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Higher winding number in a nonunitary photonic quantum walk
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Topological matter exhibits exotic properties yet phases characterized by large topological invariants are
difficult to implement, despite rapid experimental progress. A promising route toward higher topological
invariants is via engineered Floquet systems, particularly in photonics, where flexible control holds the
potential of extending the study of conventional topological matter to novel regimes. Here we implement a
one-dimensional photonic quantum walk to explore large winding numbers. By introducing partial measurements
and hence loss into the system, we detect winding numbers of three and four in multistep nonunitary quantum
walks, which agree well with theoretical predictions. Moreover, by probing statistical moments of the walker,
we identify locations of topological phase transitions in the system and reveal the breaking of pseudounitary
near topological phase boundaries. As the winding numbers are associated with nonunitary time evolution, our
investigation enriches understanding of topological phenomena in nonunitary settings.
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I. INTRODUCTION

Topological phases are typically characterized by integer-
valued topological invariants, associated with the emergence
of robust edge states through the so-called bulk-boundary
correspondence [1–4]. Recent experiments reveal and charac-
terize topological edge states and bulk topological invariants
in settings ranging from condensed matter [1,5,6] to syn-
thetic systems [7–30]. However, the experimentally detected
topological invariants are typically small and limited to two
[15,21–31]. Whereas bands with Chern numbers greater than
two have been engineered in photonic materials in two dimen-
sions [10], direct detection of Chern numbers greater than two
has yet to be achieved. In one dimension, while topological
phases with large winding numbers have been theoretically
studied, e.g., in quantum transport [32] or in quantum-walk
dynamics [33,34], experimental realization is still lacking.
Besides fundamental theoretical interest in generating and
studying topological phases characterized by larger topolog-
ical invariants, these phases support more topological edge
states at appropriately engineered boundaries, which are a
valuable resource for applications in quantum information and
in topological photonics [8,13].
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A promising platform for detection of large bulk topologi-
cal invariants is synthetic Floquet topological systems, where
winding numbers of two have been probed through losses
in either continuous-time non-Hermitian dynamics of light
propagating in optical waveguide array [30] or nonunitary
discrete-time photonic quantum walks (QWs) [26]. Interest-
ingly, detected topological invariants in these lossy systems
can be associated with underlying non-Hermitian [30,32] or
nonunitary Floquet dynamics [26], respectively. These studies
reveal topological properties in non-Hermitian or nonunitary
settings, and establish a new paradigm of topology that is
difficult to access in conventional condensed-matter systems
[32,35].

In this work, we report experimental detection of large
winding numbers of three and four in photonic nonunitary
QWs. By periodical partial measurements on polarization of
the photonic walker, we realize multistep nonunitary QWs in
one dimension supporting Floquet topological phases (FTPs).
As for two-step nonunitary QWs, partial measurement in-
troduces loss to the quantum-walk dynamics and provides a
natural detection channel for FTP winding number [26,36].
Whereas FTPs in two-step nonunitary QWs are directly re-
lated to those in a lossy Su-Schrieffer-Heeger (SSH) model
[26,35], the multistep nonunitary QWs here are analogous to
adding longer-range hopping terms in the lossy SSH model,
which gives rise to higher winding numbers. We directly
detect winding numbers of three and four through average
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FIG. 1. We show a three-step nonunitary QW up to four time steps as an example. The photon pair is created via spontaneous parametric
down conversion. One photon serves as a trigger. The other photon is projected into the polarization state |+〉 with a polarizing beam splitter
(PBS) and a half-wave plate (HWP, at 22.5◦) and then proceeds through the quantum-walk interferometric network. The polarization rotation
R and the polarization-dependent shift S are realized by two HWPs with certain setting angles depending on the coin parameters (θ1, θ2)
and a beam displacer (BD) whose optical axis is cut so that the photons in |V 〉 are directly transmitted and those in |H 〉 undergo a lateral
displacement into a neighboring spatial mode, respectively. The partial measurement via loss Me is implemented by a sandwich-type HWP (at
22.5◦) -PPBS-HWP (at 22.5◦) setup (here, PPBS is the abbreviation for a partially polarizing beam splitter). For horizontally and vertically
polarized photons, the transmissivity of the PPBS is (TH, TV) = (1, 1 − p). Finally, the photons are detected by avalanche photodiodes (APDs),
in coincidence with the trigger photons. Photon counts give measured probabilities after correcting for relative efficiencies of the different
APDs.

displacements, and demonstrate topological phase transitions
between FTPs with different topological invariants by probing
statistical moments of the walker. We also directly demon-
strate the breaking of pseudounitary near topological phase
boundaries. Our experimental detection of large winding num-
bers in nonunitary FTPs offers the exciting prospect of ex-
ploring topological phases characterized by large topological
invariants in nonunitary or non-Hermitian settings, which will
create further opportunities in engineering unconventional
topological phenomena using photonics.

II. MULTISTEP NONUNITARY QWs

We introduce the photonic setup for multistep nonunitary
QWs, where the walker is shifted more than twice at each
time step. We focus on three- and four-step nonunitary QWs
in this work. As illustrated in Fig. 1, the three-step QW is on
a one-dimensional homogeneous lattice L (L ∈ Z), and the
dynamics is governed by the Floquet operator [37]

Ũ ′
3 := MU ′

3 = MR

(
θ1

2

)
SR(θ2)SR(θ2)SR

(
θ1

2

)
. (1)

Here, the coin operator R(θ ) rotates single-photon polar-
ization by θ about the y axis, where coin states are hori-
zontally polarized (|H 〉) and vertically polarized (|V 〉). The
polarization-dependent shift operator S moves the walker with
coin state |H 〉 (|V 〉) to the left (right) by one lattice site.
Nonunitary dynamics is enforced by the loss operator

M = 1w ⊗ (|+〉〈+| +
√

1 − p|−〉〈−|), 0 < p ≤ 1, (2)

where |±〉 = (|H 〉 ± |V 〉)/
√

2, and 1w = ∑
L |x〉〈x| with x

denoting the position of the walker. The loss operator is
equivalent to performing a partial measurement Me = 1w ⊗√

p|−〉〈−| in the basis {|+〉, |−〉} at each time step, with p

the probability of a successful measurement.
Whereas R and S are implemented by using appropriate

wave plates and beam displacers (BDs) [38–45], the partial
measurement operator Me is realized by a sandwich-type
setup involving two half-wave plates (HWPs) and a partially
polarizing beam splitter (PPBS) [26]. At each measurement

step in the quantum-walk dynamics, photons in the state |−〉
are reflected by the PPBS with probability p. Photons are then
detected by single-photon avalanche photodiodes (APDs) and
lost from the quantum-walk dynamics.

Topological properties in the experimental three-step
nonunitary QW are introduced via the effective non-Hermitian
Hamiltonian H

′(3)
eff defined through Ũ ′

3 = exp [−iH
′(3)
eff ]

[36,37]. For the homogeneous single-photon QW considered
here, H

′(3)
eff (k) = Ekn · σ in momentum k space, with σ the

Pauli vector, Ek the quasienergy spectrum, and n the direction
of the spinor eigenvector for each momentum −π < k � π .
Similar to the case of the two-step nonunitary QW [26], the
winding number of the three-step QW, which serves as a
topological invariant of the system, is the number of times
the real component of n winds around the x axis as k varies
through the first Brillouin zone.

For a given FTP with chiral symmetry, two distinct winding
numbers (ν ′, ν ′′) exist for Floquet operators fitted in different
time frames [33]. Whereas the corresponding winding number
for Ũ ′

3 is ν ′, ν ′′ is similarly defined through the winding of the
spinor eigenvector of the non-Hermitian Hamiltonian H

′′(3)
eff ,

where Ũ ′′
3 = exp [−iH

′′(3)
eff ] and

Ũ ′′
3 := MSupR(θ2)SR(θ1)SR(θ2)Sdown. (3)

Here, Sup = ∑
x (|x + 1〉〈x| ⊗ |V 〉〈V | + |x〉〈x| ⊗ |H 〉〈H |)

and Sdown = ∑
x (|x〉〈x| ⊗ |V 〉〈V | + |x − 1〉〈x| ⊗ |H 〉〈H |).

Depending on the coin parameters, the absolute value of the
winding numbers can take large integer values up to three, as
we show in the phase diagram in Fig. 2(a).

Similar to three-step QWs, we define four-step nonunitary
QWs from constructing the evolution operators

Ũ ′
4

( ′′ ) := MR

[
θ1(2)

2

]
SR(0)SR[θ2(1)]SR(0)SR

[
θ1(2)

2

]
. (4)

By analyzing the effective non-Hermitian Hamiltonians
H

′(4)
eff and H

′′(4)
eff respectively associated with the Floquet oper-

ators Ũ ′
4 and Ũ ′′

4 , it is straightforward to demonstrate that FTPs
exist for four-step QWs, which are characterized by integer-
valued winding numbers as large as four. Importantly, both the
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FIG. 2. (a) Phase diagram for three-step nonunitary QWs charac-
terized by the topological invariants (ν ′, ν ′′) as functions of the coin
parameters (θ1, θ2). (ν ′, ν ′′) are calculated from the Floquet operators
Ũ ′

3 and Ũ ′′
3 , respectively. (b) Measured average displacements of

three-step nonunitary QWs corresponding to Ũ ′
3 with different loss

parameters p = 1, 2/3, 9/25. Coin parameters vary along the line
θ1 = θ2 + π/2, as indicated by dots in Fig. 2(a). The dashed curve
indicates expected results of infinite-step QWs. The solid curve
indicates numerical simulations for QWs with four time steps and
the experimental results are presented by dots. Experimental errors
are due to photon-counting statistics.

three- and four-step QWs defined in Eqs. (1), (3), and (4) have
chiral symmetry in the unitary limit (p = 0), with the chiral
symmetry operator given by � = σx as �U� = U−1 (see the
Appendixes), where U designates the Floquet operator of the
corresponding QW. Consistent with previous studies [32], we
find that topological properties of the nonunitary quantum-
walk dynamics derive from those in the unitary limit, which
are in turn protected by chiral symmetry. Hence chiral sym-
metry in the unitary limit is crucial for the perseverance of
the FTPs in the nonunitary case (p > 0). Such a requirement
restrains the available forms of nonunitary Floquet operators,
of which Eqs. (1), (3), and (4) are the most straightforward
examples (see the Appendixes).

III. WINDING NUMBERS AND THE
BULK-BOUNDARY CORRESPONDENCE

We define winding numbers for multistep nonunitary QWs
and discuss their relation with the topological edge states.

We write the Floquet operator

Ũ ′
3 = n0σ0 − in1σx − in2σy − in3σz (5)

in momentum space. We then define a new vector
h := 1

‖Re(n)‖Re(n), with n = (n1, n2, n3)T. As h1 =
1

‖Re(n)‖Re(n1) = 0 for all k, the topological invariant for
the nonunitary QW is

ν ′ := − 1

2π

∮
dk

(
h × ∂h

∂k

)
1

. (6)

Following a similar procedure, we define the winding number
ν ′′ for the Floquet operator Ũ ′′

3 .
In the unitary limit with p = 0, n1 becomes zero and

the Floquet operators Ũ ′
3 and Ũ ′′

3 manifestly satisfy chiral
symmetry, with the chiral symmetry operator being � = σx .
We define [33]

(ν0, νπ ) :=
(

ν ′ + ν ′′

2
,
ν ′ − ν ′′

2

)
, (7)

FIG. 3. (a) Eigenspectrum of λ on the complex plane. The blue
dots correspond to bulk states and the red (black) dots correspond
to topological edge states located near x = 0 and x = ±200, respec-
tively. There are altogether four edge states in the spectrum. (b) The
spatial probability distribution of the edge states corresponding to the
red and black dots in (a).

which are directly related to edge states at the boundaries with
quasienergies zero and π , respectively. Specifically, the num-
ber of edge states with quasienergy zero (π ) should be equal
to the difference in the winding numbers ν0 (νπ ) on either side
of the boundary. For the nonunitary QW (p > 0), the Floquet
operators no longer possess chiral symmetry, and the bulk-
boundary correspondence between the bulk winding numbers
and the topological edge states needs to be confirmed. We
have checked numerically that the topological invariants ν0

and νπ are related to localized topological edge states with the
real parts of quasienergies at zero and π , respectively.

We consider an inhomogeneous three-step QW on a lattice
with 401 sites and with a periodic boundary condition. The
nonunitary QW is governed by the Floquet operator Ũ ′

3 with
p = 9/25. We introduce two boundaries near x = 0 and x =
±200, with (θL

1 , θL
2 ) = (π/4,−π/4) for −200 � x < 0 and

(θR
1 , θR

2 ) = (π/2, 0) for 0 � x � 200. According to the phase
diagram in Fig. 2(a), the winding numbers for −200 � x < 0
are (ν ′, ν ′′) = (1, 0) and those for 0 � x � 200 are (ν ′, ν ′′) =
(3, 0). Therefore, we have (νL

0 , νL
π ) = ( 1

2 , 1
2 ) for −200 � x <

0 and (νR
0 , νR

π ) = ( 3
2 , 3

2 ) for 0 � x � 200.
At both boundaries, the differences between the winding

numbers are δν0 = |νL
0 − νR

0 | = 1 and δνπ = |νL
π − νR

π | = 1.
This should correspond to a pair of topological edge states at
each edge, with the real part of their quasienergies at zero and
π , respectively. In the following, we confirm this expectation
by numerically calculating the quasienergy spectrum.

We define the effective Hamiltonian Ũ ′
3 = exp(−iHeff ).

The quasienergy ε is defined as

Ũ ′
3|ψλ〉 = λ|ψλ〉, λ = e−iε , (8)

where |ψλ〉 is the eigenstate of Ũ ′
3 and Heff . In Fig. 3(a), we

plot the eigenspectrum of λ on the complex plane. Whereas
the blue dots are the bulk states, the red (B and C) and the
black (A and D) dots appearing on the real axis correspond
to localized edge states at the two boundaries near x = 0
and x = ±200, respectively. Localization of the edges states
is confirmed by plotting the probability distribution Px =
〈ψλ|x〉〈x| ⊗ 1c|ψλ〉 of the edge states (A, B, C, and D), as
illustrated in Fig. 3(b).

For comparison, we have shown typical spatial distribu-
tions of the bulk states (E and F), which are indeed extended in
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space. Importantly, near x = 0, there exist two localized edge
states with identical spatial distributions, which correspond
to the red dots (B and C) in Fig. 3(a). The real parts of the
corresponding quasienergy ε are given by π (B) and zero
(C), respectively. The case at the boundary near x = ±200
is similar. For comparison, we have also shown typical spatial
distributions of the bulk states (E and F), which are indeed
extended in space. This confirms the bulk-boundary corre-
spondence as discussed in the previous paragraph. We have
checked that such a bulk-boundary correspondence works for
other choices of coin parameters throughout the phase dia-
gram in Fig. 2(a). For brevity, we use the three-step nonunitary
QW as an example. The case with the four-step nonunitary
QW is similar.

IV. DETECTING TOPOLOGICAL INVARIANTS
FROM LOSSES

In two-step nonunitary QWs, topological invariants can
be probed by monitoring losses [26,35,36]. As we experi-
mentally demonstrate and explain, topological invariants of
the multistep nonunitary QWs are determined from losses by
measuring average displacement

〈�x〉 =
∑

x

∞∑
t ′=1

xPth(x, t ′), (9)

for the walker-coin system initialized in the state |ψ0〉 =
|x = 0〉 ⊗ |+〉. Here, the probability of the walker being
detected at x during the t th time step is

Pth(x, t ) = 〈ψt−1|U ′†
3 M†

e (|x〉〈x| ⊗ 1c)MeU
′
3|ψt−1〉, (10)

where |ψt 〉 = (Ũ ′
3)t |ψ0〉 and 1c is a 2 × 2 identity operator.

To experimentally probe the average displacement in the
nonunitary QW with t steps in total, we perform coinci-
dence measurements on the number of the reflected photons
NR(x, t ′) (t ′ = 1, . . . , t) at each position successively up to t .
We then construct the probability

Pexp(x, t ′) = NR(x, t ′)∑
x ′

[∑t
t ′′=1 NR(x ′, t ′′) + NT(x ′, t )

] , (11)

where NT(x, t ) is the number of transmitted photons at the
last step t . The average displacement is then

〈�x〉exp =
∑

x

t∑
t ′=1

xPexp(x, t ′). (12)

To detect topological invariants, we realize three-step
nonunitary QWs with three different loss parameters p =
1, 2/3, 9/25. The corresponding phase diagram is shown in
Fig. 2(a), where the topological invariants (ν ′, ν ′′) are func-
tions of the coin parameters (θ1, θ2). Thirteen sets of coin
parameters (θ1, θ2) are chosen along the line θ1 = θ2 + π/2,
as indicated in Fig. 2(a). The topological invariant ν ′ assumes
values −3, −1, 1 to 3 along the line, while ν ′′ is fixed at
zero. The walker starts from x = 0 and the initial coin state
is chosen to be |+〉.

Measured average displacements are shown in Fig. 2(b) for
the Floquet operator Ũ ′

3 (as ν ′′ is always zero, the average
displacements for Ũ ′′

3 are not shown). These results agree

well with the numerical simulations of three-step QWs up
to four time steps and demonstrate plateaux close to the
quantized values of ν ′ calculated for QWs with infinite time
steps. We observe that with increasing loss parameter p,
measured average displacements at a given time step converge
faster to the quantized values. This result is consistent with
the measurement results for two-step nonunitary QWs [26]
and suggests that the quantum Zeno effect is weak in these
systems [36]. For systems with a strong quantum Zeno effect,
|−〉 becomes effectively unoccupied in the limit of p = 1,
which results in a longer convergence time with increasing
p. Meanwhile, regardless of the loss parameter, it takes much
longer for the displacements to converge near topological
phase transitions, where the topological invariants undergo
abrupt changes.

We then implement four-step nonunitary QWs with various
loss parameters p = 1, 2/3, 9/25. The corresponding phase
diagram is shown in Fig. 4(a). As the coin parameters vary
along the dotted line θ1 = θ2 + π/2 in the phase diagram, the
topological invariants (ν ′, ν ′′) change from (−4, 0), (0,−4),
(4,0), to (0,4). The measured average displacements for the
operators Ũ ′

4 and Ũ ′′
4 up to three time steps are shown in

Figs. 4(b) and 4(c), respectively, which agree well with the
corresponding numerical simulations.

V. CONFIRMING THE TOPOLOGICAL
PHASE TRANSITIONS

We confirm the topological phase boundaries, signaled
by jumps of the measured topological invariants, by probing
statistical moments [11]. Specifically, we define the second
statistical moment of the walker after t steps as

m2(t ) :=
∑

x x2〈ψt |x〉〈x| ⊗ 1c|ψt 〉∑
x〈ψt |x〉〈x| ⊗ 1c|ψt 〉 . (13)

Experimentally, the moment is evaluated from the spatial
distribution of the transmitted photons at the last step t :

m
exp
2 (t ) =

∑
x

x2 NT(x, t )∑
x ′ NT(x ′, t )

. (14)

In a unitary quantum walk, the bulk gap closes at the
topological phase boundaries, which leads to nonanalyticities
of the statistical moments at critical points [11]. Anomalies
in the second statistical moments also exist in nonunitary
quantum walks, but in a different form. In Fig. 5, we plot
the measured values for m

exp
2 (t )/t2 of multistep nonunitary

QWs with two different loss parameters p = 2/3, 9/25. In
(a),(c), coin parameters are scanned along the dotted lines in
the phase diagrams. We find reasonable agreement between
experimental results and numerical simulations. Importantly,
m

exp
2 (t )/t2 features precipitous dips centered at the topologi-

cal phase boundary. This is reflected in numerical simulations
of long-time dynamics, as well as in the measured m

exp
2 (t )/t2

at short times under appropriate parameters [see Figs. 5(b) and
5(d)].

The dips in m
exp
2 (t )/t2 are closely related to a hidden

pseudounitarity of the Floquet operators. A Floquet operator
U is pseudounitarity if it satisfies U−1 = ηU †η−1, where η

is a Hermitian invertible linear operator [46]. Existence of
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FIG. 4. (a) Phase diagram for four-step nonunitary QWs in terms of the topological invariants (ν ′, ν ′′). (ν ′, ν ′′) are calculated from the
Floquet operators Ũ ′

4 and Ũ ′′
4 , respectively. Measured average displacements of four-step nonunitary QWs of Ũ ′

4 (b) and Ũ ′′
4 (c) with different

loss parameters p = 1, 2/3, 9/25. Coin parameters vary along the line θ1 = θ2 + π/2 as indicated by dots in Fig. 4(a). Experimental errors are
due to photon-counting statistics.

the pseudounitarity guarantees the reality of the quasienergy
spectra of the corresponding effective non-Hermitian Hamil-
tonian. In the case of broken pseudounitarity, however, the
quasienergy spectra become complex, which subsequently
influence the resulting dynamics. For the three- and four-
step nonunitary QWs considered here, the Floquet opera-
tors can be mapped (see the Appendixes), by a statistical-
moment-preserving scaling, to operators with pseudounitarity
[46–48]. In the vicinity of topological phase boundaries (see
the Appendixes), pseudounitarity is lost, which gives rise to
imaginary-valued quasienergy spectra. Nonunitary QWs in
these regions are therefore analogous to those with broken
parity-time symmetry, where the long-time spatial distribution
of the walker is Gaussian-like rather than ballistic [12,49,50].
This spreading property leads directly to a drop of the second
moment in the nonpseudounitary regions.

Further, from long-time numerical simulations shown in
Fig. 5, we identify nonanalytical peaks in m

exp
2 (t )/t2, located

on both sides of a dip and at the boundary between regions
with and without pseudounitarity. At these pseudounitarity

boundaries, the quasienergy spectra change from completely
real to complex, leading to the closing of the quasienergy
gap. The nonanalyticities can then be understood on the same
ground as those at topological phase boundaries in the unitary
dynamics.

VI. FINAL REMARKS

By detecting winding numbers of three and four, our exper-
iment establishes the feasibility of detecting higher winding
numbers through loss in multistep QW dynamics. We show
that as few as four (three) time steps are sufficient to detect
winding numbers of three and four under appropriate param-
eters. Whereas the implementation and detection of FTPs of
even larger winding numbers are possible in our experimen-
tal setup by improving the experimental apparatus (see the
Appendixes), a promising setup with even better extendability
are QWs in the time domain, where by translating the position
of the walker into arrival times at the detector, the number
of time steps can be significantly increased [51–53]. Such
an extension would significantly enrich the experimentally

FIG. 5. Statistical moments m2/t2 of the walker position distribution for three-step nonunitary QWs governed by Ũ ′
3 (upper layer) and for

four-step nonunitary QWs governed by Ũ ′
4 (lower layer), with the loss parameters p = 9/25, 2/3. (a),(c) Coin parameters (θ1, θ2) are scanned

along the dotted lines in the phase diagrams of Figs. 2(a) and 4(a). (b),(d) Coin parameters are scanned along θ1 = 0. Experimental results of
m2/t2 of up to four time steps (three time steps) and numerical simulations up to 50 time steps are shown in left and right columns, respectively.
The vertical dashed lines indicate locations of topological phase transition from theoretical predictions.
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accessible nonunitary FTPs in one dimension and would
stimulate further studies on dynamic properties of nonunitary
FTPs.

Another interesting direction would be the exploration
of the relation between FTPs in nonunitary quantum-walk
dynamics and those in a parity-time-symmetric configuration
[12,50]. This is particularly relevant due to the existence of
hidden pseudounitarity in our system, which is intimately
connected with the reality of the quasienergy spectrum and
hence with parity-time symmetry as well. Our experiment
opens up the avenue toward a hierarchy of FTPs with large
winding numbers and sheds light on understanding topologi-
cal phenomena in nonunitary systems.
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APPENDIX A: EXPERIMENTAL REALIZATION OF
MULTISTEP NONUNITARY QUANTUM WALKS

At the start of a single-photon quantum walk (QW), a
pair of photons is generated via type-I spontaneous para-
metric down conversion, with one photon serving as a trig-
ger. The other photon is projected into the state |+〉 with
a polarizing beam splitter (PBS) and a half-wave plate
(HWP) heralded by the trigger photon, and is then sent
to the quantum-walk interferometric setup. We implement
the coin operator R(θ ) = 1w ⊗ e−iθσy , the shift operator
S = ∑

x (|x − 1〉〈x| ⊗ |H 〉〈H | + |x + 1〉〈x| ⊗ |V 〉〈V |), and

the partial measurement operator Me, following the approach
outlined in [26]. Here, σy = i(−|H 〉〈V | + |V 〉〈H |) is the
standard Pauli operator under the polarization basis.

Losses are used to detect winding numbers in our experi-
ment and can be controlled by the transmissivity of the partial
polarizing beam splitter. Each pair of beam displacers forms
an interferometer and their misalignment gives rise to pure
dephasing, which is the major form of decoherence in the
system. Furthermore, the surfaces of the beam displacers are
not strictly smooth due to manufacturing inaccuracy. These
should give rise to position-dependent dephasing throughout
the QW. However, the dephasing caused by misalignment
between beam displacers and imperfectness of the surface
of the beam displacer can be compensated experimentally.
Ideally, losses and misalignment of beam displacers do not
limit the number of steps. The limitation on the number
of steps depends on the size of the clear aperture of the
beam displacer, which can be relaxed at the cost of beam
displacers with larger clear apertures. Therefore, whereas we
demonstrate that, by choosing the proper parameters, as few
as four (three) steps are enough to have a clear detection of
higher winding numbers, four (three) steps are not the limit of
our experimental setups.

APPENDIX B: CHOICE OF TOPOLOGICAL
FLOQUET OPERATORS

As we have discussed previously, Ũ ′
3 and Ũ ′

4 are topo-
logically nontrivial so long as they possess chiral symmetry
in the unitary limit. This allows us freedom in the design
of multistep QWs. As an example, we consider four-step
nonunitary QWs under the Floquet operators

W̃ ′
4 = MR

(
θ1

2

)
SR(θ2)SSR(θ2)SR

(
θ1

2

)
, (B1)

W̃ ′′
4 = MSR(θ2)SR

(
θ1

2

)
R

(
θ1

2

)
SR(θ2)S. (B2)

The corresponding phase diagram is shown in Fig. 6, which
is richer than that of the four-step QW in the main text. We
then calculated average displacements under W̃ ′

4 with different
loss parameters; the results are shown in the middle and right
panels of Fig. 6. Whereas under our parameters, the average

FIG. 6. Left: phase diagram for new four-step nonunitary QWs in terms of the topological invariants (ν ′, ν ′′). (ν ′, ν ′′) are calculated from
the Floquet operators W̃ ′

4 and W̃ ′′
4 , respectively. Middle: average displacements under W̃ ′

4 for three time steps. Coin parameters vary along the
gray line θ2 = π/8 in the phase diagram. The colored solid curve indicates numerical simulations for different loss parameters. The blue solid
lines indicate p = 9/25, black solid lines indicate p = 2/3, and red solid lines indicate p = 1. The walker starts from x = 0 and the initial
coin state was chosen as |+〉. Right: average displacements under W̃ ′

4 for 20 time steps. Other parameters are the same as those of the middle
panel.
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displacements have not yet converged at four time steps, the
topological nature of W̃ ′

4 is revealed by the quantized average
displacements at long times.

APPENDIX C: STATISTICAL MOMENTS
OF QUANTUM WALKS

In this section, we examine the statistical moments of
both the unitary and the nonunitary QWs. Consider a gen-
eral homogeneous QW driven by the Floquet operator U =
n0σ0 − in · σ . Assuming the walker starts from x = 0 at t =
0, we write the initial state of the walker-coin system as
|�0〉 = |x = 0〉 ⊗ |ψ0〉, where |ψ0〉 represents the coin state.
At any given time step t > 0, we have |�t 〉 = Ut |�0〉, and the
probability of measuring the walker at position x is

p(x, t ) = 〈�t |x〉〈x| ⊗ 1c|�t 〉. (C1)

The j th statistical moment of this distribution is given
by mj (t ) = 〈xj 〉t = ∑

x xjp(x, t ). In particular, we write the
second moment in the momentum space as

m2(t ) =
∫ π

−π

dk

2π
〈ψ0|U †t

(
−i

d

dk

)2

Ut |ψ0〉. (C2)

For the unitary QWs, we have U = cos Ekσ0 − i sin
Ek (n̂k · σ ) and hence Ut = cos(Ekt )σ0 − i sin(Ekt )(n̂k · σ ),
where n̂k = nk/ sin Ek and cos Ek = n0. It is then straightfor-
ward to derive

m2(t )

t2
=

∫ π

−π

dk

2π
v2

k + O(1/t2),

∫ π

−π

dk

2π
v2

k =
∫ π

−π

dk

2π

(
dEk

dk

)2

=
∫ π

−π

dk

2π

1

1 − n2
0

(
dn0

dk

)2

,

(C3)

where vk = dEk

dk
is the group velocity. At the topological phase

boundary, the bulk gap closes at certain points in the mo-
mentum space, and the corresponding n0(k) at these momenta
approaches zero. This gives rise to the slope discontinuity, as
well as a peak structure of the second moment near the phase
boundary [11].

For the nonunitary QWs in general, analytic expressions
such as Eq. (C3) are typically unavailable. From numerical
calculations (see Fig. 7), we see that signatures of topolog-
ical phase transitions in the second moments persist in the
nonunitary cases. In fact, at short time steps or away from
the topological phase boundary, the second moments from
the unitary and the nonunitary QWs are almost the same.
However, at longer time steps, precipitous dips emerge in the
second moment of nonunitary QWs near topological phase
transitions. Such a behavior can be explained by mapping the
Floquet operators in Eqs. (1), (3), and (4) to operators with the
so-called pseudounitarity.

For such a purpose, we replace M with γM in Eqs. (1),
(3), and (4) of the main text, and define U

′
i := γ Ũ ′

i and

U
′′
i := γ Ũ ′′

i , with i = 3, 4 and γ = (1 − p)−
1
4 . Following the

definition of winding numbers in the previous sections, it is
straightforward to show that the topological phase diagrams
for QWs are not changed with the introduction of γ in
the Floquet operators. Further, as γ is a constant, it only

(a) (b)

FIG. 7. Statistical moments m2(t )/t2 of the walker position dis-
tribution for unitary (solid curves) and nonunitary (dotted-dashed
curves), three-step (upper layer), and four-step (lower layer) QWs,
governed by U ′

3, Ũ ′
3, U ′

4, and Ũ ′
4, respectively. The green solid curves

indicate the analytical results of the second moment [see Eq. (C3)],
the vertical dashed lines indicate the locations of topological phase
transitions from theoretical predictions, and the other curves indicate
the numerical simulation results. The coin parameters are the same
as those of Fig. 5 in the main text.

introduces a spatially homogeneous decay γ t to the walker
at the t th step, which does not change the statistical moments
at any given time. Most importantly, as we will show in the
next section, both U

′
i and U

′′
i have pseudounitarity regions on

the phase diagram, which depend on both the loss parameter
p and the coin parameters.

In Figs. 8(a) and 8(b), we show the boundary between
regions with pseudounitarity and those without using red
lines. Typically, the pseudounitarity is lost in regions sur-
rounding the topological phase boundaries. As pseudouni-
tarity is a necessary and sufficient condition for the reality
of the quasienergy spectrum of the effective non-Hermitian
Hamiltonian, the loss of pseudounitarity leads to imaginary-
valued quasienergies at certain points in momentum space.
The resultant nonpseudounitary QW has similar behavior
to a nonunitary QW with a broken parity-time symmetry,
in that the long-time spatial distribution of the walker is
Gaussian-like rather than ballistic [see Fig. 8(c)]. Hence the
second moment decreases rapidly close to a topological phase
transition, which carries over to the quantum-walk dynamics
governed by the operators Ũ ′

i and Ũ ′′
i , so long as the evolution

time is long enough.

APPENDIX D: PSEUDOUNITARITY

In this section, we define and discuss pseudounitarity.
We show that pseudounitarity of a Floquet operator U is
equivalent to the reality of the quasienergy spectrum of the
corresponding effective Hamiltonian [46–48]. A necessary
and sufficient condition for the spectrum of a non-Hermitian
Hamiltonian to be purely real can be formulated in terms of
pseudo-Hermiticity [47,48]. Such a condition can be general-
ized to the Floquet operator, where a Floquet operator U has
η pseudounitarity [46] if it satisfies U−1 = ηU †η−1; here η is
a Hermitian invertible linear operator.

In general, a nonunitary Floquet operator U has a complete
set of biorthonormal eigenvectors {|ψ±〉, |χ±〉}. Therefore, in
momentum space,

Uk = n0σ0 − in1σx − in2σy − in3σz,

U
†
k = n0σ0 + in∗

1σx + in∗
2σy + in∗

3σz,
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FIG. 8. Phase diagrams of three-step and (b) four-step Floquet operators U
′
i and U

′′
i (i = 3, 4). Different topological phases are

characterized by the winding numbers (ν ′, ν ′′). The black lines mark the topological phase boundaries, which are the same as those of Ũ ′
i

and Ũ ′′
i . The red lines represent the boundaries between regions with pseudounitarity and those without. The pseudounitarity is lost in a

loss-dependent region around the topological phase boundary. As the loss parameter p increases, the nonpseudounitary region also increases.
(c) The long-time (t = 50) spatial distributions of the walker governed by the Floquet operator U

′
3 in the pseudounitary (black) and the

nonpseudounitary (red) regions. The coin parameters are (θ1 = π/4, θ2 = 0) and (θ1 = 0, θ2 = 0), respectively, for the pseudounitary and the
nonpseudounitary case. Note that the spatial distributions are the same as the normalized spatial distributions under Ũ ′

3 with the same coin
parameters.

|ψ±〉 = 1√
2
√

1 − n2
0

(√
1 − n2

0 ± n3
)

× (
n3 ±

√
1 − n2

0, n1 + in2
)T

,

〈χ±| = 1√
2
√

1 − n2
0

(√
1 − n2

0 ± n3
)

× (
n3 ±

√
1 − n2

0, n1 − in2
)
,

Uk|ψ±〉 = λ±|ψ±〉, U †|χ±〉 = λ∗
±|χ±〉,

〈χμ|ψν〉 = δμν,
∑

μ

|ψμ〉〈χμ| = 1,

Uk =
∑

μ

λμ|ψμ〉〈χμ|, (D1)

where λ± = n0 ∓ i

√
1 − n2

0. Note the parameters λ±, n0, n1,
n2, and n3 are all momentum dependent.

We define the effective Hamiltonian via Uk =
exp(−iHeff ). The quasienergy of Heff is real if and
only if |λ±| = 1, which is the case when n2

0 � 1. Let
{|φμ〉} be an arbitrary complete orthonormal basis,
i.e., 〈φμ|φν〉 = δμν,

∑
μ=± |φμ〉〈φμ| = 1 (for example

|φ+〉 = |+〉, |φ−〉 = |−〉). We define O := ∑
μ |ψμ〉〈φμ| and

U0 := ∑
μ λμ|φμ〉〈φμ|. It is straightforward to show that O

is invertible with the inverse given by O−1 = ∑
μ |φμ〉〈χμ|

and O−1UkO = U0. While |λ±| = 1, U0 is unitary with
U0U

†
0 = 1. Therefore, we have O−1UkO(O−1UkO )† = 1.

Defining η := OO†, we have U−1
k = ηU

†
k (η)−1; i.e., Uk is η

pseudounitary. Pseudounitarity of Uk is the direct result of the
reality of the quasienergy at the momentum k.

Conversely, if Uk is η pseudounitary, we have U0U
†
0 = 1,

which leads to |λ±| = 1 and the reality of the quasienergy of
Heff at the corresponding momentum k. Thus the reality of the
quasienergy is equivalent to the pseudounitarity of the Floquet

operator Uk . It is also apparent that the pseudounitarity of Uk

breaks down when n2
0 > 1.

The Floquet operators U
′
i and U

′′
i defined in the previ-

ous section possess pseudounitarity when their correspond-
ing n2

0 � 1 for all k. The boundaries between regions with
pseudounitarity and those without are therefore calculated by
requiring n2

0 = 1 be satisfied for at least one k. We plot the
boundary in Fig. 8 in red. It appears that, in both cases, the
pseudounitarity is lost in the immediate vicinities of topologi-
cal phase boundaries. We note that, as p increases, the widths
of the nonpseudounitary regions also increase.

APPENDIX E: ROBUSTNESS AGAINST DISORDER

A key feature of topologically nontrivial systems is the ro-
bustness of topological properties against small perturbations.
We find that the quantization of the average displacement of

FIG. 9. Average displacements for three-step nonunitary QWs
governed by Ũ ′

3 with either static disordered rotation angles (a) or
dynamic disordered rotation angles (b). The loss parameter is fixed at
p = 1. The disordered rotation angles are given by θ1,2 + δθ , where
δθ is chosen from the interval [−π/20, π/20]. For static disorder, δθ
is unique for each position and is independent of time. For dynamic
disorder, δθ is unique for each time step and is independent of the
position of the walker. The coin parameters (θ1, θ2) are scanned along
the dotted line in the phase diagram [Fig. 2(a) in the main text]. The
symbols and the gray shadings, respectively, indicate mean values of
the measured average displacements and the range of the standard
deviations averaged over 10 different ensembles for each pair of
(θ1, θ2). Experimental errors are due to photon-counting statistics.
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the multistep nonunitary QW here is robust against both static
and dynamic disorders. Our results therefore not only confirm
the robustness of the measurement scheme, but also demon-
strate the robustness of the FTPs with large topological invari-
ants. Here, we use the three-step nonunitary QW for the evo-
lution operator Ũ ′

3 with loss parameter p = 1 as an example.
First, to test the robustness of the quantization of the

average displacement against static disorder, we keep the
mean values of the coin parameters 〈θ1〉 and 〈θ1〉 on the line
〈θ1〉 = 〈θ2〉 + π/2 and measure the probabilities of the three-
step nonunitary QW up to four time steps. We implement
quantum-walk dynamics governed by the evolution operator
Ũ ′

3 with 10 randomly generated coin rotations R(〈θ1,2〉 + δθ )
for each position. For static disorder, the time-independent
δθ is unique for each position and chosen from the intervals
[−π/20, π/20]. In our experiment, δθ is implemented by

manipulating the setting angles of HWPs by small random
amounts δθ around the coin parameters (θ1, θ2). We then
calculate the mean values of the 10 sets of average displace-
ments. As shown in Fig. 9(a), the mean values of the average
displacements are still quantized.

Second, we study the effect of the dynamic disorder. To
generate dynamic disorder, a time-dependent coin rotation
is required. The setting angles of HWPs for each step are
modulated by a small random amount around the coin param-
eters (θ1, θ2). The strength of the disorder is determined by
the angle shift δθ , which is randomly generated at each time
step from the interval [−π/20, π/20]. Note that δθ here is
time dependent but spatially homogeneous. We measure the
probabilities and calculate the mean values of the 10 sets of
average displacements. The results shown in Fig. 9(b) agree
with theoretical predictions.
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Potoček, C. Hamilton, I. Jex, and C. Silberhorn, A 2D quantum
walk simulation of two-particle dynamics, Science 336, 55
(2012).

063847-10

https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevA.98.013835
https://doi.org/10.1103/PhysRevA.98.013835
https://doi.org/10.1103/PhysRevA.98.013835
https://doi.org/10.1103/PhysRevA.98.013835
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1038/nphoton.2016.10
https://doi.org/10.1038/nphoton.2016.10
https://doi.org/10.1038/nphoton.2016.10
https://doi.org/10.1038/nphoton.2016.10
http://arxiv.org/abs/arXiv:1605.07652
https://doi.org/10.1103/PhysRevB.88.121406
https://doi.org/10.1103/PhysRevB.88.121406
https://doi.org/10.1103/PhysRevB.88.121406
https://doi.org/10.1103/PhysRevB.88.121406
http://arxiv.org/abs/arXiv:1609.09650
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevB.95.201407
https://doi.org/10.1103/PhysRevB.95.201407
https://doi.org/10.1103/PhysRevB.95.201407
https://doi.org/10.1103/PhysRevB.95.201407
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1088/1367-2630/16/5/053009
https://doi.org/10.1088/1367-2630/16/5/053009
https://doi.org/10.1088/1367-2630/16/5/053009
https://doi.org/10.1088/1367-2630/16/5/053009
https://doi.org/10.1038/srep04825
https://doi.org/10.1038/srep04825
https://doi.org/10.1038/srep04825
https://doi.org/10.1038/srep04825
https://doi.org/10.1103/PhysRevLett.114.140502
https://doi.org/10.1103/PhysRevLett.114.140502
https://doi.org/10.1103/PhysRevLett.114.140502
https://doi.org/10.1103/PhysRevLett.114.140502
https://doi.org/10.1103/PhysRevLett.114.203602
https://doi.org/10.1103/PhysRevLett.114.203602
https://doi.org/10.1103/PhysRevLett.114.203602
https://doi.org/10.1103/PhysRevLett.114.203602
https://doi.org/10.1103/PhysRevA.92.042316
https://doi.org/10.1103/PhysRevA.92.042316
https://doi.org/10.1103/PhysRevA.92.042316
https://doi.org/10.1103/PhysRevA.92.042316
https://doi.org/10.1103/PhysRevA.95.032318
https://doi.org/10.1103/PhysRevA.95.032318
https://doi.org/10.1103/PhysRevA.95.032318
https://doi.org/10.1103/PhysRevA.95.032318
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1016/j.optcom.2018.06.006
https://doi.org/10.1016/j.optcom.2018.06.006
https://doi.org/10.1016/j.optcom.2018.06.006
https://doi.org/10.1016/j.optcom.2018.06.006
https://doi.org/10.1063/1.1646448
https://doi.org/10.1063/1.1646448
https://doi.org/10.1063/1.1646448
https://doi.org/10.1063/1.1646448
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1461427
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevA.93.062116
https://doi.org/10.1103/PhysRevA.93.062116
https://doi.org/10.1103/PhysRevA.93.062116
https://doi.org/10.1103/PhysRevA.93.062116
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448



