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Non-Markovian dynamics revealed at a bound state in the continuum
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We propose a methodical approach to controlling and enhancing deviations from exponential decay in
quantum and optical systems by exploiting recent progress surrounding another subtle effect: the bound states
in the continuum, which have been observed in optical waveguide array experiments within this past decade.
Specifically, we show that by populating an initial state orthogonal to that of the bound state in the continuum,
it is possible to engineer system parameters for which the usual exponential decay process is suppressed in
favor of inverse power law dynamics and coherent effects that typically would be extremely difficult to detect
in experiment. We demonstrate our method using a model based on an optical waveguide array experiment and
further show that the method is robust even in the face of significant detuning from the precise location of the
bound state in the continuum.
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A bound state in the continuum (BIC) represents a lo-
calized eigenmode with energy eigenvalue that, counterintu-
itively, resides directly within the scattering continuum of a
given physical system. Although the existence of such modes
was first predicted in 1929 [1], the phenomenon is so delicate
that they were not observed until much more recently [2];
for example, in optical waveguide array experiments [3–6].
Lasing action has also recently been reported for a cavity
supporting BICs [7]. In this paper, we propose to apply these
recent technical advances in optical control of the BIC to
the study of another often elusive phenomenon: long-time
nonexponential decay.

In many familiar circumstances, such as atomic relaxation,
we tend to think of quantum decay as essentially an exponen-
tial process. More precisely, exponential decay tends to man-
ifest when an unstable eigenmode (such as an excited atomic
level) is resonant with an energy continuum (environmental
reservoir, such as the electromagnetic vacuum) to which it is
coupled. However, it can be shown that, in fact, all quantum
systems follow nonexponential dynamics on very short and
extremely long timescales. These deviations occur as a direct
result of the existence of at least one threshold on the energy
continuum in such systems [8–15]. While these effects are
ubiquitous in quantum systems, they are unfortunately quite
difficult to detect under ordinary circumstances and hence
have been measured only in a small handful of experiments
[16–21]. The short-time deviation, which can give rise to both
decelerated [22] and accelerated [23] decay under frequent
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system observations [17,20–22] or modulation of the environ-
mental coupling [18], requires ultraprecision to detect that is
often difficult to achieve in the laboratory. Reference [24] uses
the properties of a BIC to study these short-time effects.

The long-time deviation, meanwhile, has proven even more
challenging [19]. The difficulty originates in that the effect
usually does not appear until many lifetimes of the exponen-
tial decay have passed, by which time the survival probability
is so depleted that it is rendered undetectable. A handful
of theory papers have suggested special circumstances to
enhance the long-time effect; these mostly require an initially
prepared state near the threshold, usually combined with other
conditions [13,25–32]. See also the recent experiment [33].

In this paper, we take advantage of the simple geometric
shape of the BIC to present a qualitatively different and more
easily generalized scheme by which the long-time deviation
can be enhanced. While it is clear from the outset that
the usual exponential decay associated with the resonance
is suppressed when the BIC condition is satisfied, if one
were to directly populate the BIC itself, then one would
observe a simple stable evolution, as the BIC is of course
an eigenstate of the Hamiltonian. However, we show that
by populating a state that is orthogonal to the BIC we can
take advantage of the suppression of the exponential effect
while avoiding the stability associated with the BIC itself.
The nonexponential dynamics can then drive the evolution
on all timescales. What’s more, we demonstrate in our ex-
ample below that the exponential effect can be dramatically
suppressed even with significant detuning from the BIC,
although the choice of BIC-orthogonal initial state is still
essential.
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We illustrate our method relying on a simple tight-binding
model that can be viewed analogously to one of the previously
mentioned optical waveguide array experiments. Our Hamil-
tonian is written

H = εd|d〉〈d| − J

∞∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|)

− g(|d〉〈2| + |2〉〈d|), (1)

in which the second term represents the semi-infinite array
with nearest-neighbor hopping parameter −J and the chain is
side-coupled at site |2〉 to an “impurity” element |d〉. After
we set the energy units according to J = 1, the adjustable
parameters in the system are the chain-impurity coupling
−g and the impurity energy level εd. This model captures
the essential features of the waveguide array experiment in
Ref. [6] (see Refs. [34,35]) when we view time evolution in
the present context analogously to longitudinal propagation
within the waveguides. This model can be partially diagonal-
ized by introducing a half-range Fourier series on the chain

according to |n〉 =
√

2
π

∫ π

0 dk sin nk|k〉, after which we have

H = εd|d〉〈d| +
∫ π

0
dk Ek|k〉〈k|

+ g

∫ π

0
dk Vk (|d〉〈k| + |k〉〈d|), (2)

where Vk = −
√

2
π

sin 2k and the continuum is given by Ek =
−2J cos k over k ∈ [0, π ]. Note from here we will measure
the energy in units of J = 1.

The discrete spectrum for this model can be obtained, for
example, from the resolvent operator

〈d| 1

z − H
|d〉 = 1

z − εd − �(z)
, (3)

in which the self-energy function �(z) = g2
∫ π

0 dk
|Vk |2
z−Ek

is
evaluated as

�(z) = zg2

2
[z2 − 2 − z

√
z2 − 4] (4)

in the first Riemann sheet (see Ref. [36] for discussion of
the analytic properties of �(z)). Notice that a pole occurs
in Eq. (3) at z = 0 after choosing εd = 0; this is the BIC
solution for this model, which resides directly at the center
of the continuum z ∈ [−2, 2] (defined by the range of Ek) and
which takes the form

|ψBIC〉 = 1√
1 + g2

(|d〉 − g|1〉). (5)

We here emphasize that the BIC state can be understood as
a resonance with vanishing decay width [2,35,37–51]. In this
picture, the ordinary resonance represents a generalized eigen-
state with complex energy eigenvalue, for which the imagi-
nary part of the eigenvalue gives the exponential decay half-
width. When the BIC condition εd = 0 is fulfilled, the imag-
inary part of this eigenvalue vanishes, yielding a bound state
residing directly in the scattering continuum. When εd �= 0,
the complex eigenvalue is restored and the exponential decay
would generally be expected to reappear.

bound state virtual bound 
       state 

z
+

z
−

z
BIC

FIG. 1. Discrete spectrum of our model as a function of g in the
case εd = 0. The BIC appears at zBIC = 0. The other two solutions
are virtual bound states (dashed curves) for g < 1; they become
bound states for g > 1. (Energy is measured in units of J = 1
throughout the paper.)

It is easy to show that there exist two further solutions for
the εd = 0 case with eigenvalues given by z± = ±zg , in which

zg = g + 1

g
. (6)

For g > 1, these two solutions constitute localized bound
states residing on the first Riemann sheet of the complex
energy plane, while for g < 1 they transition to so-called vir-
tual bound states (or antibound states), which are delocalized
pseudostates with real eigenvalue resting in the second sheet
[13,31,52–55], see Fig. 1. While the virtual bound states do
not appear in the diagonalized Hamiltonian, they nevertheless
have a similar influence on the long-time power law decay as
do the bound states [13]. Specifically, we will show that the
timescale characterizing the nonexponential decay is propor-
tional to �−1

g , where

�g ≡ zg − 2 (7)

is defined as the gap between either of the (virtual) bound state
energies and the nearest band edge. Note we will particularly
focus on the g � 1 portion of the parameter space as the
absence of bound states here means that nothing inhibits the
nonexponential decay. (For comparison, we will also briefly
discuss the g > 1 evolution.)

As previously discussed, if we were to consider the evo-
lution of the BIC state itself, the initial state would simply
remain occupied for all time as |ψBIC〉 is an eigenstate of H

with energy eigenvalue z = 0. However, by instead choosing
the (simplest) BIC-orthogonal state

|ψ⊥〉 = 1√
1 + g2

(g|d〉 + |1〉) (8)

as our initial state, we obtain complete nonexponential de-
cay for any value g � 1, as shown below.1 To analyze
the evolution of |ψ⊥〉, we evaluate the survival probability

1One might pause at the inclusion of the site |1〉 that is technically
part of the reservoir in this initial state. However, |1〉 could equiva-
lently be viewed as a second impurity element [36].
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FIG. 2. Numerical simulations for the survival probability of |ψ⊥〉 at time t for εd = 0 and (a) g = 1.1 (linear plot, inset: log-log plot),
(b) g = 1.0 (log-log plot), and (c), (d), (e) g = 0.98 [(c) log-log plot, (d) early near zone close-up, and (e) far zone close-up]. The green dashed
(orange dotted) lines indicate the 1/t (1/t3) dynamics. The numerical method is described in Ref. [36]. (Time t is measured in units 1/J in
which J = 1.)

P⊥(t ) = |A⊥(t )|2, in which the survival amplitude is given by

A⊥(t ) = 〈ψ⊥|e−iH t |ψ⊥〉

= 1

2πi

∫
CE

e−izt 〈ψ⊥| 1

z − H
|ψ⊥〉 dz. (9)

Here CE is a counterclockwise integration contour surround-
ing the real axis in the first Riemann sheet of the complex
energy plane, which includes the branch cut along z ∈ [−2, 2]
as well as any bound states. We can apply various methods
to evaluate this integral; for example, by directly computing
the relevant matrix elements of the resolvent operator and
integrating over these or by applying an expansion in terms
of the eigenstates of the generalized discrete spectrum of
the model as in Ref. [55]. By either method, we obtain the
following results.

For the case g > 1, there are two bound states included in
the contour for Eq. (9). The survival amplitude in this case
evaluates as

A⊥(t ) = g2 − 1

g2
cos zgt + Abr(t ), (10)

in which the first term represents the combined contributions
from the two bound states while

Abr(t ) = 1 + g2

4πig2

∫
Cbr

dze−izt

√
z2 − 4

z2 − z2
g

. (11)

is an integration along the contour Cbr surrounding the branch
cut in a counterclockwise manner in the complex energy
plane. The decay in this case is nonexponential but incomplete
due to the presence of the bound states [25–27]. This can be
seen for the case g = 1.1 in Fig. 2(a).

Meanwhile, for the case g � 1, the bound states have
become virtual bound states and the evolution is now de-
termined entirely by the non-Markovian branch cut contri-
bution A⊥(t ) = Abr(t ). We find that this expression yields
two distinct time regions, in which the integral is most easily
estimated by somewhat different methods. First there is a
short/intermediate time region, in which we first apply a
fraction decomposition to the denominator of Eq. (11); this
yields two simpler integrals, one associated with the upper
virtual bound state and the other associated with the lower.
As outlined in Ref. [36], these two integrals can be evaluated
in terms of Bessel functions by methods similar to those used
in Ref. [32], which yields

Abr(t ) ≈ 1

g
J0(2t ) − 1 − g

g
cos 2t ; (12)

this expression holds for all t � T� where T� is written as
T� = 1/�g = g/(1 − g)2 in terms of the energy gap between
the virtual bound states and their respective nearby band
edges. On the earliest timescale t � TZ with TZ = 1, this
expression yields the usual short-time parabolic dynamics
PZ (t ) ≈ 1 − Ct2, in which C = (g + g2 + g3 − 1)/g2.

Then, in the intermediate time region TZ � t � T�, we
can approximate the Bessel function in the first term of
Eq. (12) to write

ANZ(t ) ≈ cos(2t − π/4)

g
√

πt
− 1 − g

g
cos 2t. (13)

We refer to this time region including characteristic 1/t decay
as the nonexponential near zone (NZ) [13], which we can
roughly think of as having replaced the usual exponential
decay regime. For values g � 1 fairly close to the g = 1
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localization transition, the first term in Eq. (13) tends to
dominate the evolution early in the near zone, while the
second term provides only a small correction. Estimating the
evolution in this case yields

PNZ,early(t ) ≈ cos2 (2t − π/4)

πg2t
, (14)

which can be seen for the case g = 0.98 in Figs. 2(c) and 2(d).
As we move later into the near zone, the first term decays
sufficiently so that the second term becomes nonnegligible;
we can estimate this as when the second term is about
10% of the first, which gives t = TVR ∼ 1/[100π (1 − g)2] =
1/[100πg] × T�. This implies we should be fairly close to
the transition point g = 1 to observe the pure 1/t dynamics.
For example, in the case g = 0.98 shown in Fig. 2(d), we can
already see a small influence from the second term of Eq. (13)
around t � TVR ≈ 8.0 as the last three visible oscillation
cycles show a slight deviation from the Eq. (14) prediction,
which the second term of Eq. (13) [not shown] captures very
well. We will return to the physical interpretation of this
second term momentarily.

Next appears the asymptotic time region T� � t during
which the dynamics are instead described by a 1/t3 power
law decay. To show this, we return to the (exact) integral
expression for the survival amplitude appearing in Eq. (11)
and instead proceed by deforming the contour Cbr surrounding
the branch cut by dragging it out to infinity in the lower half
of the complex energy plane, as described in Ref. [36].

Following this procedure, we obtain

PFZ(t ) ≈ (1 + g2)2 cos2(2t − 3π/4)

πg4�2
g (2 + zg )2t3

, (15)

with the characteristic 1/t3 decay that is typical of odd dimen-
sional systems on long timescales [13,56–60]. We refer to this
as the nonexponential far zone (FZ). The far zone dynamics
can be seen for the g = 0.98 case in Figs. 2(c) and 2(e).

We emphasize three further points about these results as
follows. First, we draw attention more carefully to the oc-
currence of oscillations in both time zones, which are due
to interference between the contributions from the two band
edges. These contributions are equally weighted because the
BIC occurs at the center of the continuum band in the present
case. Notice further that a π/2 phase shift occurs between
the early near-zone result Eq. (14) and the far-zone Eq. (15).
These oscillations and the resulting phase shift are highlighted
in Figs. 2(d) and 2(e). While similar oscillations have been
previously predicted in the far zone [30,32,60], we believe
the near-zone oscillations as well as the resulting phase shift
are new—indeed, outside of our choice for the initial state,
these would almost certainly be obscured by the exponential
decay. Second, we return our attention to the second term of
Eq. (13), which becomes relatively more pronounced later in
the near zone; however, counterintuitively perhaps, it vanishes
in the far zone.2 Notice this term takes the form of a Rabi-like
oscillation between the band edges at z = ±2. We refer to
this effect as a virtual Rabi oscillation, which is intended to

2The reason for this is discussed in pp. 21–22 of Ref. [55].

reflect its transient nature. A further interesting point is that
the virtual Rabi oscillation plays a role in facilitating the phase
shift from the early near zone into the far zone [36].

Third, notice that when we are directly at the localization
transition at g = 1, the second term in Eq. (13) vanishes.
Further, since the key timescale T� is inversely proportional
to �g , as we approach g = 1 from below the energy gap �g

closes and T� diverges. Hence, in this case, Eq. (14) describes
the dynamics accurately for all TZ � t , which is shown in
Fig. 2(b) (see also Ref. [13] for discussion relevant to this
point as well as the influence of a virtual bound state on
the power law decay). We can quantify the divergence of the
timescale T� in terms of the distance δ from the transition
point g = 1 after reparameterizing according to g ≡ 1 − δ;
then the timescale diverges like T� ∼ 1/δ2 as δ → 0.

While the preceding analysis gives a clear picture of the
types of evolution we can expect for the state |ψ⊥〉, it is still a
bit idealized in comparison to experiment in two ways that we
will account for below. First, in a real experiment it would
be difficult to tune exactly to the BIC at εd = 0; since the
BIC is just the special case of a resonance with zero decay
width, as we introduce detuning εd �= 0 the resonance must
reappear, which we could expect might perturb the nonex-
ponential evolution of P⊥(t ). The complex eigenvalue of the
resonance state can be expanded in the vicinity of the BIC up
to second order in εd as zres ≈ εd/(1 + g2) − i�/2 with � =
2g2ε2

d/(1 + g2)3, which of course reduces to zBIC = 0 in the
limit εd = 0. However, when we examine P⊥(t ) (red curve in
Fig. 3 for g = 0.9, as an example), we find that the resonance
has virtually no influence on the survival probability, even
for moderately large detuning values εd �= 0. We can obtain
an understanding for this by calculating the resonance pole
contribution to P⊥(t ). Performing first a simple calculation for
the pole contribution to the amplitude 〈ψ⊥|e−iH t |ψ⊥〉 reveals
that, due to the geometric shape of the BIC-orthogonal state,
both the lowest order and next-lowest order contributions in
εd cancel out, which yields

P⊥,res(t ) ≈ g4ε4
d

(1 + g2)8
e−�t . (16)

The prefactor in this expression, which is fourth order in εd,
assures that the exponential effect will be quite small for
almost any εd � 0 regardless of the value of g. For example,
even for modest detuning εd = 0.2 and g = 0.9 in Fig. 3(b)
[red curve], we have g4ε4

d/(1 + g2)8 ∼ 10−5.
Second, while preparation of the initial state |ψ⊥〉 seems

feasible, measuring the precise output state 〈ψ⊥| might prove
more challenging. Instead, it may be more realistic to consider
the quantity

P1d(t ) ≡ |〈1|e−iH t |ψ⊥〉|2 + |〈d|e−iH t |ψ⊥〉|2, (17)

which is equivalent to the nonescape probability that has
appeared in the literature previously [12,57–59,61]. It can
easily be shown that P1d(t ) = P⊥(t ) for the case εd = 0, and
hence all of our preceding detailed analytical results still
apply directly at the BIC. As shown in Fig. 3, the difference
between P1d(t ) [blue curve] and P⊥(t ) [red curve] appears
first well into the long-time region for small εd �= 0 and moves
gradually to earlier times as we increase the detuning. The
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FIG. 3. Numerical simulations for the survival probability and
the nonescape probability for detuning from the BIC for g = 0.9 and
(a) εd = 0.005, (b) εd = 0.2, and (c) εd = 0.35. (Time t is measured
in units 1/J in which J = 1.)

origin of the difference between the two quantities is easy to
understand as it seems to be entirely attributable to the fact
that only the lowest-order contribution in εd cancels out when
we calculate the resonance pole contribution to the amplitude

for the nonescape probability P1d(t ). In particular, we find

P1d,res(t ) ≈ g2ε2
d

(1 + g2)4
e−�t , (18)

which is still small, but has some noticeable influence on
the spectrum in some cases. For example, in Fig. 3(b)
for εd = 0.2, we see the resonance pole with magni-
tude g2ε2

d/(1 + g2)4 ∼ 0.003 introduces exponential dynam-
ics into P1d(t ) around t � 10, although this only lasts for a
few lifetimes τ = 2/� ∼ 360, which leaves the nonescape
probability relatively intact when this quantity rejoins with
P⊥(t ) as the 1/t3 far-zone dynamics kick in. We note that
P1d(t ) also exhibits the interesting feature of pre-exponential
decay that extends beyond the usual parabolic dynamics in the
region 1 � t � 10. As we further increase εd as in Fig. 3(c),
we find the exponential decay region lasts even fewer lifetimes
as the difference between P1d(t ) and P⊥(t ) again becomes
diminished.

In this paper, we have shown that by populating a state
that lies orthogonal to a BIC one can observe nonexponential
dynamics that are usually overwhelmingly suppressed when
the resonance condition is satisfied. Note that for the present
model, we could consider the evolution of more general BIC
orthogonal states such as g|d〉 + |1〉 + ∑∞

n=2 wn|n〉 that in-
clude elements of the chain beyond the BIC sector. We briefly
comment on a representative example of this more general
configuration in Ref. [36], where we show that including a
single site from the chain can suppress oscillations in the
survival probability.

We briefly note we have focused here on bound states in
the continuum that appear purely due to interference effects as
originally proposed by von Neumann and Wigner in 1929 [1].
We have not directly addressed “accidental” BICs [62] that ex-
hibit interesting topological properties [2,7,63,64], although
the study of BIC-orthogonal states in this context might prove
fruitful as well.
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