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We propose a revised observable for the current in an open tight-binding system. Assuming a conserved
number of electrons and within Markovian dynamics, we first derive the general formula using local charge
conservation, then a simple expression of the open system current operator is recovered under translation
invariance and single-particle approximation. Compared with the established result for a closed system, this
expression contains an extra term for each Lindblad operator. In the demonstration with a two-dimensional
two-band topological insulator at zero temperature, we show that such an extra term is nontrivial in maintaining
the robustness of quantized Hall conductivity against pure dephasing and cooling in an energy basis. Moreover,
we show that site-local noise described in two different ways is trivial to the formalism of the current operator,
which nevertheless by no means prevents it from affecting conductivity.
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I. INTRODUCTION

Probability current is fundamental to the study of transport
property in quantum mechanics. To study this current in
complicated systems, a current operator is required. That is,
an observable whose mean value yields the probability current
(see Fig. 1). In various quantum systems and under various
conditions, the formalism of the corresponding current oper-
ators have long been a focus of research [1–3]. Particularly,
how to account for the effect of environment on the formalism
of the current operator remains an open question [4–6]. Here,
we focus on the tight-binding (TB) model [7–10]. Although
its current observable has been well established [9,11] as an
isolated system, a formalism for the open system counterpart
has yet to be fully addressed.

The transport property of the TB model as a open system,
namely the Hall conductivity of a topological insulator (TI)
[12–16], has attracted wide interest [17–21]. The absence of
an established formalism for the corresponding open system
current operator presents a great challenge. Many works on
open system Hall response simply employ the same current
operator given for a closed system [22–24]. Such research is
therefore confined to momentum-independent noise, which is
believed to have a trivial effect on the current operator.

In this work, we formalize the current operator for an open
system TB model. Under the assumption that the number of
electrons conserves, our general formulation is directly based
on the continuity equation, with system dynamics given by
the general form of the Markovian master equation. Subse-
quently, by assuming discrete translational invariance and un-
der single-particle approximation, we recovered a formula that
conforms to the expression of “flux” that has been derived and
examined by Avron et al. [25]. The effect of the memoryless
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FIG. 1. Illustration of concept for current operator, which is a key
characterization of the transport property of a quantum system. It is
derived from the dynamics of the system, but it also relies on the
structure of the system in real space.

environment on the current operator is formalized as addi-
tional terms that are each entirely given by a corresponding
Lindblad operator. We show that such an open system term
in the current operator is indeed trivial if the corresponding
Lindblad operator is momentum independent.

As a demonstration, the open system current operator is
then applied on a two-dimensional (2D) two-band TI under-
going dephasing and cooling. The robustness against noise
in TIs has attracted much interest. And multiple theoretical
predictions of such robustness has been made under certain
noise, for observables [25,26] as well as the topology of
the state [27]. Particularly, it has been shown that the Hall
conductivity of a TI simulated by a photonic system is robust
against Lindblad operators that are powers of the Landau-level
lowering operators [26].

Here we show in an actual TI characterized by the TB
model that such robustness stands against pure dephasing
and cooling in the basis of energy at zero temperature as
the current response is evaluated by the open system current
operator, which also conforms with the result on “flux” (see
Theorem 10 of Ref. [25]). Dephasing is known to affect
the response of the system’s density matrix to an electric
field [22]. However, as we will demonstrate and analyze, the
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second term in the open system current operator cancels the
effect of such an influence on the actual current response.

The remainder of this paper is organized as follows: In
Sec. II, we give the general formalism of an operator the
average value of which gives the mean probability current on
a TB open system obeying the Markovian master equation.
In Sec. III, we recover a simple expression of the current
operator under translation invariance and single-particle ap-
proximation. In Sec. IV, by using quantum Hall response as
an example, we demonstrate that the effect of dephasing on
the current operator is not only nontrivial, but it also conspires
to maintain the robustness of quantized Hall response. Finally,
we conclude in Sec. V.

II. MARKOVIAN FORMALISM

We begin by generally considering a open TB system,
where electrons are safely trapped within a collection of
orbits. These orbits are localized in real space at discrete
locations (sites), where multiple orbits are allowed to coexist.
Such a structure in the real space thereby stated will be all that
we need about the system Hamiltonian until Sec. III.

As for the environmental effect, in order to recover an
open system current operator that produces current with the
instantaneous state of the system, we restrict to the situation
where the open system dynamics is entirely determined by the
instantaneous state of the system. In other words, we require
the open system in question to be undergoing Markovian
dynamics, which is given generally by a Markovian master
equation as follows:

ρ̇ = L(ρ) ≡ −i[H, ρ] +
∑

j

γj

[
VjρV

†
j − 1

2
{V †

j Vj , ρ}
]
,

(1)

where H is the system Hamiltonian, Vj are the Lindblad
operators defined on the subject system Hilbert space, and the
real constant γj characterizes the rate of decoherence intro-
duced by each Lindblad operator. This assumed Markovian
dynamics is reasonable for a TB model under single-particle
approximation and weak coupling with the environment.

Moreover, we also assume that the number of electrons
conserve in the system. That is, although electrons are sub-
jected to interaction with environmental degrees of freedom,
there is no exchange of particles with the environment. Such
restriction is physically possible since the environment in
question could easily be photonic or phonon field. Therefore,
the current and the electron number at each location must
satisfy a continuity equation. Apparently, this continuity equa-
tion only relies on the electron number expectation at each
site, which in turn only requires the system density matrix as
follows:

∂

∂t
Tr[Prρ(t )] + ∇ · J (r ) = 0, (2)

where r denotes the location of a site in real space. For
simplicity, this formalism above is given in the Schrodinger
picture, with the instantaneous state of the open system
given by density matrix ρ(t ). The total number of electrons
at location r is produced by a time-independent operator

Pr = ∑
α c†α (r )cα (r ), with the index denoting different orbits

within the same site. Under a given structure in real space,
the continuity equation above essentially defines the current
from the motion of density matrix. Also note that J (r ), the
probability current of electrons at location r , is not an operator
here.

Current characterizes the transport of probability from one
location to another, which is a natural result of state motion.
The motion is in turn determined by both the nature of the
system dynamics and the instantaneous state. Formalizing
the current observable is essentially about simplifying the
relations. To such end, we follow a procedure similar to that
for the current operator in a closed system [9]. We consider the
Fourier transformation of the continuity equation as follows:∫

d reiq·r
[

∂

∂t
〈Pr〉 + ∇ · J (r )

]
= ∂

∂t
〈Pq〉 − iq · J q = 0,

(3)

in which 〈 • 〉 ≡ Tr[ρ • ], Pq ≡ ∫
d reiq·rPr , and J q ≡∫

d reiq·r J (r ), where the arbitrary vector q is a dual vector
of r , hence also physically a wave vector.

We focus on the average current on the sample rather
than the current on a particular part of the sample. From J q ,
we directly obtain the average current in a unit-size subject
sample:

J̄ ≡
∫

d r J (r ) = lim
q→0

J q . (4)

We note that the average current of an actual system must be
finite, so the expression above is physically guaranteed as safe
from singularity at q → 0.

Considering that trace is invariant under cyclic permuta-
tions, we have

iq · J q = ∂

∂t
〈Pq〉 = Tr[PqL(ρ)] = 〈L′(Pq )〉,

L′(Pq ) ≡ i[H,Pq] +
∑

j

γj

[
V

†
j PqVj − 1

2
{V †

j Vj , Pq}
]
.

(5)

Note that, compared with L, the right acting operator and the
left acting operator in each term are exchanged due to the
cyclic permutation in superoperator L′.

As illustrated in Fig. 1, a current operator is essentially
a direct linear relation between the instantaneous quantum
state of the system and the current its instantaneous motion
presents. Continuing from Eq. (4), we arrive at an expression
for average current:

J̄ = ∇q (q · J q )|q→0 = −i∇q〈L′(Pq )〉|q→0. (6)

The general formalism of current operator is thereby given as
follows:

Ĵ = −i∇qL′(Pq )|q→0. (7)

Admittedly, this result is not yet simple enough for numerical
use. However, the only assumptions employed so far are the
conservation of electron number, a real-space structure in
continuous limit, and system dynamics characterized by a
Markovian master equation.
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III. CONDITIONAL RESULT

In the following, we shall recover a simple current
operator under translation invariance and single-particle
approximation. Apparently, one would need an infinitely large
sample of solid-state matter to actually satisfy translation
invariance. Our rationale is that the limit of infinite large is
a good approximation to study the nature of any sufficiently
large sample.

At continuous limit and without nonlinearity, the Hamilto-
nian of such a TB model is most generally denoted as follows:

H =
∫

d rd r ′ ∑
α,β

c†α (r )hαβ

r r ′cβ (r ′). (8)

Depending on indices, h
αβ

r r ′ is either the transitional energy
between two orbits (from either the same or different site),
or the free energy of an orbit at a site.

For simplicity, we employ a Fourier transform,

cα (r ) =
∫

dkeik·rck,α, (9)

where ck,α is an annihilation operator in momentum space.
Translation invariance is formally given as h

αβ

r r ′ ≡ h
αβ

R , where
R ≡ r − r ′. The Hamiltonian can thus be rewritten as fol-
lows:

H =
∫

dk
∑
α,β

c
†
k,αh

αβ

k ck,β

︸ ︷︷ ︸
H (k)

, (10)

in which h
αβ

k = ∫
d Reik·Rh

αβ

R . It is obvious from this expres-
sion that momentum conserves.

Likewise, we give the general form of a Lindblad operator,
and assume that it satisfies translation invariance:

Vj =
∫

d rd r ′ ∑
α,β

c†α (r )vαβ

r−r ′,j cβ (r ′) =
∫

dkVk,j , (11)

Vk,j ≡
∑
α,β

c
†
k,αck,β

∫
dReik·Rv

αβ

R,j︸ ︷︷ ︸
v

αβ

k,j

. (12)

We note that operators of quadratic form in the creational
and annihilation operators represent completely the linear
operators on the single-electron Hilbert space, hence it can be
shown that the thereby assumed form of master equation can
cover all dynamical semigroups on this Hilbert space [28,29].
Moreover, translational invariant Lindblad operators comply
with momentum conservation as well.

Moreover, in the momentum space, using Eq. (9), we also
have

Pq =
∑

α

∫
dkc

†
k+q,αck,α =

∑
α

∫
dkc

†
k+q/2,αck−q/2,α,

(13)

where arbitrary replacement k → k − q
2 is justified for being

within an integration over k.

We then evaluate L′(Pq ). Consider that we’re restricted
to a single-electron Hilbert space, by using ck,αc

†
k′,β |vac〉 =

δkk′δαβ |vac〉 whenever it applies, we produce the following:

[H,Pq] = c
†
k+q/2,α

[
h

αβ

k+q/2 − h
αβ

k−q/2

]
ck−q/2,β , (14)

V
†
j PqVj = c

†
k+q/2,α

[(
v

γα

k+q/2,j

)∗
v

γβ

k−q/2,j

]
ck−q/2,β , (15)

V
†
j VjPq = c

†
k+q/2,α

[(
v

γα

k+q/2,j

)∗
v

γβ

k+q/2,j

]
ck−q/2,β , (16)

PqV
†
j Vj = c

†
k+q/2,α

[(
v

γα

k−q/2,j

)∗
v

γβ

k−q/2,j

]
ck−q/2,β , (17)

where index summation is assumed. We’re only interested
in the first-order differential around q → 0, hence it would
suffice to only preserve the first order of q. We give

h
αβ

k+q/2 − h
αβ

k−q/2 = q · ∇kh
αβ

k + O(q2), (18)(
v

γα

k+q/2,j

)∗
v

γβ

k−q/2,j = q
2

· [
v

γβ

k,j∇k
(
v

γα

k,j

)∗ − (
v

γα

k,j

)∗∇kv
γβ

k,j

]
+(

v
γα

k,j

)∗
v

γβ

k,j + O(q2), (19)(
v

γα

k+q/2,j

)∗
v

γβ

k+q/2,j + (
v

γα

k−q/2,j

)∗
v

γβ

k−q/2,j

= 2
(
v

γα

k,j

)∗
v

γβ

k,j + O(q2). (20)

Putting all of the above together, the expression of L′(Pq ) to
the first order of q reads

L′(Pq
) = O

(
q2

) +
∫

dk
∑
α,β

c
†
k+q/2,αck−q/2,β

{[
iq · ∇kh

αβ

k

]
+γ q

2
·
∑

j

[
v

γβ

k,j∇k
(
v

γα

k,j

)∗ −
(
v

γα

k,j

)∗∇kv
γβ

k,j

]}
.

(21)

Finally, by using Eq. (7), we recover the current operator on
a translational invariant TB model obeying the Markovian
master equation. For more clarity, we decompose the current
operator by momentum and direction. The average current
in the l direction is then given by a simple summation of
the current contribution expectation from each momentum
components as follows:

J̄l =
∫

dkTr[Ĵl (k)ρk(t )],

Ĵl (k) = ∂H (k)

∂kl

−
∑

j

iγj

2

[
∂V

†
k,j

∂kl

Vk,j − V
†
k,j

∂Vk,j

∂kl

]
,

(22)

where the density operator ρk(t ) is on the subspace of Hilbert
space of momentum k. The first term of the current operator
Ĵl (k) is consistent with that for a closed TB system, while the
second term gives the transport of probability resulting from
environment-induced dynamics.

From Eq. (12) we observe that v
αβ

r r ′,j ≡ δr r ′v
αβ

r r ′,j would
give ∇kVk,j ≡ 0, which is trivial in the above formalism.
In other words, site-local noise, which produces momentum-
independent noise, is trivial to the current operator. We note
that a microscopic formalism mirroring this result is also
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given (Appendix A). For both sufficient conditions guarantee-
ing trivial open system influence on the current operator, the
physical explanations are the same: The dynamics of site-local
noise do not transport electrons from one site to another.

Apparently, Eq. (22), though given by a different principle,
is the same as a gauge invariant formulation of the principle of
virtual work with momentum as the control [25]. Moreover,
we note that this expression also conforms with the mean
velocity of an electron, of which we give a much simpler
derivation in Appendix B, where it also leads to another
validation of our formula.

The derivation here is limited to the mean current density
over the bulk of a sample, but as long as the current and the
charge distribution on the sample were stable, it has to reflect
the current passing through a barrier on the sample, which in
turn has to be consistent with the current measured through
external circuitry. Also, moving electrons can also generate a
magnetic field that reflects their mean velocity, which presents
another way to measure the electric current. For greater access
to the real-time dynamics, one can also use simulation by cold
atom in optical lattice [30]. A wide range of dissipation can
be implemented [31] in such a system, and the instantaneous
location of a cold atom (substitution of an electron) can be
more easily measured [32].

IV. DEMONSTRATION

In this section, as an example, we apply the formalism
above to the evaluation of Hall conductivity.

A. Model

Consider a simple translational invariant 2D two-band TI
subject to both dephasing and cooling. Without electron-
electron interaction, each momentum component of this sys-
tem is simply a two-level system, the master equation of which
reads

ρ̇k = −i[Hk, ρk] + γ D
k [σ̃z,kρkσ̃z,k − ρk]

+ γ C
k [2σ̃−,kρkσ̃+,k − {σ̃+,kσ̃−,k, ρk}], (23)

where k denotes the momentum, σ̃l,k is a Pauli matrix in the
eigenbasis of H (k), σ̃±,k = 1

2 (σ̃x,k ± iσ̃y,k ), and γ D
k and γ C

k
are, respectively, rates of pure dephasing and cooling in the
basis of energy at momentum k.

For simplicity, we map the density matrix of each two-level
system to a basis of Pauli matrix. By denoting Hk = �dk ·
�σ and ρk = 1

2 (�nk · �σ + I ), the master equation is rewritten
exactly in the following form:

∂

∂t
�nk = 2 �dk × �nk + 2γ DC

k [(�nk × �zk ) × �zk]

− 2γ C
k [(�nk · �zk ) + 1]�zk, (24)

where �zk = �dk/| �dk| and γ DC
k ≡ γ D

k + 1
2γ C

k . In terms of the
density matrix in the eigenbasis of free energy (the first term),
the second term corresponds with the loss of its nondiagonal
values, and only the third term affects the population. Hence
γ DC

k characterizes the total rate of decoherence.
To preserve translation invariance in space, in the evalua-

tion of Hall response, the electric field is introduced via vector

potential, making the Hamiltonian time dependent instead.
Formally we use the Pierels substitution [9]:

k → k + (−e)

h̄
E t. (25)

The overall system must remain physically unchanged under
the static electric field E, so the treatment above is applied
to both the Hamiltonian and the Lindblad operators. Since
transport arises from instantaneous motion, the current ob-
servable at every moment is given by the instantaneousbrk
dynamics.

B. Robustness

By using Lindblad operators from both cooling and pure
dephasing, extensive operator and vector gymnastics produces
the open system current operator as follows:

Ĵy (k) =
{

∂ �dk

∂ky

− γ DC
k

[
�zk × ∂�zk

∂ky

]}
· �σ

+ γ C
k Tr

[
σ̃x,k

∂σ̃y,k

∂ky

]
|ek〉〈ek|, (26)

where |ek〉 is the instantaneous upper energy eigenstate of the
momentum k component. Note that it returns to the closed
system current operator Ĵ0y as γ D

k , γ C
k → 0.

For an isolated two-level system, redefining each level by
adding an arbitrary phase wouldn’t alter the physics of the
system. However, for a translational invariant two-band TB
model, such a phase factor within each momentum component
is acquired in Fourier transformation from the full Hamilto-
nian in real space, and hence is not physically trivial. Under
an arbitrary cooling rate, the second line in Eq. (26) can be
engineered to be either trivial or nontrivial by adjusting the
phase of the basis on which the Pauli matrix σ̃x is defined.
And for simplicity, we hereby assume the former and ignore
this term.

At zero temperature and under energy-based dephasing and
cooling, we follow Berry’s approach [33] by solving Eq. (24)
in a noninertial frame moving with �zk as it became time
dependent under Eq. (25). The response of density matrix to
an electric field in the x direction thus reads

∂ρS
k

∂Ex

= −
{[

dk + γ DC
k �zk × • ]−1

[
�zk × ∂�zk

∂kx

]}
· �σ , (27)

where ρS
k denotes the steady state of momentum k, dk = | �dk|,

and Ex denotes the electric field in the x direction. Through
tedious derivations, we observe that

Tr

[
Ĵy (k)

∂ρS
k

∂Ex

]
= Tr

[
Ĵ0y (k)

(
∂ρS

k

∂Ex

)
γ DC

k →0

]
. (28)

Strikingly, though both the response of density matrix and
the current operator are affected by decoherence, the current
response to electric field remains unaffected for each momen-
tum component. This result is consistent with that by Avron
et al. [25].

As a comparison, we denote the analytical formalism of
current response evaluated by closed system current operator
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FIG. 2. Numerical simulation of open system Hall response.
Units of e = h = 1 are employed. Jy is the current given by open
system current operator, it is stabilized at Chern number C. In
comparison, J0y and its analytical steady value σxy are produced by
closed system current operator.

as follows:

σxy ≡
∫

BZ

dkTr

[
Ĵ0y (k)

∂ρS
k

∂Ex

]
. (29)

A simple Chern insulator model is used in our simulation
[13], of which the topological invariant C is called the Chern
number. As shown in Fig. 2, when the electric field is applied,
the average current J̄0y , which is evaluated by Ĵ0y (k), is af-
fected by the dephasing and cooling. It eventually is stabilized
at σxy , which varies with dephasing rate and deviates from
the topological invariant. However, the average current J̄y , as
given by Ĵy , is stabilized at the topological invariant.

C. Site-local noise

We note that site-local noise, although trivial to the ex-
pression of current operator, is nonetheless nontrivial to the
Hall conductivity. As a simple example, we consider the
translational invariant but site-local cooling and dephasing
terms:

γ D
SL[σzρkσz − ρk] + γ C

SL[2σ−ρkσ+ − {σ+σ−, ρk}], (30)

where σl are the Pauli matrix in the original basis, and
momentum-independent γ D

SL, γ C
SL are rates of site-local pure

dephasing and cooling, respectively. Correspondingly, in
Bloch vector space, the contributions of these terms are as
follows:

2γ DC
SL [(�nk × �Z) × �Z] − 2γ C

SL[(�nk · �Z) + 1] �Z, (31)

where �Z = [0, 0, 1] and γ DC
SL ≡ γ D

SL + 1
2γ C

SL. Simulation with
site-local noise can then be realized by appending these terms
to the Bloch vector equations of motion Eq. (24), while
evaluation of the current is unaffected due to the trivial effect
of site-local noise on the current operator.

As shown in Fig. 3, site-local noise clearly affects the Hall
conductivity. Moreover, although pure dephasing and cooling
in the energy basis are trivial to the Hall conductivity at zero
temperature as they are imposed alone, the same proposition
does not extend to the situation where they are combined with
other noise. In the presence of other forms of noise, adding

0 5 10 15
0

1

0 5 10 15

0.3

0.6

(a) (b)

FIG. 3. Demonstration of the effect of energy-based pure de-
phasing in the presence of other noise. The same model and units
as in Fig. 2 are used. γ C

k = 0.4dk in both figures, whereas (a) γ D
SL =

γ C
SL = 0 and (b) γ D

SL = γ C
SL = 0.3 ns−1.

or subtracting the energy-basis pure dephasing rate clearly
affects the Hall conductivity.

V. CONCLUSION

In conclusion, we formalized the current operator for a TB
model subject to general memoryless noise under a conserved
number of electrons. A general formalism for average current
is produced, and a simple expression, Eq. (22), is recovered
under translation invariance and single-particle approximation
from two different perspectives. Though this expression has
been given by other principles before, our derivation based on
local charge conservation shows that it is indeed the open sys-
tem current operator, and the other derivation in Appendix B
shows that its mean value is consistent with the closed system
current operator given by the full system Hamiltonian. As
far as theoretical analysis goes, this result can serve as a
solid foundation to the research on the transport property of
the open system TB model beyond momentum-independent
noise.

Moreover, we have also shown, from two distinct perspec-
tives, that site-local noise is trivial to the expression of the
current operator. The effect of momentum-independent noise
is shown as indeed trivial to the formalism of current operator,
in support of numerous previous research on open systems
where the closed system current operator is directly employed.
Admittedly, the definition of site-local noise in the general
microscopic model is different from that in a translational
invariant Markovian system without electron interactions,
whereas the relation of the two remains opaque. However,
these two definitions are never both applicable to the same
system characterization.

Finally, upon examining Hall conductivity, we find that
quantized Hall response is robust against energy-based pure
dephasing, even as both the density matrix and current op-
erator are nontrivially affected. This conforms with previous
findings. However, we note that the effect of energy-based
pure dephasing is not simply trivial to Hall conductivity, since
we have also shown that in the context of other forms of noise,
the influence on Hall current becomes nontrivial.
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APPENDIX A: MICROSCOPIC SUFFICIENT CONDITION
FOR TRIVIAL OPEN SYSTEM EFFECT ON

CURRENT OPERATOR

We generally consider a full system Hamiltonian H =
H ⊗ IE + ∑

l ASl ⊗ AEl + IS ⊗ HE , where IS, IE are the
identity operators on the system and the environment, re-
spectively, ASl, AEl are operators on the system and the
environment, respectively, and H and HE are the Hamiltonian
of the system and the environment.

We then use Liouville equation with the full Hamiltonian
before tracing out the environment.

The lack of particle exchange with the environment allows
a straightforward extension to the full system as follows:

Pr → Pr ⊗ IE. (A1)

With some operator gymnastics, the full system continuity
equation can eventually be unfolded as follows:

Tr{Pr [H, ρ]} +
∑

l

Tr{[Pr , ASl]Fl} = i∇ · J (r ). (A2)

where Fl ≡ TrE{AElρSE (t )}, in which ρSE is the full system
density matrix. We observe that the effect of the environment
is clearly included in the second term, the presence of which
is clearly able to have a nontrivial influence to the value of
J (r ) even with the same open system state ρ. Moreover, we
also observe that site-local noise, which here we define by
[Pr , ASl] = 0, is trivial to the current operator.

APPENDIX B: MEAN VELOCITY OF
A SINGLE ELECTRON

The mean velocity of a single electron in the Heisen-
berg picture is generally given by the mean value of ẊSE =
i[H, XSE], where XSE is the coordinate operator on the full
system. Similar to Eq. (A1), the lack of particle exchange with
environment gives XSE = X ⊗ IE , with X being the coordi-
nate operator on the system. Under Markovian dynamics, Ẋ

is given as follows [22]:

Ẋ = L′(X) = i[H,X] + D∗(X), (B1)

where X is the location operator. The superoperator L′ is the
same as defined in Eq. (5) due to the same permutation, hence
D∗(X) ≡ ∑

j γj [V †
j XVj − 1

2 {V †
j Vj ,X}].

Within translation invariance, in momentum representation
we use X → i∇k and Vj → Vk,j . Focusing on D∗ and omit-
ting the indices, to an arbitrary quantum state denoted �,
we have

2D∗(X)� = (2V †∇kV − ∇kV
†V − V †V ∇k )�

= 2V ∇k[V �] − ∇k[V †V �] − V †V ∇k[�]

= −i[(∇kV
†)V − V †(∇kV )]�. (B2)

The result above is obviously consistent with Eq. (22).
Moreover, we can give another validation as follows: By
treating the environmental degree of freedom as essentially
the same as orbital degrees of freedom, we can use the
established result of closed system current operator on the
full system. And this derivation above can connect to this full
system current operator as follows:

〈L′(X)〉 = 〈Ẋ〉 = 〈ẊSE〉 = Tr

[
ρSE

∫
dk∇kHSE (k)

]
, (B3)

where from left to right the key assumptions are (i) Marko-
vian approximation is appropriate for the system in question;
(ii) lack of the exchange of particles with the environment;
(iii) the full system satisfies momentum conservation H =∫

dkHSE (k).

APPENDIX C: REPRESENTATION OF CURRENT
OPERATOR UNDER COOLING IN BLOCH SPHERE

Here we outline how to obtain the Bloch representation
of open system current operator for cooling. With V (k) =√

2σ̃−(k), The key derivations are as follows:[
∂V †(k)

∂ks

V (k) − V †(k)
∂V (k)

∂ks

]

= i

(
∂ �x
∂ks

× �x + ∂ �y
∂ks

× �y
)

· �σ + i

(
�x · ∂ �y

∂ks

− ∂ �x
∂ks

· �y
)

I

= i( �ω × �x × �x + �ω × �y × �y) · �σ − 2i( �ω · �z)I

= −i[�z × ( �ω × �z)] · �σ − 4i( �ω · �z)
1

2
[�z · �σ + I ], (C1)

where we denote �ω, which satisfies ∂
∂ks

�l = �ω × �l where
l = x, y, z, the subscript s denotes an arbitrary direction,
and σl = �l · �σ . We then have �y · ∂

∂ks
�x = −�x · ∂

∂ks
�y = �ω · �z,

which gives the third line. Eventually, for the fouth line, where
1
2 [�z · �σ + I ] ≡ |e〉〈e|, we depend on the following:

�a = 1

b2
[�b × (�a × �b) + (�a · �b)�b], (C2)

�ω = ( �ω · �x)�x + ( �ω · �y)�y + ( �ω · �z) �z. (C3)

We note that the derivation for pure dephasing is trivial.
Equation (26) is thereby obtained.

APPENDIX D: ROBUSTNESS OF HALL CONDUCTIVITY
UNDER PURE DEPHASING AND COOLING IN

THE BASIS OF ENERGY

Here we show the robustness of Hall conductivity against
pure dephasing. From Eqs. (26) and (27), the key derivations
are as follows:[

∂ �d
∂ky

− γ

(
�z × ∂�z

∂ky

)]
· [d + γ �z × • ]−1

[
�z × ∂�z

dkx

]

= [−γ + �d × • ]−1[−γ + �d × • ]

[
∂ �d
∂ky

−γ

(
�z × ∂�z

∂ky

)]
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·[d + γ �z × • ]−1
[
�z × ∂

dkx

�z
]

=
�z × [�z × ∂

dkx
�z]

d2 + γ 2
· [−γ + �d × • ]

[
∂ �d
∂ky

−γ

(
�z × ∂�z

∂ky

)]

=
(

− ∂

∂kx

�z
)

·
(

�z × ∂

∂ky

�z
)

, (D1)

where in the fourth line we rely on a formula as follows:

{[β + α�z × • ]−1�a} · {[−α + β�z × • ]−1 �b}
= 1

βα
(�z · �a)(�z · �b) + 1

β2 + α2
[(�z × �a) · �b], (D2)

in which �a, �b are arbitrary vectors, α, β are arbitrary parame-
ters, and �z is a unit vector. The proof of this formula is in turn
tedious but straightforward.
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