helps us determine scaling with N (number of
particles) in the thermodynamic limit. cg ~ N is extensive,
T ~ 1, and thermodynamic energy E ~ N is also extensive.
Therefore, we have 62 ~ N and ¢ ~ 1/N?. We do not have to
consider higher-order corrections in Eq. (C19), because their
scaling lead to the subleading order in N in the final result.
g(E — E,) represents Gaussian function peaked around point
E., which is normalized to 1, because the partition function
is defined as Z = [ ¢ P£p(E)dE. Furthermore, using Z =

e PEASED /2762 we have
Inpg=—BE —InZ
= —B(E — E,) — S(E,) — Inv2m02. (C21)
Combining Egs. (C19) and (C21) with Eq. (C18) we can write

0s(6) = ¢ / F(E = E'n pp((AT), — (A0 )dE
— _eBIS(E) + In VIR (A, f F(E — EE
1 €BIS(E,) + In V2o’ / F(E — E)(A™) dE
—ef*(H)g | f(E — E.)(E — E,)dE

+ep? / f(E = E)(E — E)(H™)pdE.  (C22)
The first two terms cancel each other, since [ f(E —

E,)dE = 1 and because the canonical average is the canoni-
cal mean of the microcanonical averages,

Z pE H(mt)

H(lnt) /f(E E ) H(lnt)) E

(C23)

Using this equation, and expanding (A 1) z around point E,,
we can also compute

(#) = [ B~ ENA™)aE

= / S(E — E)[1 4 c(E — E*>3](<FI““‘>>|E=E*
+ 05 (H™) | p—p.(E — E,)
+ SRR g, ( E*)2>dE

= (H")|p—r,

+ 232 (A0Y| /g(E E)E — E,)*E

T+ op (A p_p / ¢(E — E.)(E — E.)*dE
= (H"™)|p_p,

1 2 ; 7y (int) 2
+ 535(1‘1 Me=e, | f(E—E)E—E,)dE

+ 35 (H™) g, c / f(E — E)E — E)'dE

e 1 o
— (H(mt)”E:E* + 58)25<H(mt))|E=E*<AE2)ﬁ

+ 3 (H™) | pop, c(AEY) 4, (C24)

where have defined AE =FE — E,. Terms with g(E —
E)(E — E)*! in the integral had vanished because the
integral was over an odd function. The first term in the
last line scales as (H™)|z_p ~ N, while the other two
as 307 (H")|p—p, (AE?)g ~ g (H™) | g—p,c(AE*) g ~ 1.
Similarly, we derive

/ f(E — E\)(E — E.)dE = c(AE*); ~ 1 (C25)

and
/ f(E = E)E — E)(H™) s dE

= 3p (H™) | p_p (AE?)5 + (H™) | p_p,c(AE*)g.
(C26)

Inserting the above expressions into Eq. (C22) while consid-
ering just the leading terms (~N), we derive

02(€) = —eB*(H™) | p_p.c(AE*)
+ €20 (H™) | p_p, (AE?) g
+ B (H™) | g_p,c(AE*),

= €f20p (™) |p—p, (AE?)p. (€27

As Eq. (C24) shows, canonical and microcanonical aver-
ages of energy are equal in the leading term (H ity g =
(H@)Y|z_p + O(1), and the same statement can be de-
rived in analogy for the energy itself, (E)g = (I:I_)ﬁ =
(ﬁ_)|E:E* 4+ O(1) = E, + O(1). Thus considering just the
leading terms we derive

I 3 (A d(HM™) s + 0(1
op (A, = W0 O+ O)
0E |pp.  0(E)p+ O(D)
B 3/3 a( (1nt)>ﬁ B (ﬁ_ﬁ(int))c
a(E)s OB (AE%)g
(C28)

where we have used

IE)p g 5. 5= 4 A 2
TH =tr[H_ 0Py, = —(H_-H_)c = —(AE")g (C29)
and
w =t[H™pp; 1 = —(H-H™)c.  (C30)
Inserting Eq. (C28) into Eq. (C27) we derive
Oa(€) = —ep*(H-H™)c. (C31)

Combining Egs. (C11), (C14), and (C31), we finally derive
O(e) = —2ep*(H_H™) . (C32)

A

Since A- = H — eH™), p = py + O(e), inserting these
equations will lead only to the second-order corrections in €,
so for the first-order correction we can as well write

O(e) = —2ep>(HH ™), (C33)
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which is Eq. (34). This result scale as ~ N in the ther-
modynamic limit, however, as sizes of regions grow bigger,
then A grows smaller compared to H, and therefore also
their correlation (H H™) ¢ gets smaller. O (€) term therefore
represents a finite-size effect.

On a lattice with local interactions, where each lattice
site i is described by its own local Hamiltonian H; [such
as the Hamiltonian written in Eq. (46)], we can write
H =Y, ¢s H;, and apprommate23 the interaction part of
Hamiltonian as A =" es H;, where S denotes the “sur-
faces” of all regions. Then using Eq. (C32) we can write

O(e) = —2¢p? Z (H;H

i¢S,jes

(C34)

where (H; H i)c denotes energy-energy correlation function.
For a Hamiltonian with local interaction, this function fades
with a growing distance between i and j. This shows explic-
itly that O (e) is really just a boundary term.

APPENDIX D: CONVERGENCE OF FOE TO
MICROCANONICAL ENTROPY

In the first part of this Appendix we show that the fac-
torized observational entropy of energy eigenstates gives the
microcanonical entropy for closed nonintegrable systems. To
do that we follow a similar approach as was used in eigenstate
thermalization hypothesis [71]. We point out that FOE will not
give the thermodynamic entropy for every system, however.
For example, as shown by our numerics in Sec. VII, integrable
Hamiltonians do not give the thermodynamic entropy when
computing FOE for energy eigenstates.

In the second part of this Appendix we show that FOE
of superposition of energy eigenstates with random phases is
larger than the mean microcanonical entropy, and that FOE
of a superposition of close energy eigenstates with random
phases gives the microcanonical entropy.

Since state of the system with random phases represents a
typical state in the future, this says that the FOE converges to
microcanonical entropy for such superpositions in the long-
time limit.

1. FOE of energy eigenstates

Defining the Hamiltonian without the interaction part as
H =H—eA™ =Y, E_ Py (which has been previ-
ously used in Appendix C), and for simplicity assumlng that
both Hamiltonians H and H_ are nondegenerate,”* we have

BIn reality, however, the H™ can consist just of terms that
enable interaction between the two regions, such as nearest-neighbor
and next-nearest-neighbor hoppings and interactions between the
two adjacent regions [Hamiltonian Eq. (46)], and not of any sites
themselves.

24That is they do not have degenerate eigenvalues. This is expected
to be roughly true for nonintegrable systems, where eigenvalues are
usually irrationally related, in other words, each eigenvalue of the
Hamiltonian is related to some other by addition of an irrational
number. Both A and A_ may have this property, since H_ consists of
smaller nonintegrable systems with the same property. The irrational

1357 = I3E, ® f’Ez from Eq. (C2) for some eigenvalues E,
E,, such that £, + ]52 = E_. Then from the definition of Ehe
FOE, using that tr[ P¢_] = 1 that holds for nondegenerate H_,

Sr(P) = So(cyu 9cy0)(P) = Soc, H(P)
=—Y pe Inpc, (D1)
E_
where we have defined
Pe. = (E_|p|E-). (D2)
For an eigenstate of energy p = |E)(E| we have
pe. = (E-|E). (D3)

As we shall detail in a few paragraphs, if pg_ has a large
enough value for a large enough set of |E_) vectors, i.e.,
there a large set of vectors | E) that overlap with vector |E_),
then the FOE will approximate the microcanonical entropy for
nonintegrable systems.

To understand properties of eigenstates in nonintegrable
systems, one can consider an integrable Hamiltonian, for ex-
ample a gas of noninterating particles, and add a perturbation,
for example giving the particles a small hard core radius,
which will make the Hamiltonian nonintegrable. Instead of
trying to analyze properties of energy eigenstates with this
perturbation, we replace the perturbation with a small random
matrix where typical values of matrix elements are very small,
but still much larger than the average separation between
energy levels for energies close to the energy eigenstate that
we are considering. There is a deep connection between non-
integrable systems and random matrices that is an important
area of research that started with the work of Wigner on this
issue [82]. It has been discussed in detail by many authors
[83—86]. In the present case, Hamiltonian H_is integrable in
the sense that as the size of the system goes to infinity, with
a fixed box size, the system contains an infinite number of
invariants. This is because as mentioned earlier in form of
identity f’Ef = f’El ® I3E2, different boxes do not interact, we
can write an arbitrary eigenstate |E_) as the product of in-
dividual energy eigenstates in each box, |[E_) = |E;) ® |E»),
where the E; denote the energy eigenstate of each separate
box. We are adding to this Hamiltonian a perturbation H,
that will represents the interaction term € A that we have
previously taken away, to produce the full Hamiltonian H,
which couples the different boxes together,

H=H_ +H, (D4)
where we are taking H, to be a random matrix. To index the
matrix, we choose an index to be monotonically related to the
energy of a basis vector |E_) (i.e., matrix H_, representing
operator H_ in a matrix form in its own eigenbasis, has
increasing diagonal elements). In the basis of H_, we can

write the matrix elements of H, (E _|I:I |E’ ) as
H;j = Eiéij + hij, (D5)

relation of eigenvalues is due to the sufficient mixing from the
interaction terms.
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where E;§;; corresponds to H_, and hij = hji, hijjhy =
€288 j1, corresponds to the random matrix ﬁ,. Here the
bar denotes an average over all possible random matrices in
this ensemble. No ensemble average is taken for a particular
Hamiltonian H. A particular realization of the random matrix
hi; corresponds to that choice of Hamiltonian . h;; is also
banded with a width that is proportional to the temperature
corresponding to the energy of the state under consideration
[71].

We now wish to diagonalize matrix H,; to determine its
eigenvectors in the basis of matrix H_. Denoting ¢; as an
eigenvector of H, and its jth element in basis of H_ is defined
as (¢;)"), we define a matrix formed from these eigenvectors
as ¢;; = (¢;)¥) (i.e., this corresponds to the similarity trans-
formation that diagonalizes H). We find that

CijCa = Nirdirdji, (D6)

where A;; is a function that has been introduced in Ref. [71],
and which is well explained in Ref. [87]. A;; can be well
approximated as being of the form A(i — j), and is a function
that was shown to be well approximated by a Lorentzian
[71,88]. If we think about the indices i and j as corresponding
to energies E and E’ so that the coefficients ¢;; can be
described as cgg/, then the Lorentzian has a width of energy
proportional to € [71,88], but with a tail that dies off faster
than an exponential [71,88].

We therefore have the relationship between the eigenstates
of A and I:I_,

|E) =Y cpe |E-). (D7)
E_
This implies that
(E_|E) = cgg. (D8)

and cg g_ are random elements of eigenvectors as described
above (in more detail, it is random in vectors |E), because H
depends on the random matrix, but not in |E_) which come
from diagonalization of H_).

We can then compute average values of quantities and their
fluctuations. In the case of expectation values of observables,
those fluctuation can be shown to be exceedingly small [71].

In the present case, we know from Egs. (D3), (D6), and
(D8) that the coefficients cg g_ are related to pz_ by

Pe = lcep > = Age_ (D9)

We will first incorrectly ignore fluctuations in the probabil-
ities pg_ coming from the randomness of ﬂ,, and assume that
pe_ = pe_. After understanding this simplified case, we will
show how to treat this pg_ more accurately.

pe_ achieves the maximum at E = E_, and is relatively
large over a band of width € around E. We will now argue
that this choice of pp_ will give the thermodynamic entropy
when substituted into Eq. (D1). For example, suppose we took
pe_tobeuniformintheinterval E_ —€/2 < E < E_ 4+ €/2.
The density of states p(E) is related in the usual way to
the thermodynamic (microcanonical) entropy at energy E
as p(E) = exp(Smicro) (Eq. (35) and Ref. [60]). Then using
Zi pi = 1, we see that p; = 1/[€ exp(Smicro)]. So the entropy

becomes

Sr = (In[€ exp(Smicro)]) = In € + Spicro- (D10)
Because Siicro 18 extensive, it grows in thermodynamic limit,
while the In € grows slowly or not at all and therefore does not
contribute in the thermodynamic limit. The above equations
shows that if Hamiltonian A has eigenvectors | E) that have a
constant overlap pg_ with each |E_), as long as eigenvalues
E are from within the distance ¢ from E_, and this overlap
is zero otherwise, then the FOE gives the microcanonical
entropy Smicro Up to a small correction term.

We will now assume that the overlap pg_ is not a top hat
shape but we will still assume that there are no fluctuations
in pg_, i.e., now we extend the above argument of a top hat
shaped A(E — E’) to A of any shape.

With the previously introduced approximation Agp =~
A(E — E'") we define a function A(E — E’) to rescale A(E —
E’) as follows:

AE—E)= i)»(E —E,

V (D11)

where f MA(x)dx = 1. Using unitarity of the cgp elements,

we have that Y . A(E—ENXY . App =Y pCop =
1. Therefore, using approximation Y . — [dE'p(E’),
we obtain

1~ Z AE—-E)= /dE’,o(E’)A(E —E)
=

~ de’,o(E)A(E —E)

ME—E) _ p(E)
N TN

= ,o(E)/dE’ (D12)

where the second & is due to our assumption that the width
of A is stil O(¢), hence p(E’) can be considered to be
approximately equal to a constant p(E) on this small interval
where A is large. This gives the normalization N' = p(E).
Combining pr_ = pe_, Egs. (D9) and (D11), and plugging
the result into the formula for the FOE, Eq. (D1), we obtain

Sp=— Z pe_ Inpg = — Z Ape InAgg.
E_ E_
o / M EZED (A(E — E/)>
p(E) p(E)

&

—/dek(e)lnk(e)+ln o(E), (D13)

where we have used the substitution e = E — E’.

To investigate the effect of the width of A(e), which rep-
resents the energy spread of matrix elements connecting the
energy eigenvectors |E_) and | E), we introduce a function A
which depends only on the shape but not the width of X as

I.(e

(D14)

012103-30



QUANTUM COARSE-GRAINED ENTROPY AND ...

PHYSICAL REVIEW A 99, 012103 (2019)

The argument of % is dimensionless. Equation (D13) becomes

Sp = —fdek(e)lnk(e) +1np(E)

/dxi(x)ln A(x)+1In(e) +Inp(E). (DI15)

The first term depends only on the shape of A and not its
variance. The second term gives its dependence on the energy
spread, and the last term is the microcanonical entropy. We
note that Eq. (D15) also represents FOE of a microcanonical
state ﬁg‘écm = /%[ > 1E—Ey <2 |ENE], as pictured in Fig. 7,
where N =tr[} 1z g -cn |ENE]] is the normalization
constant.

Now we understand how the entropy is obtained when
we assume pr_ = pg_. But in fact, Eq. (D9) gives us pg_,
averaged over the random matrix ensemble, and any particular
realization will fluctuate giving

pe. = Ngg_ 1%, (D16)

where ng_ is random variable that fluctuates from eigenstate
to eigenstate so that the value of it averaged over the ensemble

of ’s, n = 1. We will call the distribution of values of
to be P(n). The form of this distribution is not important
to our analysis as we will see. We can now calculate how
this multiplicative term affects the entropy by averaging over
possible realizations of the n’s. Rewriting Eq. (D1) using
Eq. (D16) we have

Sr=— Z Age np In(Age g ). (D17)
E_

Because the distribution of ng_ is the same for all E_, the
average value will be also the same, which allows us to in-
troduce a random variable n with the exactly same probability

distribution, and the same property n2 = 1. Then we can write

n* =1,

2 (D18a)

—ng In(nz ) = —n*In(n?), (D18b)
which holds for all E_, i.e., the averages do not depend
on specific E_ anymore. Using the above, we compute the
average of the FOE of an energy eigenstate [which we stress
out now by adding in the dependence (| E))] as

E_ E_

= — Z Ape InAgg —n*Inn? Z Apg_
E_ E_

= _ZAEE’ lnAEE, — }']211’1 1’]2
E-

1np(E)+fdxi(x)ln?\(x)+1n(e)— n?1nn2.

(D19)

For the third equality we have used Y, Agg = 1, and for
the last equality we used combination of Egs. (D13) and
(D15). This gives the same entropy as calculated in Eq. (D15)
that ignored these fluctuations, save for an additional term of

order 1. The fluctuations in the entropy Var(Sr), assuming
independent 7’s, are straightforward to calculate and are neg-
ligibly small. Therefore, the FOE of energy eigenstate |E) is
approximately equal to the mean value (D19), which is equal
to microcanonical entropy, up to terms of order one, which
become irrelevant in the thermodynamic limit. We note that
Eq. (D19) that represents FOE of an energy eigenstate state,
as depicted in Fig. 7, differs from the FOE of a microcanonical
state, Eq. (D15), only by the last term, —n? In(n?).

Therefore, FOE of an energy eigenstate gives the thermo-
dynamic entropy, up to an additive constant. This argument
is relying on the relationship between nonintegrable systems
and random matrix models. What we argued is that the
interactions introduced by adding in € H™ to an integrable
Hamiltonian causes an energy eigenstate | E') to have substan-
tial nonzero overlap with the integrable states |E_) for states
within of order € of its energy. In the integrable case, because
of the infinite number of invariants, a lot of states have very
small overlap, but without these invariants present, there is
much more overlap. Because the thermodynamic entropy can
be obtained for a large variety of distribution, the details of the
precise amount of overlap are irrelevant to the final answer.

2. FOE of a superposition of energy eigenstates

Here we derive that FOE of a superposition of energy
eigenstates with random phases give a value that is higher
than the microcanonical entropy, and that the superposition
of close energy eigenstates with random phases give the
microcanonical entropy.

We consider an initial state

W) =Y _ e dg|E), (D20)
E

where the phases are random, dg = /pg(p) are real positive
or zero numbers such that >, dz = 1, and we calculate the
FOE for this state.

Using the same notation as in Eq. (D1), we define

pe. = (E_|PIE-) = (E_|y)|? (D21)

and we first we calculate its value when averaged over all
phases ¢g. Because this is equivalent mathematically to a
random walk, we have

pe =Y di(E|E)]. (D22)
E

By the central limit theorem we know that the distribution of
(E_|yr) is a complex Gaussian. But first we will ignore these
fluctuations as we did in the last section by setting pg. = pg_.
In other words, first we will assume that phases ¢ are such
that pr_ = pg_. This will give us an approximation to Sg(0)
that we denote S%(p).

We also note that for a large number of dg’s contributing
to [v), Eq. (D22) is self-averaging, meaning that we can think
of [(E|E_)|*> (which is highly fluctuating) as the mean value
(where the mean is taken over random matrices H,) which
is given by Agg_ introduced in Eq. (D9) plus a randomly
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fluctuating term so that

PE_ =Y dihpe +0n'?), (D23)
E

where n is number of elements dg that contribute substan-
tially, and where we have used a defining relation for Agg_,
Eq. (D9). Assuming that n is sufficiently large, we can neglect
the term. The above equation helped us to avoid using the
highly fluctuating term | (E|E_)|?, by using the averaging over
the random matrices. This “smoothing out” is a perfectly fine
procedure as long as there are more than a few eigenstates
in the superposition, Eq. (D20). Realizing that the correction
term is small when using this approximation will allow us to
neglect this correction term, which will soon give us precise
estimates on the FOE.

Inserting Eq. (D23) into Eq. (D1) and using Jensen’s
theorem (Theorem 9) we obtain

E_ E E
> — Zd% Z Apgeg InAgp
E E_

> dESr(E) + i Iny.
E

S9(p) ~

(D24)

The inequality sign > becomes equality when, for all nonzero
dg, |Agg_|? are equal, which is approximately true for close
energy eigenstates | E) peaked around a given value of energy
denoted Ej, i.e., when Eq. (D20) denotes a PS state. The last
equality comes from the third row in Eq. (D19), and ng_is a
coefficient describing the effect the random matrix (Gaussian
random variable), defined in the Eq. (D16).

Now we will turn to more general case when pg # pgr_
and introduce a random complex variable {x_ that will capture
the statistical properties of pg_ written in Eq. (D21) coming
from randomness of phases ¢g. We define {r_ by writing

pe. = Pe_|¢e_ |2, where |¢|2 = 1. In analogy to the previous
section [Eq. (D25)], we can also introduce the random vari-
able ¢ that has the same probability distribution, and for which

lCe > =¢2=1,
—1¢e_ PIn|ge_|> = —[¢? In g |2

Using the definition of FOE [Eq. (D1)], pr. = Pe_1¢e_|%
the above equation, and the result for pr_ = pg_ [Eq. (D24)],
we obtain

Sr(P)

(D25a)
(D25b)

SP(p) = 1¢[PIn|¢ 2
Z Y diSr(E) — (P (¢ + n?Inn?,  (D26)
E

where Z becomes approximate equality ~ for PS states
peaked around energy Ey. Using ) . d% = 1, for such states
we have

Se(pe,) ~ Y diSr(Eo) — [LPIn|¢ P + n>Iny?
E

= Sr(|Eo)) — 1¢1*In[¢|> +n*Inn>. (D27)

We note that Eq. (D27), which represents FOE of a PS state
with random amplitudes and phases, as depicted in Fig. 7, dif-
fers from FOE of energy eigenstate Eq. (D19) by —|¢|2In |2,
and from the FOE of a microcanonical state Eq. (D15) by
—[¢PIn[¢]> 4+ n? Inn?.

Now we calculate the relevant correction terms |Z |2 In |¢ |2
and 7n2In n2. The central limit theorem gives probability dis-
tribution for ¢ as

—¢?
P()d% = —d’¢, (D28)
g
giving
122 In |22 ~ 0.422784336. (D29)

We can obtain a similar estimate for the second term: The
distribution of the unitary matrix elements cgg_ should also
be close to a Gaussian distribution, but these elements were
assumed to be real (by time reversal invariance), in which case

n%Inn? ~ 0.72963715. (D30)
Equation (D26) then becomes
Se(p) 2 Y _ dpSr(E)) + 0.3068528, (D31)
E
and Eq. (D27) becomes
Sr(Pe,) =~ Sr(|Ep)) + 0.3068528. (D32)

We can also combine the results for all FOE of an energy
eigenstate |Eo), Eq. (D15), FOE of a random PS state pg,,
Eq. (D27), and FOE of microcanonical state p1i, and see

SF(PE,™) ~ Sp(p,) + n*Inip? — |c|21n I35
~ Sp(|Eo)) +n*Inr?,
which after putting in numbers gives
Sr(PR) ~ Sr(pE,) + 0.3068528
~ Sr(|Eo)) + 0.72963715.

(D33)

(D34)

This explains offsets in FOE of different states seen in Fig. 7.
This figure can be adjusted to take into account these offsets,
which we plotted in Fig. 8. All curves nicely overlap, which
confirms our analytical reasoning.

Now we will turn to more detailed discussion about the
long-time limit. Let us assume now that we have such a
PS state pg, with random phases. Neglecting the terms* of
order 1 that become irrelevant in thermodynamic limit of large
systems, according to Eq. (D19), elements on the right hand
side approximate the microcanonical entropy,

Sr(p) = Sr(pE,) = Sr(|Eo)) ~ In p(Ep) X Smicro(Eo),
(D35)

which is the microcanonical entropy at energy Ej.
We have therefore shown that for a random superposition
of energy eigenstates, the FOE gives value that is larger than

Z’We encountered four of them in total, three of them from
Eq. (D19), and one of them from Eq. (D26).
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the averaged value of microcanonical entropies [Eq. (D31)],
and for a random superposition of close energy eigenstates,
this value is equal to the microcanonical entropy [Eq. (D35)],
up to terms of order 1 that become irrelevant in the thermody-
namic limit. Since superposition of close energy eigenstates
with random phases is a typical state at some late point in
the future, we can conclude that the factorized observational
entropy converges to the microcanonical entropy in the long-
time limit for initial microcanonical states. Mathematically,
we can write

SE(B) 5 Smicro(E), (D36)

for initial microcanonical states py.

Now let us take a look at general pure states of form
Eq. (D20) that are not a superposition of close energy eigen-
states, but rather a superposition of many energy eigenstates.
For such many energy eigenstates with random phases, the
second term in the last row of Eq. (D23) will be really quite
precisely zero. We can again start over above Eq. (D24), but
now we switch the role of variables on which the Jensen’s
theorem (Theorem 9) is applied. In addition to inequality
(D24), the following inequality is also true:

SYPY~ =D > diApe InY diApg
E. E E
_ZAEE’ Zdé lndé
E_ E

— > diIndg = S(pa).
E

\Y%

(D37)

where we have used Y ., Agp = 1, and the last equality is the
consequence of the definition of the diagonal density matrix,
Eq. (29), which we applied on the initial pure state of form
(D20), while considering nondegenerate Hamiltonian H =
> E|E)(E|. Considering the fluctuations pr_ = Pr_|¢k_|?,
and the result from Eq. (D26), we derive bound

Sr(p) = Sp(p) — 1P |2 2 S(pa) — 1¢1*In [ ]2, (D3B)

where |¢|21In|¢|? ~ 0.422784336. Combining the above
equation with the upper bound, Eq. (31), we have

S(pa) — 0422784336 < Sp(p) < S(pa) + O(e),  (D39)

where the left-hand side approximation < depends on how
well the second term in Eq. (D23) can be approximated
to be zero, i.e., it depends how many energy eigenstates
with non-negligible dy are considered in the superposition,
Eq. (D20), so that random phases can effectively average this
term to zero. More such states are considered (i.e., bigger
the superposition), the better the inequality <. The validity
of the right-hand side [meaning that O(¢) is small] depends
on the interaction strength between partitions of the Hilbert
space and the fact that p spans across many energy eigen-
states. The smaller the interaction strength (but importantly,
nonzero, so the thermalization can take place), and the larger
superpositions considered, the better the inequality.

Ignoring the order 1 corrections that will become irrelevant
in the thermodynamic limit, we can write

SE(p) "5 S(pa), (D40)

for initial states Py that span across many different energy
eigenstates. (Although we have proved it only for pure states,
it is relatively easy to generalize to mixed states.)

The two inequalities, Eqs. (D31) and (D39), can be also
combined into a single inequality that considers both superpo-
sition of close energy eigenstates and superpositions of many
energy eigenstates as

Sr(p)  max {Z PEPISFE)) +0.307, S(py) — 0.423}
E

(D41)

for general states with random phases, where pg(p) =
tr[ISEﬁ]. Since such states correspond to states of the system at
some long time in the future, we can also combine Egs. (D36),
(D39), and (D40), while considering approximation given by
Eq. (D35) and ignoring order 1 corrections, and write

Sr(p) '~ max {Z PE(P0) Smicro (E), S(ﬁd)}. (D42)
E

The above equation says that for general states and in closed
nonintegrable systems, the FOE converges to either mean
value of corresponding microcanonical entropies, or to the
von Neumann entropy of the diagonal state, whichever is
bigger, up to order 1 corrections that become irrelevant in the
thermodynamic limit.

APPENDIX E: CORRESPONDENCE OF S,z AND FOE FOR
VERY SMALL e

In this Appendix we show that observational entropy S, g
and FOE Sy gives the same result, when the coarse-grained
position projectors match the partitions of the Hilbert space
for the FOE (also meaning that the number of coarse-grained
position equals the number of partitions, p = m), and when
we consider the interaction strength between different parti-
tions to be zero, i.e., € =0, or to be so small that the dif-
ferences between between energy eigenvalues of Hamiltonian
with such zero interaction A_ and the full Hamiltonian H
is much smaller than the typical energy difference between
the eigenvalues of H. This assumption then assures that each
energy eigenstate of H_ have almost zero overlap with all
energy eigenstates of H but one, which corresponds to the
same energy eigenstate with a slight modification due to €.
For simplicity we also assume that A_ is nondegenerate.

We start by considering the density matrix to be in a pure
state p = |y) (¥|. We write

pie = u[Pr PO\ ) (w| PP Pp] = (EIPL |y) 2. (ED)
Similarly, we can write
Vip = u[ P P Pr] = (E|PY|E). (E2)

We would like to simplify these two expressions in the limit
of large system sizes in order to evaluate S .

We can write the Hamiltonian H by dividing it up as in
Eq. (25). Let us employ the same strategy as in the last section
and set € =0 and call that Hamiltonian A_. In this case,
H_ is block diagonal in the ¥ basis. The projectors }A’;fa) are
diagonal in eigenbasis of H_ with zero diagonal elements
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everywhere except for when % € C; where the diagonal value
is unity. Therefore, [I-AL, 13;(6)] =0 for all C; and we can
simultaneously diagonalize all of these operators.

(E_| can be chosen to simultaneously be an eigenstate of
all of the P;’s (choosing such (E_| is possible because the
common eigenbasis of I-AL, [A’;(‘S) exists). Note that because
of the diagonal form of these operators in this special basis,
that P;|E_) = 0 for all X but one, say, X’. For that projector,
Pw|E_) = |E_) (a projector can only have eigenvalues 0 or
1). In other words, for each energy eigenvector |E_) there is
exactly one vector X" such that Py |E_) = |E_). This defines
a function x’ = X(E_), and we can write Py z_y|E_) = |E_).

In Eq. (E1) we will approximate (E| by (E_|. We can
do that because of our assumption that € is small. We take
vector |) = D g (E_|¢)|E”) written in the eigenbasis of

H_. Then we can write

pie ~ (E_ PO W) 1P = Y (E 1¥)8z5e )86
E"
= [E_|¥)8z.5e)|- (E3)
With the same approximation (E| ~ (E_| we can write
Eq. (E2) as
Vie ~ (E_|PP|E_) = 85 5. (E4)

Then assuming we do not sum over elements such that
Vir = 0, we can write

PiE
ScE Z pieIn V;E
X, E

KE_1¥)8z 3z )|?
8% X(EL)

&

S KE_ )8z, In

X,E_ X=X(E_)

=Y WE_[¥)PIn[(E_[¥)* = Soc, (h)

E_
= So(cyin-acym)B) = Sr(P). (ES)

where the previous from the last equality is due to the non-
degeneracy of Hamiltonian without interaction H_, and as-
suming that partitions Cya) ® - - - ® Cgzen copy the positional
coarse graining.

This analysis can be generalized to mixed states p by
obtaining

pie M (E_|PpPV|E_) = (E_|pIE_ )8z z0)  (E6)

and calculating the same string of equalities as in Eq. (ES).
The above argument can be understood more intuitively
by giving an example. Suppose we divide a one-dimensional
lattice system with nine sites 1,2, ...,9, and four particles
into boxes of size § = 3. Here we are assuming that particle
number is conserved. Then coarse graining in position Cx
separates basis states into different groupings. For example,
the first particle could be in the box {1-3}, the next two
could be in box {4-6}, and the final one could be in the
box {7-9}. We can represent this coarse graining by the
“signature” [1, 2, 1], when the particles are indistinguishable,
which represents the number of particles in each box. The set

of coarse-grainings projectors C; are isomorphic to the set of
allowed signatures, [4,0,0], [3,1,0], etc. When a projector P;
acts on a wave function, it is projecting out the components of
the wave function with P;’s signature.

Now we consider eigenstates of H_. Because different
boxes do not interact, we can write an arbitrary eigenstate
|E_) as the product of individual energy eigenstates in each
box, |[E_) = |E;) ® |E2) ® |E3), where the E; denote the
energy eigenstate of each separate box. But each of these
eigenstates has a fixed particle number. Therefore to each
total eigenstate | E_) we can associate a unique signature, for
example [1,2,1], meaning that | E) is a one particle eigenstate,
|E>) has two particles, etc. When we apply a projector to
|E_), Pz|E_), we will get zero unless the signature of P; and
|E_) are the same. Therefore Pz|E_) will be zero unless X =
X(E_). And by orthogonality, (E’ |E_) = Ounless E/ = E_,
so we conclude that (E’ |Pz|E_) =0 unless X = X(E_) =
X(E"),and E’ = E_, to which we arrived at above, by more
general means.

APPENDIX F: CONVERGENCE OF S, TO
MICROCANONICAL ENTROPY

In this first part of this Appendix we show that the obser-
vational entropy S;g is equal to the microcanonical entropy
for energy eigenstates. In the second part we show that S, g
of a superposition of close energy eigenstates with random
phases also gives the thermodynamical entropy, implying
that the Syg converges to microcanonical entropy for initial
microcanonical states.

1. S,k of energy eigenstates

We assume that the Hamiltonian is nondegenerate, which
is the case for nonintegrable systems, and for simplicity we
assume that the Hamiltonian is real, i.e., all of its eigenvectors
can be chosen to be real, which means that the Hamiltonian
has spinless time-reversal symmetry.

We will also refer to the nonzero x projector corresponding
to E_ as x(E_). In contrast to the previous section, where we
considered € to be small, here we consider S, g with any finite
€. We will concentrate on the entropy of an energy eigenstate
|v) = |E’), in which case Eq. (E1) becomes

pir = KE[PL|E). (F1)
Using Eq. (D7) this becomes
(EIPPIEY = )

E_E F=%(E_)

>

E_ 3i=%(E_)

cpp cpe (E_|E")

CE'E CEE_- (F2)

Computing the average over the ¢’s similar to what was done
in Appendix D:

A (8
pie = KEIPD|EN = )
E_E",
XE_)=XE )=X

CEE CE'E_CEE' CE'E’ -

(F3)
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We take the ¢’s to be Gaussian random variables. They are also
real from the definition, because the eigenvectors are assumed
to be real. They are not completely independent because they
are all orthogonal,

ZCEE,CE'E, =Sep. (F4)
E.

This leads to extra four point correlations which are derived
in Appendix G, giving

2 2
AE/E, AEE—
2 2
>pr Nppr Mgy

+8E7E’,C%/E76%E7' (FS)

CEE CE'E CEE' CE'E’ = —

Here as given in Eq. (D6), ¢%,_
theorem,

= Agg—. Using Wick’s

2

- a2 2
CE'E,C%E, = A A%EE +48EE’( EE_ ) . (F6)

Thus pxzg is the sum of three terms and the magnitude of all
of them can be estimated. Denote the number of energy levels
contributing to A as N, and the number of X signatures that
are being summed over as N;. Thus the first term in Eq (F5)

is of order A2 +» and the first in Eq. (F6) is of order =% and
the second is of order . If the size of a box is large, we have
that * <« 1. Thus the surviving term in this limit is

> AL

E_i=X(E-)

piE = g Mg = Qe (F7)

where we have defined Qg .z
to use it further.

by the above equation, in order

Similarly
Vip = u[ P Pg] = (EIP”|E)
= Z cep cpp (E_|EL) = Z ALy .
E_E. F=%(E_) E_i=%(E_)
(F8)

Because Y., A%, =1, Eq. (F8) can be rewritten using
Eq. (F7) as

Vie =Y Qpp (F9)
7
and therefore
Qe
e(|E" Qppyl F10
Sce(| Z EE’ ZE U (F10)

We are assuming that A%, only is sizable for |[E — E_| <
E, and can be written as A%, = A%(E — E_). Because

ZX,E PiE = ZX’E QEgg.x = 1. Therefore Q from Eq. (F7) is
of the form

> ers =Y [ QurapErE =1
X,E X

where p(E) denotes the density of states. Because, as we
explained in Appendix D, A is approximated by a Lorentzian

(F11)

and is therefore highly peaked, and according to Eq. (F7) Q2
is a convolution of two A and therefore is also highly peaked,
then we can write this function as

1
Qrps = —M(E—E), F12
EEE = 37 ( ) (F12)
where N is a normalization constant and A, (E — E’) denotes
a highly peaked distribution with normalization [ dex,(e) =
1. From Eq. (F11) we obtain the normalization constant

N = N,p(E"). (F13)
Rewriting the entropy in terms of A,
Ax(E — E) kX(E—E/)
See(IE) = —
: ZE Nop(E") p(E")
AMm(E—E") A(E—FE
.y / gt EZE)  h(E ~ E)
- N, P(E)

(F14)

p(E") disappeared from the denominator because of approxi-
mation ), — [, dE. Substitutinge = E — E/,

, , 1
Sye(|E")) =Inp(E") — ZF/deAx(e)lnAx(e). (F15)

The second term on the right-hand side is of order 1 [propor-
tional to In AE in comparison with definition of microcanon-
ical entropy, Eq. (35)] unless A, has a pathological form (i.e.,
for example A, being a long-tailed function). The first term is
the microcanonical entropy. This shows that S, g of an energy
eigenstate gives the microcanonical entropy, up to a constant
of order 1 that becomes irrelevant in the thermodynamic limit.

2. S,k of a superposition of energy eigenstates

In analogy with the second part of Appendix D, we
consider an initial state p = | ) (Y|, [¥) = > €% cp|E'),
with random phases ¢g. Then, in analogy of Eq. (D23),
considering a simplified argument (without “smoothing out”
by function Agg_, without random variable n coming from
averaging over random matrices, and without ¢ coming from
averaging over phases), and ignoring order 1 corrections, we
have

pie = KEIPO WP =Y e (EIPY|E)

E/
+ Y epepe @ e (E| PO EVE"| PP E),
E'£E"
(F16)
where the second term is small due to the randomness of ¢ g

and ¢ and we will neglect it.
In analogy of Eq. (D24),

Se(P) 2 Y d2 S,k (IE)), (F17)
E

where the inequality becomes approximate equality when for
all nonzero dg, eigenvectors |E) are close to each other and
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peaked around some eigenvalue Ej, i.e., for PS states with
random phases. For such state we have

See(p) ~ Y dpSie(IEo)) = Scr(1Eo)) Y _dy = Scr(|Eo)).
E E

(F18)
Since random phases indicate the state of the system some
time in the future, we can conclude that for initial PS states,
Sy e converges to the microcanonical entropy.

The above arguments ignore order 1 corrections, because
we ignored fluctuations in eigenvectors by averaging of the
¢’s. However we can follow the same logic mutatis mutandis
of Appendix D2 which leads to analogous corrections and a
similar relation to Eq. (D34).

APPENDIX G: FOUR POINT CORRELATIONS OF
RANDOM EIGENVECTORS

Consider two normalized N dimensional vectors X and y
that are orthogonal X - y = 0. Aside from that constraint, the
two vectors were drawn from Gaussian distributions so that
every component is independent and (x?) = ¢ and (y?) =
w?. We would like to compute (X, Y, X Vi) for n # m.

The probability of any particular X and y is

- X2 y
P(x,y)ocexp(—zg’?+2—a’)2 51> xivi ). (GD
And therefore

(XnYnXmYm) = /H(dxidyi)P()_év ;)xnynxmym- (G2)
This can be written in the form

32InZz

0€,,€m

, (G3)

€m=€,=0

(XnYnXmYm) =

where
2

2
X; <
Z(€n, €,) = / | |(dxjdyj)e"p (_ Z 2;,2 + 2);:.2
j : '

+ €mdim + €n8in>8(~)—é - ¥). (G4

We evaluate this by using the Fourier representation of the §
function and ignoring irrelevant const prefactors:
2

ico X y-2
Z(€p, €,) CX/ d)»/l_[dxjdyj exp —Zg’z_pz_a’)z
- j i i

+€m85m +€n8m +)\xiyi)- (GS)

Now the integral pairs dx;dy; can be integrated separately
and we can use that

1 )C2 y2
/dxdy exp—i ) + Pl + 2Axy

1 —1/2
=2r <02w2 - ,\2) (G6)

to write
Z( ) / ™ di ! Zl : 22
€ms €n) X exp | —= n —
Il I o202
i#n,m s

11 ! A2 =22

—=In — A7 —2Xe,
2 \opoy,
1 1 5

—Eln = —A2 =2, ) |. (G7)

Because we are differentiating with respect to €, the terms of
order €2 have been dropped. And we can further make use of
this by Taylor expanding the two final logarithms, giving

ico 1 1
Z(€m, €n di — 1 — 22
(€m, € )m[ exp | —5 Z n(crzwi2 )

ioo i#n,m i
2.2 2,2
_ Aen0, @, A€o, @), (G8)
1 —220202 1 —2A20202 |
m m n n

1
72
gj w;

If we consider the terms In( — 2?%), we can write this as

In(1 — oiwakz), plus an unimportant additive constant. This
in turn can be expanded to second order in A. To that order
)L2
- Z In (1 —ofwir?) = - ofw?. (G9)

i#n,m i#n,m

When integrating of A, this gives a Gaussian with a variance
of 1/ 2nm o/ ?. Using units where the maximum of o and
w is unity, and their distribution has a width of N, we can
then say that this variance is O (1/N). This means that in the
integrand, A > 1/4/(N) will give a negligible contribution
to the integral and we can ignore all such contributions.
Therefore, the terms A%02w? and %0, >? also give negligible

m m
contributions and we can write

Z( ) /[ di —)\2 2?2
€my €n) X ex E ol w;
_ P 2 - e

ioco
+)\(eman21w,2n + e,,afwi)). (G10)

We can now integrate over A obtaining
_ (emogop+enoged)?

2.2
2% 020

Z(€p, €,) X e (G11)

Using (G3), we differentiate with respect to the €’s to obtain

2.2 2. 2

onl 0)771 071 a)Vl

S (G12)

(xn YnXm ym) = -
for n #£ m.
APPENDIX H: Sg,, OBSERVATIONAL ENTROPY OF

MEASURING ENERGY AND THEN POSITION

We already mentioned in the text that the reverse order of
two projections, Eqs. (23), i.e., first measuring the energy,
and then measuring the coarse-grained position, leads to

012103-36



QUANTUM COARSE-GRAINED ENTROPY AND ...

PHYSICAL REVIEW A 99, 012103 (2019)

an entropy that is independent of time, and therefore does
not seem to have a good interpretation of entropy that has
desirable properties for closed systems out of equilibrium.
Here we explore this even further, by considering the same
order of operations, but we also coarse graining in energy,
which introduces a nontrivial time dependence. We will argue
that neither this choice leads to a meaningful nonequilibrium
entropy.

We consider two coarse-grained sets of projectors in posi-
tion and energy

Cyo = {P}.. P =D IR)(FL, (Hla)
):CEC;
Copw = (P}, P = D> |ENE|, (HIb)
E€[E,E+A]
where as before in Eq. (12), X = (x1, ..., x™)) is a vector

denoting positions of N particles, and its elements take values
of any xi, ..., x,. C; denotes a hypercube that starts at vector
X and is of width 8. A denotes the width of coarse graining in
energy.

Now we will study the observational entropy

Sex(P) = So(cqm o) (P)- (H2)

Evolution of this entropy in the one-dimensional fermionic
chain as a function of time is plotted in Fig. 9, for different
values of A. The resolution in measuring position is fixed to
four sites. The resolution in measuring energy was varied. The
energy bins span the entire energy spectrum from the lowest
to highest eigenvalue, Ey, and Ep,x, respectively. We define
A = EnacEun - where M is the number of energy bins. One
can see that as this number increases, the dynamics become
smoother and vary less rapidly. In the limit where each bin
contains only one energy level (M — 00), it is easily seen
that there is no time dependence.

Theoretically, when a fine grain projection over the energy
is applied, a time independent quantity is obtained because
such a projection makes any state stationary. Coarsening the
energy projection makes the resultant quantity time depen-

7.0t ,’ \ ,’

6.5

6.0} !

.............

3.5 : : : : :
0 5 10 15 20 25 30
t

FIG. 9. Observational entropy of measuring energy with reso-
Iution A and position with resolution § for a system of length
L = 16. The system starts contained within the first eight sites with
hard wall boundary conditions, in energy eigenstate number 11 of
Hamiltonian A, At 1 = 0 the right wall is expanded so that
L =16 and the system evolves. We study the integrable system,
defined by parameters t = V = 1 and t' = V' = 0.0. The resolution
in position is four sites corresponding to § = 4. The resolution in
energy is A = w, where E..« and E.;, are maximum and
minimum eigenvalues of the Hamiltonian, and M is the number of
energy bins. The three lines correspond to different resolutions in
measuring energy: M = 1 (red dashed), M = 8 (green half-dashed),
and M = 64 (blue dotted). M = 1 represents an inability to measure
energy, and the resulting entropy is then observational entropy coarse

grained only in position.

dent, but in a way that depends strongly on the amount of
energy coarse graining, rather than the underlying dynamics.
Therefore the dynamics of this kind of entropy depend on the
choice of energy bin size, and do not reflect the underlying
microscopic dynamics of the system.
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