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High-order exceptional points in ultracold Bose gases
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We show that arbitrarily-high-order exceptional points (EPs) can be achieved in a repulsively interacting two-
species Bose gas in one dimension. By exactly solving the non-Hermitian two-boson problem, we demonstrate
the existence of third-order EPs when the system is driven across the parity-time symmetry-breaking transition.
We further address the fourth-order EPs with three bosons and generalize the results to the N -body system, where
the EP order can be as high as N + 1. Physically, such high order originates from the intrinsic ferromagnetic
correlation in spinor bosons, which causes the entire system to collectively behave as a single huge spin.
Moreover, we show how to create an ultrasensitive spectral response around EPs via an interaction anisotropy in
different spin channels. Our work puts forward the possibility of atomic sensors made from highly controllable
ultracold gases.
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I. INTRODUCTION

One of the most remarkable feature of non-Hermitian
systems, as compared to Hermitian ones, is their extreme
sensitivity to external perturbations around the spectral de-
generacy, which is known as the exceptional point (EP)
[1–3]. For conventional degeneracy in Hermitian systems, any
perturbation will produce an energy shift that at most linearly
depends on the perturbation strength ∼ε, and the shift be-
comes negligibly small ∼εn for high perturbation order n. In
contrast, around an EP of nth order, where n is the number of
energy levels that simultaneously coalesce, it has been known
that the perturbation can give rise to an energy shift ∼ε1/n,
which grows with increasing n and becomes greatly magnified
for large n. Such a sensitive response to tiny perturbations
makes the non-Hermitian EP system an ideal candidate for
sensors [4–9]. In the past few years, a second-order EP (n =
2) has been observed in various photonic, acoustic, and atomic
systems [10–31]. While higher-order EPs have been studied
by a number of theoretical works [32–39], their realizations
in laboratories appear to be rather difficult. Very recently,
two groundbreaking experiments have successfully achieved
the third-order EPs and detected the enhanced sensitivity in
coupled acoustic cavities [40] and optical microring system
[41]. Given the power-law growing sensitivity of EP sensors in
terms of the associated EP order, the search for non-Hermitian
systems with high-order EPs is strongly demanded.

In this work we show how to achieve arbitrarily-high-order
EPs in an ultracold gas of spinor bosons. Specifically, we
consider a two-species Bose gas in one dimension across
the parity-time-reversal (PT ) symmetry-breaking transition,
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which can be experimentally realized by using an rf field in
combination with laser-induced dissipations [42].1 We show
that in the presence of spin-independent interactions, the EP
order can be as high as N + 1, with N the total number
of bosons. Such a high order originates from the intrinsic
ferromagnetic correlation in spinor bosons, which makes the
entire many-body system collectively behave as a single huge
spin. At these high-order EPs, the large energy degeneracy
can be lifted up by fine-tuning the few-body coupling strength
to be anisotropic in spin channels, which can be utilized
for atomic sensors. To demonstrate these results, we start
with elaborating on the third-order EP by exactly solving
the non-Hermitian two-boson problem and then address the
fourth-order EP with three bosons, and finally approach the
many-body system.

II. TWO-BODY PROBLEM

We consider two bosons in a trapped one-dimensional (1D)
system with the Hamiltonian H = ∑

i=1,2 H
(0)
i + U2b (h̄ = 1

throughout the paper),

H
(0)
i =

∑
σ

(
− 1

2m

∂2

∂x2
iσ

+ 1

2
mω2x2

iσ

)
+ HPT

i ,

U2b = 1

2

∑
i �=j

∑
σσ ′

gσσ ′δ(xiσ − xjσ ′ ). (1)

Here m is the mass, xiσ is the coordinate of the ith particle
with spin index σ =↑,↓, ω is the harmonic frequency, gσσ ′

1As the PT potential acts on the single-particle state regardless of
quantum statistics, the scheme implemented in the fermionic atom in
Ref. [42] equally applies to bosonic atoms.
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is the coupling strength between spin σ and σ ′, and the PT -
symmetric potential is written as

HPT
i = �(sx,i + i�sz,i ), (2)

with sx,y,z the spin- 1
2 operators. Here � refers to the strength

of the PT potential and � is a dimensionless parameter. In
the single-particle sector, a second-order EP occurs at � =
1, where the two energy levels coalesce and the eigenstates
undergo the PT -symmetry-breaking transition [43].

According to the Lippmann-Schwinger equation, the two-
body wave function |�〉 satisfies

|�〉 = GEU2b|�〉, (3)

where GE = (E − H
(0)
1 − H

(0)
2 )−1 is the noninteracting

Green’s function and E is the eigenenergy. We only focus on
the relative motion of two particles as their center-of-mass
motion can be factored out. By noting that U2b only acts
on spin triplets, we define the relevant spin states as |1〉 ≡
|↑↑〉, |0〉 ≡ (|↑↓〉 + |↓↑〉)/

√
2, and | − 1〉 ≡ |↓↓〉. Accord-

ingly, g↑↑, g↑↓, g↓↓ can be replaced by g1, g0, g−1, denoting
the coupling strengths in m = 1, 0,−1 spin-triplet channels.
Now we introduce three variables {fm} in

〈x|U2b|�〉 =
∑
m

fm|m〉δ(x), (4)

with x the relative coordinate of two bosons. Combining (3)
and (4), we arrive at three coupled equations in terms of {fm},
which gives the E solution by solving

Det

(
1

gm

δmm′ − 〈m|GE (0, 0)|m′〉
)

= 0. (5)

Here the Green’s function can be expanded as

GE (x, x ′) =
∑

n

∑
j

ψn(x)ψ∗
n (x ′)

Erel − En − εj

∣∣μR
j

〉〈
μL

j

∣∣〈
μL

j

∣∣μR
j

〉 , (6)

where Erel = E − ω/2, ψn(x) is the eigenfunction for the
relative motion with eigenenergy En = (n + 1/2)ω, and |μR

j 〉
and |μL

j 〉 are the left and right spin vectors defined through

HPT |μR
j 〉 = εj |μR

j 〉 and H
†
PT |μL

j 〉 = ε∗
j |μL

j 〉, respectively;2

here HPT = ∑
i H

PT
i . Note that the spin expansion in (6) fails

at the location of the EP (� = 1), where the single eigenvector
is inadequate to expand the whole spin space. Because of
this, we have further carried out the exact diagonalization to
solve the spectrum at � = 1 and also confirmed that the two
methods give consistent results in the regime � �= 1.

In Fig. 1 we plot the four lowest energy levels for
isotropic interactions, g1 = g0 = g−1 ≡ g, in both weak-
coupling [Fig. 1(a)] and strong-coupling [Fig. 1(b)] regimes.
We see that in both Figs. 1(a) and 1(b), the three lowest
energy levels merge at � = 1, beyond which the upper and
lower energies start to develop imaginary parts, while all three
eigenvectors also coalesce at � = 1. These are all charac-
teristic features of a third-order EP. Such a third order can

2By this definition, one can prove that
∑

j |μR
j 〉〈μL

j |/〈μL
j |μR

j 〉 is an
identity matrix expanded in spin space. This is true except at the EP
(when � = 1).
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FIG. 1. Exact solution of the four lowest energy levels for two
bosons with isotropic interactions g1 = g0 = g−1 ≡ g for (a) weak
coupling g = 0.5ωl and (b) strong coupling g = 20ωl. The horizon-
tal dashed lines in both (a) and (b) are for the spin-singlet state, which
is immune to interactions. A third-order EP appears in both (a) and
(b) at � = 1. Here l = 1/

√
mω is the confinement length and we take

� = 0.2ω.

be further checked through the spectral response to small
perturbations, as shown below.

We introduce external perturbations through the interaction
anisotropy in spin channels, which is easy to implement in
cold atoms by tuning the magnetic field. Here we take, for
instance, a tiny interaction anisotropy in the m = 0 channel,
i.e., g1 = g−1 = g and g0 = g + ε. The exact solution shows
that the original degenerate energy levels at � = 1 split with
the same amplitude |�Ei=1,2,3| ≡ �E. In Fig. 2(a) we plot
�E as a function of ε, where a cube-root relation can be
identified in the entire coupling regime:

�E = Cε1/3. (7)
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FIG. 2. (a) Energy splitting �E of two bosons at � = 1 as a
function of interaction isotropy ε in the m = 0 channel. The upper
green and lower red solid lines are for weak coupling g = 0.5ωl and
strong coupling g = 20ωl, respectively. Blue dashed lines are fitting
curves according to the cube-root relation �E = Cε1/3 [Eq. (7)].
(b) Coefficient C as a function of g. Blue and green dashed lines
are obtained from the second-order perturbation theory in the small-
g limit and the effective spin chain model in the large-g limit,
respectively (see the text). Here � = 0.2ω.
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This relation ultimately confirms the existence of the third-
order EP in the two-boson system. In Fig. 2(b) we further plot
the coefficient C as a function of g. The asymptotic behaviors
of C in weak- and strong-g limits will be discussed later. As
a comparison, we note that the ground state of the Hermitian
system is threefold degenerate when � = 0 and ε = 0, and the
introduction of anisotropic interaction would split the triple
state with induced energy splitting �E ∝ ε. This suggests
that the energy splitting around the third-order EP is much
more sensitive to the tiny anisotropic interaction than the
corresponding Hermitian system, which can be exploited for
ultrasensitive sensing.

A remarkable result shown above is that, given the non-
Hermitian potential (2), the order of the EP at � = 1 can be
upgraded from 2 to 3 when the boson number increases from 1
to 2. Physically, this order upgrading can be traced back to the
intrinsic ferromagnetic correlation in spin- 1

2 bosons [44,45].
It can be seen easily in the strong-coupling regime, where
the system can be described by an effective ferromagnetic
spin chain H = −J

∑
〈i,j〉 si · sj (J > 0) [46,47], resulting

in a ferromagnetic ground state. Since the PT potential
HPT commutes with the total spin, the ferromagnetic state
is also the eigenstate of HPT . In the case of two bosons,
the ferromagnetic state is a spin triplet (S = 1) with three
components, and in this subspace the operators Sα = ∑

i sα,i

in HPT just behave as spin-1 operators. Equivalently, the two
bosons constitute a spin-1 object, and accordingly the EP
order is upgraded to 2S + 1 = 3.

Given above picture, the energy splitting under a small
interaction anisotropy [see Eq. (7)] can be analyzed by ex-
panding the two-body Hamiltonian only in spin-triplet space.
In the weak-coupling limit, a second-order perturbation theory
based on an unperturbed noninteracting system gives the

cube-root relation (7) with C = [ �2√
2πl

(1 −
√

2gγ√
πωl

)]1/3, where
γ ≈ 0.577 is the Euler constant. In the strong-coupling limit,
we resort to the effective spin-chain model for spin- 1

2 bosons
[47]:

Heff = J

(
− 1

g
s1 · s2 − 2ε

g2
sz,1sz,2

)
+

∑
i

HPT
i . (8)

Here J is the Heisenberg coupling due to the density overlap
of two neighboring bosons and we have assumed 1/g1 −
1/g ∼ −ε/g2. Expanding (8) in spin-triplet states, we obtain
�E, following Eq. (7), with C = [ J�2

g2 ]1/3. These asymptotic
behaviors of C in weak- and strong-g limits can fit well
the exact results [see Fig. 2(b)]. In addition, we have tried
interaction anisotropies in other spin channels (m = 1,−1)
and found that the cube-root relation and the asymptotic
behaviors of C are not qualitatively altered.

III. THREE-BODY SYSTEM

We now turn to the three-boson problem. In the presence
of a spin-independent interaction, it is easily drawn from
previous analysis that the ground state is ferromagnetic with
total spin S = 3/2 and the PT potential will result in an EP at
� = 1 with order 2S + 1 = 4. It is then promising to achieve
an even sensitive spectral response as �E ∼ ε1/4, given that
a proper perturbation is introduced. In the following we will

show that such a fourth-root sensitivity can be induced by an
anisotropy in three-body couplings.

We consider three trapped bosons experiencing small in-
teraction anisotropy in, for instance, two-body ↑↓ and/or
three-body ↑↓↓ scattering channels. To simplify the analysis
while keeping the essence of the physics, we concentrate on
the strongly repulsive regime (with large two-body repulsion
in all channels), where the system can be described by the
following effective spin chain:

Heff =
2∑

i=1

(
−J

g
si · si+1 + ε2sz,isz,i+1

)
+ ε3sz,1sz,2sz,3

+
3∑

i=1

HPT
i . (9)

Here ε2 and ε3 respectively refer to the two-body and three-
body interaction anisotropies.3

In Fig. 3 we show the spectral response for the four lowest
energy levels to different types of interaction anisotropies.
Depending on the anisotropy from the two-body (ε2 �= 0 and
ε3 = 0) or three-body (ε3 �= 0 and ε2 = 0) sector, the spectral
response shows distinct structures. In the case of only ε2 �= 0,
at � = 1 three different values are left for both the real and
imaginary energies [see Figs. 3(a i) and 3(b i)]; accordingly,
the original fourth-order EP splits into a third-order one with
cube-root sensitivity and a trivial one [see Fig. 3(c i)]. In the
case of ε3 �= 0, the real and imaginary energies of four levels
split simultaneously at � = 1 [see Figs. 3(a ii) and 3(b ii)] and
the fourth-root scaling can be achieved [Fig. 3(c ii)]. That is
to say, to maximize the spectrum sensitivity near the fourth-
order EP, i.e., to realize �E ∼ ε1/4, a three-body interaction
anisotropy is a crucial ingredient.

IV. MANY-BODY SYSTEM

Now we generalize the above discussion to a two-species
boson system with arbitrary particle number N and under
M-body interactions (M � N ). First, in the presence of
spin-independent interaction which supports a ferromagnetic
ground state, the system collectively behaves as a single
huge spin with S = N

2 and a high EP order 2S + 1 = N + 1
can be achieved. For the convenience of later discussion,
we introduce another way to understand this result. Under
a spin rotation around x, HPT at � = 1 simply reproduces
the spin raising operator S+ = Sx + iSy , with Sα = ∑

i si,α

the spin-N
2 operators. The S+ operator can be expanded in

{Sz} space as an (N + 1) × (N + 1) matrix, which has one
single eigenvalue (equal to 0) and one single eigenvector
(|Sz = N

2 〉 = |1, 0, . . . , 0〉). This justifies the occurrence of
the (N + 1)th-order EP in (N + 1)-dimensional spin space.

Second, when turning on a small M-body interaction
isotropy, the original (N + 1)th-order EP will generally split
into a number of sub-EPs depending on the values of M

and N . To see this, again we resort to the effective model

3In writing (9) we have omitted the term ∼ε3
∑

i sz,i as it does not
contribute to the sensitive spectral response and can be eliminated by
an additional tiny magnetic field.

011601-3



LEI PAN, SHU CHEN, AND XIAOLING CUI PHYSICAL REVIEW A 99, 011601(R) (2019)

4.1

4.2

4.3

4.4

4.5

0.5 0.75 1 1.25 1.5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ΓΓ

(bii)

(aii)

4.1

4.2

4.3

4.4

4.5

0.5 0.75 1 1.25 1.5

−0.3
−0.2
−0.1

0
0.1
0.2
0.3

ΓΓ

(bi)

(ai)

10−−66 10−−55 10−−44 10−−33 10−−22 10−−11 100010−8

10−6

10−4

10−2

10 00

εε// (ΩΩll))

Δ
E

(ci)

10−6 10−5 10−4 10−3 10−2 10−110
−2

10
−1

100
(cii)

SSllooppee 1//33

SSllooppee 1//44SSllooppee 1

ω)
Im

( E
ω)

Re
( E

ω)
Im

( E

εε// ((ΩΩll))

Δ
E// Ω // Ω

ω)
Re

( E

FIG. 3. Spectral response for the four lowest energy levels in the
three-boson system to different types of interaction anisotropies. The
real and imaginary parts of the energies are shown as a function of �

only with two-body anisotropy (a i) ε2/�l = 0.01 and (b i) ε3/�l =
0, where we can find a pair of complex-conjugate eigenvalues with
the same real parts and two purely real eigenvalues on the line
� = 1, or only with three-body anisotropy (a ii) ε3/�l = 0.01 and
(b ii) ε2/�l = 0, where two pairs of complex-conjugate eigenvalues
appear simultaneously. Accordingly, the energy shift at � = 1 is
plotted as a function of (c i) ε2 (c1) or (c ii) ε3. Here � = 0.2ω.

in the strong-coupling regime and work only within S = N
2

subspace, where the spin-dependent Hamiltonian at γ = 1 can
be generally written as

HSD = �(Sx + iSz) + ε
∑

i

ci

M−1∏
j=0

sz,i+j . (10)

Here ci is the position-dependent coupling constant due to the
trapping potential and we have omitted other less important
terms ∼ ∏n

j=0 sz,i+j with n < M − 1, which produces a less
sensitive spectral response. Again under a spin rotation around
x, the PT term becomes an S+ operator and the perturbation
terms become M-rank polynomials in terms of sy,i , which in
the ferromagnetic subspace will generate terms like Sm

± (with
m � M). In Figs. 4(a) and 4(b) we show typical structures
of the Hamiltonian matrix for M = 2 and M = 3, where
the nonzero elements can at most extend to the second and
the third super- or subdiagonals. According to a mathematic
study in Ref. [48], this is the structure of Jordan blocks
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FIG. 4. General (N + 1) × (N + 1) Hamiltonian matrix for N

bosons in the (rotated) ferromagnetic spin space with (a) two-body
and (b) three-body interaction anisotropy. Here ∗ denotes a nonzero
element.

JN+1 with perturbations constituting the (M + 1)-Hessenberg
matrix, under which the (N + 1)th-order EP splits into [ N+1

M+1 ]
groups of sub-EP and each with order M + 1. That is to say,
a tiny perturbation ε in the M-body couplings can generate an
energy splitting as ε1/(M+1) in the eigenspectrum. This covers
our previous analyses on the spectral response to the two- and
three-body interaction anisotropies.

We emphasize that the present scheme of generating high-
order EPs only requires the involvement of two spin states,
rather than multimode (with the mode number equal to the
EP order) as in previous proposals [33–38], and thus should
be even practical to implement. A similar high-order EP
was proposed previously in a two-site Bose-Hubbard model
[32,39], where the spectral response under a specific two-body
interaction was discovered up to cube-root sensitivity [32].

V. EXPERIMENTAL RELEVANCE

Experimentally, a two-species Bose gas with a nearly-spin-
independent interaction can be achieved by using the lowest
two hyperfine states of 87Rb atoms, i.e., |↑〉 = |F = 1,mF =
0〉 and |↓〉 = |F = 1,mF = −1〉, where the bare scattering
lengths in different spin channels are rather close [49]. The
two-body interaction anisotropy can be further fine-tuned
through the magnetic field. By applying an rf field to couple
these two states and tune the rf frequency to match their
Zeeman splitting, the sx term (with strength �) can be real-
ized, while the third hyperfine state |F = 1,mF = −1〉 can be
adiabatically eliminated in the presence of a large quadratic
Zeeman shift (much greater than �). The non-Hermitian
term isz can be implemented by laser-induced dissipations as
in a previous experiment [42].1 To generate the three-body
interaction, one can tune the magnetic field near an Efimov
resonance in a particular collision channel [50,51] or directly
utilize the transverse confinement to create visible three-
body strengths in quasi-1D geometry [52–55]. The spectral
response discussed in this work can be easily measured in
a cold-atom experiment using radio-frequency spectroscopy
and the magnitude of energy splitting in the presence of a
tiny perturbation can be used to judge the sensitivity of the
corresponding sensor system.
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VI. SUMMARY

We have demonstrated the existence of arbitrarily-high-
order EPs in the non-Hermitian 1D two-species Bose gas. This
is facilitated by the ferromagnetic correlation in interacting
spinor bosons such that the EP order directly scales as the
number of bosonic atoms. Moreover, we have pointed out that
a small interaction anisotropy in spin channels can be used
to generate an ultrasensitive spectral response. Specifically,
a two-body (three-body) interaction anisotropy is responsible
for a cube-root (fourth-root) spectral response. Our work thus
can serve as a guideline for making sensors based on ultracold

atoms. Stimulated by this work, in the future it would be
interesting to explore more intriguing physics due to the
interplay of a non-Hermitian interaction and high spin.
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