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Frequency-angular characteristics of signal and idler photons generated under spontaneous parametric down-
conversion are studied in a strongly frequency nondegenerate regime, without paraxial approximation, account-
ing for possible inherent absorption of idler waves in a nonlinear crystal, classical thermal field fluctuations, and
the multimode character of parametric interaction induced by transverse spatial limitation of the pump beam.
Spatial limitation is shown to lead to a huge increase in angular divergence of the idler photons generated at
terahertz frequencies. General expressions are obtained for the frequency-angular sensitivity function of the
nonlinear-optical terahertz wave detector and for power densities of the signal and idler photon fluxes. The
absorption-induced difference in the parametric conversion coefficients for the noise and externally incident
radiation of the idler frequency is shown to be described by approximately the same loss factor for all active
spatial idler modes. Two different parametric contributions of the internal thermal noise to the number of output
idler photons were revealed with different dependence on the idler-wave absorption. Expressions for the loss
factors, which describe absorption-induced effects in signal and idler channels, are obtained and shown to be
turning into one another by changing the sign of the absorption coefficient. Relative contribution of thermal and
quantum field fluctuations into the intrinsic radiation of a nonlinear crystal at signal and idler frequencies is
analyzed accounting for the crystal absorption properties.
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I. INTRODUCTION

Parametric down-conversion (PDC) is a well-known and
comprehensively studied quantum optical effect, which is
widely used for generation of entangled photons and squeezed
vacuum states in actual optical quantum information schemes
[1]. As it was first shown in 1967 [2–5], PDC can be easily
arranged by laser pumping of any medium with quadratic
nonlinear-optical response. By this way, the quantum-
correlated pairs of so-called signal (at frequencies ωs higher
than half of the pump frequency ωp, ωs � ωp/2) and idler
(at frequencies ωi = ωp − ωs below this level, ωi � ωp/2)
photons are generated in a wide spectral range. Nevertheless,
although the correlated photons in pairs may address com-
pletely different spectral ranges, only the optical part of their
spectrum attracts the main part of the attention [6]. Usually
the PDC processes, both in the low-gain (spontaneous PDC
[7]) and high-gain (generation of twin beams [8]) limits, are
considered in the frequency-degenerate case when ωs = ωi =
ωp/2, or in the slightly nondegenerate case (ωs > ωi) when
the difference between signal and idler frequencies is less
than the spectral band of optical transmission of the non-
linear crystal. This seems reasonable, since some additional
increase of ωs − ωi shifts ωi out from the optical transmission
diapason to a range of crystal phonon absorption, where
quantum purity of the biphoton pairs is violated. However, by
further decreasing ωi one passes the range of high phonon
absorption and comes to the lowest phonon-polariton branch
of the crystal dispersion law ωi (ki ). In the lowest-frequency

part of this branch, practically at ωi � 3 THz, the influence
of phonon resonances is minimal and absorption coefficients
become reasonably small. The PDC-generated pairs consist of
two photons again, but the frequency of a signal photon is just
close to the pump frequency, while the idler photon frequency
hits the terahertz range [9–12]. This regime can be referred to
as strongly nondegenerate PDC.

The terahertz frequency (THz) range has been attracting
considerable interest due to promising applications in various
areas including spectroscopy, imaging, nondestructive eval-
uation, and communication [13]. Ways of exploiting high-
capacity THz channels are becoming a problem of growing
importance for wireless THz communications [14]. Studies of
resonance interaction of THz radiation with matter started at
a novel experimental level [15]. Nevertheless, promotion of
any analogs of quantum-optical technologies into this range
is still slow. The strongly nondegenerate PDC may be useful
for constructing a “quantum bridge” between microwave and
optical ranges. The study of its specific properties and possible
applications has almost just begun. Primary calculations of
the second-order correlation functions were performed ac-
counting for possible inherent absorption and concomitant
noise at THz frequencies but without taking into account
the multimode character of the strongly nondegenerate PDC
[11,12]. A number of our previous works were devoted
to the possibility of application of strongly nondegenerate
PDC for quantum calibration of the spectral brightness of
the THz sources [16,17]. But again, a proper attention was
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not paid to the possibility of parametric coupling between
one signal mode and a number of plane idler modes. The
multimode effects appear due to transverse spatial finiteness
of the nonlinear volume—that part of a nonlinear crystal
where the parametric process proceeds [18]. They can be
insignificant for both optical signal and idler modes, but
are quite important, namely, in the strongly nondegenerate
regime, when the nonlinear volume cross-section is not much
larger than the idler wavelength. This was shown recently by
studying the optical-terahertz biphoton wave function [19].
However, calculations were performed within the limited
scope of this method, and inherent absorption of the nonlinear
crystal at THz frequencies was neglected.

In this paper we extend the task and theoretically analyze
numbers of photons and spectral power densities both at signal
and idler frequencies in a more general case. The strongly
nondegenerate spontaneous PDC is considered, taking into
account (a) transverse (due to the Gaussian pump beam) and
longitudinal (due to the crystal length) effective spatial limita-
tion of the nonlinear volume, (b) possible crystal absorption,
and (c) presence of the thermal fields and field fluctuations
at idler frequencies. All this is done using the “polariton”
generalized Kirchhoff law [20]. This method was proposed
by Klyshko for PDC in a nonlinear crystal with inherent
absorption at idler frequencies.

The rest of the paper is organized as follows. We begin with
a general description of this rather rarely used theoretical ap-
proach in Sec. II. Then, in Sec. III, expressions for the scatter-
ing matrix elements of a lossy nonlinear medium are obtained
in nonparaxial and low-gain approximations accounting for
the multimode effect. These expressions are substituted fur-
ther into the generalized Kirchhoff law for the numbers of
signal and idler photons per mode. Two types of readings
of a narrow-band signal photodetector, the spontaneous and
induced ones, are analyzed in Sec. IV. Characteristics of idler
radiation under thermal equilibrium conditions, i.e., when the
temperatures of the crystal and of the incoming radiation
coincide, are studied in Sec. V. Contributions of thermal and
quantum field fluctuations to the numbers of generated signal
and idler photons are analyzed and compared in Sec. VI. Final
conclusions and summary are given in the last section.

II. NONLINEAR GENERALIZED KIRCHHOFF LAW

Usually, characteristics of the low-gain (“spontaneous”)
PDC process are calculated using the biphoton wave function
[1,7]. However, it is easy to do when the losses in the nonlinear
medium are negligible. If the intrinsic absorption effects are
essential, the biphoton field is in a mixed state and one has
to take into account its interaction with an environment. This
interaction can be accounted for in the second approach,
which is based on solving the Heisenberg equations for evo-
lution of the field operators [21]. Apart from the dissipation
terms, the special Langevin noise operators are designed and
introduced into these equations [11,21–24]. After solving
these Heisenberg equations, the second-order field moments
(the numbers of photons in idler and signal modes, as well
as the idler-signal field correlation moments) are calculated
by averaging over the initial nonperturbed state of the mixed
system. In some cases the same results can be obtained using

the logic of the fluctuation-dissipation theorem [25] without
direct modeling of the Langevin terms. In the 1980s Klyshko
formulated the so-called generalized nonlinear Kirchhoff law
[20] which makes it possible to determine the second-order
field moments in the case when one knows the evolution of
the mean values of the field operators. In contrast to equations
for operators, these equations are similar to classical equations
for slowly varying field amplitudes and, due to averaging,
do not include the Lagevin terms. This generalized nonlinear
Kirchhoff law (GKL) is applicable to PDC in the medium with
inherent losses at idler frequencies while being transparent
at signal frequencies. Klyshko obtained it after studying the
kinetic equation for evolution of the characteristic operator
χ̂ (νs, νi ) = eνsa

+
s +νia

+
i e−ν∗

s as−ν∗
i ai . By averaging, taking deriva-

tives, and solving the obtained equations for the first- and
second-order field moments he obtained relations between the
moments at the input and output of the nonlinear medium.
Finally, the GKL was presented by a set of equations (p. 356
in [20]) for second-order moments expressed in terms of
elements of the scattering matrix of a nonlinear medium.

Our paper relies on the two of the GKL equations. The
first one depicts the mean number of photons in a signal mode
〈Ns (L)〉 taken at the output of a nonlinear crystal:

〈Ns (L)〉 =
∑
s ′

|Uss ′ |2〈Ns ′ (0)〉 +
∑

i ′
|Usi ′ |2(〈Ni ′ (0)〉 − 〈NT 〉)

+
(∑

s ′
|Uss ′ |2 − 1

)
(1 + 〈NT 〉). (1)

The second GKL equation depicts the same number in an idler
mode 〈Ni (L)〉:

〈Ni (L)〉 =
∑

i ′
|Uii ′ |2(〈Ni ′ (0)〉 − 〈NT 〉) +

∑
s ′

|Uis ′ |2〈Ns ′ (0)〉

+ 〈NT 〉 +
∑
s ′

|Uis ′ |2(1 + 〈NT 〉). (2)

Since Klyshko considered absorption effects for idler
waves only, the input-output relations have different forms for
signal and idler photons. Here, 〈Ns ′ (0)〉 and 〈Ni ′ (0)〉 are the
numbers of photons in the modes of signal and idler frequen-
cies at the input of the crystal. These mode populations can
be treated as values of spectral brightness of external sources
given in quantum units—“numbers of photons per mode”
[20]. Thermal field fluctuations at idler-wave frequencies are
presented by Planck’s factor:

〈NT 〉 = 1

exp(h̄ωi/kBT ) − 1
, (3)

where T is the crystal temperature. Uab′ (a, b = s or i) are
scattering matrix elements.

The first and second terms in both GKL Eqs. (1) and
(2) describe classical effects of parametric amplification (via
|Uss ′ |2〈Ns ′ (0)〉 or |Uii ′ |2〈Ni ′ (0)〉) and frequency conversion
(via |Usi ′ |2〈Ni ′ (0)〉 or |Uis ′ |2〈Ns ′ (0)〉) induced in the presence
of external radiation. It is noteworthy that, in the case of
idler radiation, only a difference 〈Ni ′ (0)〉 − 〈NT 〉 between
the external source brightness and effective brightness of
thermal fluctuations 〈NT 〉 is amplified or converted. Indeed,
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if the idler source brightness is the same as the brightness of
crystal thermal emission, the external radiation is equivalent
to thermal equilibrium radiation of the surrounding objects.
Subtraction of the crystal equilibrium thermal radiation 〈NT 〉
in the two first terms of GKL Eqs. (1) and (2) can be treated as
a result of mutual interplay of incoming (from the surrounding
objects) and outgoing (from the crystal) radiation fluxes at the
entrance of the nonlinear crystal.

The residual GKL terms are responsible for spontaneously
emitted photons. Equation (1) contains only one term of such
type, but Eq. (2) includes also the crystal thermal emission
〈NT 〉 which appears at the crystal exit in full compliance
with the linear Kirchhoff law. Even at room temperatures, the
classical thermal fluctuations can play a significant role at low
idler-wave frequencies in the strongly nondegenerate regime.

The scattering matrix Û connects linearly first-order cor-
relation functions, i.e., averages of idler and signal field
operators, at the input (z = 0) and at the output (z = L) of
the nonlinear crystal:

〈a†
s (L)〉 =

∑
s ′

Uss ′ 〈a†
s ′ (0)〉 +

∑
i ′

Usi ′ 〈ai ′ (0)〉,

〈a†
i (L)〉 =

∑
s ′

Uis ′ 〈as ′ (0)〉 +
∑

i ′
Uii ′ 〈a†

i ′ (0)〉. (4)

In what follows, the primed and unprimed indices denote
different plane-wave modes of signal (s) and idler (i) radia-
tion. In the case of a nonabsorptive nonlinear crystal, elements
Uab′ coincide with the coefficients which describe the Bo-
golyubov transformations [8] and connect operators instead
of their average values. They are usually found by solving
Heisenberg equations for spatially varying field operators. In
the simplest case of lossless and spatially transverse-unlimited
nonlinear interaction volume (the plane-wave pump, a trans-
versely infinite crystal, and no reflections at the crystal bound-
aries) the Heisenberg equations take the forms [8,26,27]

das (z)

dz
= iγ

si
a+

i (z)ei�kz·z,

da+
i (z)

dz
= −iγ

si

∗as (z)e−i�kz·z. (5)

Here and below, the z axis is directed normally to a
layer-shaped crystal; �kz ≡ (ks + ki − kp )z is a longitudinal
mismatch between the wave vectors of the pump (kp), signal
(ks), and idler (ki) plane waves;

γ
si

≡ 2πωsωi

c2
√

kszkiz

Epχ (2)

is a specific gain per unit length; χ (2) is an effective value
of the crystal second-order susceptibility; Ep is a classical
pump field amplitude. We consider a monochromatic pump
at frequency ωp, so that for each pair of signal and idler
frequencies ωs and ωi the strict relation ωp = ωs + ωi is
satisfied.

Considering the absorptive nonlinear medium one has to
include into the Heisenberg Eqs. (5) additional terms de-
scribing not only the attenuation of the fields during their
propagation along the crystal but also the noise field operators
that are responsible for the absorbing reservoir [11,21–24].

However, to find the scattering matrix elements we do not
have to solve the equations for evolution of operators. Due
to averaging, the impact of the noise field into such relations
vanishes, and finally the equations take the forms

d〈as (z)〉
dz

= iγ
si
〈a+

i (z)〉ei�kz·z − μs〈as (z)〉,

d〈a+
i (z)〉
dz

= −iγ
si

∗〈as (z)〉e−i�kz·z − μi〈a+
i (z)〉, (6)

that are similar to classical wave equations for slowly varying
field amplitudes in an absorptive crystal. Attenuation of the
idler (a = i) and signal (a = s) waves is taken into account
through the factors μa ≡ αa

2 cos ϑa
. μa are proportional to the

crystal intensity absorption coefficients αa and take into con-
sideration the different paths of propagation for waves gener-
ated at different angles to the crystal normal Z. Equations (6)
are valid for the spatially transverse-unlimited nonlinear vol-
ume. In this case, the exact transverse phase-matching con-
dition must be fulfilled for the transverse components of the
pump, idler, and signal wave vectors. This guarantees one
by one interaction between signal and idler modes, i.e., only
one idler plane mode is parametrically connected with one
plane signal mode, and each submatrix Uab′ consists of only
one element. Equations (6) admit analytical solution [28] and
explicit expressions for the scattering matrix elements can be
written as

Uss = e−ρsi

(
cosh βsi + ρsi

sinh βsi

βsi

)
,

Usi = iLγsie
−ρsi

sinh βsi

βpsi

,

Uii = e−ρsi∗
(

cosh βsi − ρsi

sinh βsi

βsi

)
,

Uis = −iLγsi
∗e−ρsi∗ sinh βsi

βsi

, (7)

with

βsi ≡
√

(Lγsi )2 + ηsi
2, ηsi ≡ (μi − μs − i�kz)L/2,

ρsi ≡ (μi + μs − i�kz)L/2.

Experimentally, the transverse dimensions of the nonlinear
volume are limited by the cross-section of the pump beam.
The model of transverse-unlimited volume can be invalid in
the case of the strongly nondegenerate PDC, since the pump
beam waist is not much larger than the idler wavelength in
this regime. In order to consider the multimode nature of the
parametric interaction, in the next section we first calculate
the scattering matrix for a PDC with a spatially limited pump
beam.

III. SCATTERING MATRIX OF AN ABSORPTIVE
CRYSTAL IN THE CASE OF A TRANSVERSE-LIMITED

PUMP BEAM

The pump field distribution will be taken into account in a
Gaussian form:

Ep(r⊥, z, t ) = A0e
−r⊥2/w2

p eikpzz−iωpt
.
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FIG. 1. Schematics of mutual orientation of signal, idler, and
pump plane waves in a nonlinear crystal.

The crystal is considered to be no longer than the focal depth,
so that its spatial decomposition by plane waves (modes) takes
a simple form:

Ep(r⊥, z, t ) =
∫

A0w
2
p

4π
e− w2

pkp⊥2

4 eikp⊥r⊥+ikpzz−iωpt
dkp⊥.

(8)

Here, wp is a pump beam waist, r⊥ and z characterize
spatial coordinates along directions transverse and parallel
to the normal to the crystal input surface correspondingly
(Fig. 1), and kp⊥ and kpz are transverse and longitudinal
projections for different pump plane-wave components that
propagate at different polar angles ϑp to the crystal normal
so that |kp⊥| = kp sin ϑp and kpz = kp cos ϑp. kp = ωpnp/c,
where np is the crystal refractive index at the pump frequency
ωp. Due to the multimode pump beam structure the one-to-
one correspondence of signal and idler modes is violated and
equations for evolution of averaged operators become more
complicated:

d〈as (z)〉
dz

+ μs〈as (z)〉

= i
∑

i ′

∫
γsi ′ 〈a+

i ′ (z)〉ei�kz,psi′ zδ(ks⊥+k′
i⊥−kp⊥)dkp⊥,

(9a)

d〈a+
i (z)〉
dz

+ μi〈a+
i (z)〉

= −i
∑
s ′

∫
γs ′i

∗〈as ′ (z)〉e−i�kz,ps′ i zδ(ks ′⊥+ki⊥−kp⊥)dkp⊥.

(9b)

Now any signal mode [characterized by some index s in
Eq. (9a)] can interact nonlinearly with a spectrum of idler
modes (indexed by i ′) via various plane pump modes (in-
dexed by p) if the corresponding transverse phase mismatch
�k⊥psi ′ ≡ (ks + k′

i − kp )⊥ is zero. The same is valid for any
idler mode [labeled by i in Eq. (9b)] that is parametrically cou-
pled to a spectrum of signal modes. The coupling efficiency

depends on the pump mode amplitudes

Ep(kp⊥) = A0πw2
p

S
e− w2

pkp⊥2

4 ,

which are included now in the gain coefficients γsi . Here, S
is a cross-sectional area of the crystal. Due to exact transverse
phase matching between the plane-wave components, integra-
tion over pump modes means integration over pairs of idler
and pump modes in Eq. (9a), and pairs of signal and pump
modes in Eq. (9b).

The system of Eqs. (9a) and (9b) can be solved analytically
in the low-gain approximation, when Lγsi 	 1 and PDC
has the character of spontaneous parametric down-conversion
(SPDC). Results for the average field operators at the crystal
output, presented in the form of Eq. (4), give explicit expres-
sions for the scattering matrix elements:

Uss ′ = e−μsLδss ′ +
∑

i

L2γsiγs ′i
∗

2ηsi

e−ρsi

×
[
eηs′ i

sinh (ηs ′i − ηsi )

ηs ′i − ηsi

− sinh ηsi

ηsi

]
, (10a)

Usi ′ = iLγi ′se
−ρi′s

sinh ηi ′s

ηi ′s
, (10b)

Uis ′ = −iLγs ′i
∗e−ρ∗

s′ i
sinh ηs ′i

ηs ′i
, (10c)

Uii ′ = e−μiLδii ′ −
∑

s

L2γsi
∗γsi ′

2ηsi ′
e−ρ∗

si

×
[
e−ηsi′

sinh (ηsi ′ − ηsi )

ηsi ′ − ηsi

− sinh ηsi

ηsi

]
. (10d)

Here, the factors ηsi , γsi , and ρsi depend only on parame-
ters of signal and idler modes, whereas the parameters of the
corresponding plane pump mode are determined by transverse
phase-matching conditions. Because of the nonparaxial char-
acter of strongly nondegenerate PDC, we have to take into
account angles of the wave vectors that stand in expressions
for corresponding gain coefficients γsi . These coefficients can
vary drastically for various triplets of plane signal, idler, and
pump plane modes taken even at the same signal, idler, and
pump frequencies.

Following Klyshko’s procedure, in the next sections the
scattering matrix elements from Eqs.(10) will be substituted
into the GKL Eqs. (1) and (2). Since GKL is formulated only
for nonlinear media transparent at signal frequencies, further,
we take μs = 0.

IV. SIGNAL PHOTONS AND NONLINEAR-OPTICAL
DETECTION OF AN EXTERNAL IDLER RADIATION

To figure out the number of photons in any output signal
mode we use the GKL Eq. (1). Parametric amplification of an
external signal is not included in our task and it is further as-
sumed that 〈Ns ′ (0)〉 = 0. The second term in Eq. (1) describes
the classical effect of difference frequency generation (DFG)
at signal frequency ωs = ωp − ωi that occurs when two waves
of frequencies ωp and ωi are incident on a nonlinear crys-
tal. By substituting Eq. (10b) for the nondiagonal scattering
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matrix elements Usi ′ into this GKL term, we obtain expression
for 〈NDFG

s (L)〉 in the low-gain limit

〈
NDFG

s (L)
〉 =

∑
i

gsi (〈Ni (0)〉 − 〈NT 〉) (11)

with the parametric gain coefficient

gsi ≡ |Usi |2 = |Uis |2 = (Lγsi )
2e−μiL

∣∣∣∣ sinh ηsi

ηsi

∣∣∣∣
2

. (11a)

gsi characterizes the level of nonlinear-optical interaction in a
particular pair of signal and idler waves.

The third term in GKL Eq. (1) corresponds to a pure
spontaneous signal, which may be seen without any special
external idler- or and signal-wave source, when the temper-
atures of the nonlinear medium and the surrounding objects
coincide. Comparison with the DFG term shows that the
spontaneous signal can be treated as a result of parametric
conversion of classical thermal (〈NT 〉) and quantum (with
effective brightness 1 photon/mode) field fluctuations at idler
frequencies. By substituting Eq. (10a) into the third term in
Eq. (1), taking μs = 0, and accounting for the terms up to
γis

2, we obtain the brightness of the spontaneous signal in the
form 〈

NSpon
s (L)

〉 =
∑

i

g
Spon
si (1 + 〈NT 〉) (12)

with another gain coefficient:

g
Spon
si ≡ (Lγsi )

2

(
2ηsi − 1 + e−2ηsi

(2ηsi )2 + c.c.

)
. (12a)

Here, gSpon
si characterizes the nonlinear-optical contribution

of quantum and thermal idler field fluctuations to the number
of optical signal photons. It is easy to see that the gain
coefficients for fluctuations (gSpon

si ) and external radiation (gsi)
coincide only if the absorption effects can be neglected:

g
Spon
si

∣∣
μi=0 = gsi

∣∣
μi=0 = (Lγsi )

2Sinc2 �kzL

2
.

Accounting for strict relation ωs = ωp − ωi , summation
over all spatial idler modes

∑
i will be further substi-

tuted by integration over idler mode solid angles as
∑

i →
S

(2π )2

∫
ki

2d�i . Since the crystal is considered to be lin-
early transparent at signal frequencies in GKL, ηsi = ρsi =
−i(�kz + iμi )L/2 in Eq. (11) and below. Here, �kz + iμi

looks like a complex longitudinal mismatch that accounts for
the imaginary part of the idler-wave vector in the form

kiz = ωini

c
cos ϑi + i

αi

2 cos ϑi

.

Let us further consider in this section the averaged read-
ings of a narrow-band optical photodetector with quantum

efficiency ξs that measures the signal power within the spectral
band �ωs = �ωi 	 ωi, ωs in the far zone after the crystal.
The number of counts per second is calculated by integration
of 〈Ns (L)〉 across the photodetector’s solid angle of view:

Ps = ξs

ωs
2

(2π )3c2
�ωs

∫
Ss〈Ns (L)〉d�s .

Here, Ss is an input area of the photodetector oriented
normally to the signal radiation. In what follows its projection
on the crystal output surface Scr

s ≡ Ss

cos ϑs
is taken into account.

We consider the case when the detector’s acceptance angle
��s = sin ϑs�ϑs�ϕs is sufficiently less than the total diver-
gence angle of signal radiation, and the photodetector receives
signal waves at the angles ϑs ≈ ϑs0, ϕs ≈ π where the
phase-matching conditions are almost completely fulfilled.

Taking into account Eqs. (11) and (12), one can obtain the
photodetector’s readings due to the induced (DFG) process as

P DFG
s = Cωs

∫
Sω(ϑs0, ϑi, 0, ϕi )

(〈
Nki

(0)
〉 − 〈NT 〉)

× tgϑidϑidϕi, (13)

and the same readings under the spontaneous process as

P Spon
s = Cωs

∫
S

SPDC

ω (ϑs0, ϑi, π, ϕi )(1 + 〈NT 〉)tgϑidϑidϕi.

(14)
Here, the coefficient

Cωs
= σs

ω3
s ω

3
i ni

8πc6ns

(
LχA0w

2
p

)2

describes the signal dependency on the pump power Pp ∼
(A0wp )2, pump wavelength (since ωs

3 strongly depends on
the choice of ωp), the crystal refractive indices ni, ns and
nonlinear susceptibility χ , the overall nonlinear volume ∼
Lw2

p, and the photodetector’s characteristics via

σs ≡ ξs

Scr
s−det

S
��s�ωs.

An effective value of the nonlinear susceptibility χ (2)

usually depends on the signal and idler angles itself, since it is
equal to convolution of the crystal second-order susceptibility
tensor χ̂ (2) with the polarization vectors of the signal, idler,
and pump modes. Here and below we take into account the
χ (2) dependence on the signal and idler angles in the form
χ (2) = χ cos ϕi cos ϕs.

As expected, the integrand functions in Eqs. (13) and (14)
are not the same. The total effective brightness of thermal
and quantum fluctuations 〈NT 〉 + 1 stands in Eq. (14) instead
of the excess brightness of the external idler-wave source
〈Ni (0)〉 − 〈NT 〉 in Eq. (13), and the angular response func-
tions S

Spon
ω , Sω are different. The general expressions for the

angular response functions for any signal and idler angles take
the forms

S
SPDC

ω (ϑs, ϑi, ϕs, ϕi ) = e− w2
p (ks⊥+ki⊥ )2

2

[
1 + (i�kz − μi )L − e(i�kz−μi )L

(�kz + iμi )2L2
+ c.c.

]
cos2ϕscos2ϕi (15)
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FIG. 2. Angular distributions of the sensitivity functions Sω(ϑs0, ϑi, π, ϕi )ω3
i tgϑi (a–c) and S

SPDC

ω (ϑs0, ϑi, π, ϕi )ω3
i tgϑi (d–f) calculated

for type-zero parametric processes in a bulk Mg:LiNbO3 crystal (L = 5 mm) pumped at 514.5 nm (wp = 1 mm) for three idler frequencies:
0.1 THz (a, d), 0.5 THz (b, e) and 1 THz (c, f).

and

Sω(ϑs, ϑi, ϕs, ϕi ) = e− w2
p (ks⊥+ki⊥ )2

2 e−μiL

∣∣∣∣ sinh[(i�kz − μi )L/2]

(i�kz − μi )L/2

∣∣∣∣
2

cos2ϕscos2ϕi. (16)

Figures 2(a)–2(c) and 2(d)–2(f) show examples of
idler angular distributions Sω(ϑs0, ϑi, π, ϕi )ω3

i tgϑi and
SSPDC

ω (ϑs0, ϑi, π, ϕi )ω3
i tgϑi , correspondingly. They are cal-

culated for the case of type-zero nonlinear interaction in bulk
Mg:LiNbO3 crystal (in this case all the fields are polarized
along the polar c axis of the crystal, parallel to the y axis
in Fig. 1), the pump wavelength 514.5 nm, and three idler
frequencies 0.1, 0.5, and 1 THz. L = 5 mm, and wp = 1 mm.
The phase-matching angle ϑi0 changes between 60.28 and
60.42° in the considered case. The data on extraordinary
refractive index dispersion of Mg-doped congruent lithium
niobate crystal were taken from [29] for the visible range
and from [30] for the terahertz range. The azimuthal an-
gles ϕi,s are counted from the x axis (Fig. 1) so that the
phase-matching angle is taken as ϕi0 = 0 and corresponds
to idler-wave propagation in the plane of signal and pump
wave vectors. The size of bright spots in Fig. 2 centered
around the phase-matching direction ϑi0, ϕi0 provides insight
on the angular diversity of all the idler waves contributing
to the parametric generation of signal photons in only one
(ϑs = ϑs0, ϕs = π ) direction. Due to substantial difference
between signal and idler frequencies in the strongly frequency
nondegenerate regime, the angular diversity of the idler waves

is rather high. However, it decreases when the idler radiation
frequency becomes greater, as it is illustrated by Fig. 2.

Reduction of the angular diversity can be done also by
increasing the dimensions of the nonlinear volume. Figure 3
shows spectral dependences of the polar angular width

�ϑi =
∫

Sω(ϑs0, ϑi, π, 0)tgϑidϑi

Sω(ϑs0, ϑi0, π, 0)tgϑi0

and of the azimuthal angular width

�ϕi =
∫

Sω(ϑs0, ϑi0, π, ϕi )dϕi

Sω(ϑs0, ϑi0, π, 0)

for various spatial parameters (crystal length L and pump
beam radius wp). Within the considered range of parameters,
the azimuthal angle �ϕi is practically insensitive to the crystal
length and depends mostly on the pump beam radius if the
idler frequency is fixed. At low frequencies the opposite effect
is observed for the polar angular aperture �ϑi : it depends
basically on the crystal length. Nevertheless, the absorption
coefficient increases with frequency and, starting from some
frequency values, the crystal length loses its significance in
comparison with the length of an idler-wave free path in a
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FIG. 3. Dependences of polar (a) and azimuthal (b) angle aper-
tures of the terahertz detector based on frequency up-conversion in
Mg:LiNbO3 crystals of different lengths (1 mm for the dashed black
lines and 5 mm for the dotted red and solid green lines) pumped by
514.5-nm Gaussian laser beams with diameters 2 mm (dashed black
and dotted red lines) and 5 mm (solid green lines).

crystal. If wp is still less than L, wp starts to determine �ϑi

instead of L, as it is seen in Fig. 3(a) at frequencies above
1.2 THz. At frequencies higher than the range taken in Fig. 3,
absorption effects become dominant.

Comparison between the functions which describe sensi-
tivities to external idler radiation [Sω, Figs. 2(a)–2(c)] and to
internal fluctuations of the idler field [S

Spon

ω , Figs. 2(d)–2(f)]
shows that their angular shapes are quite similar provided
the absorption coefficients have reasonably moderate values
(μi � 1). At the same time, the absolute values of these func-
tions could differ noticeably if μi is not vanishingly small.
This takes place due to fundamentally different impacts of
absorption effects on the processes of parametric conversion
of internal fluctuations and externally incident idler waves.
Successfully, this difference remains quite the same for all
angles of idler modes involved in the parametric processes.
This fact is clearly illustrated in Fig. 4. Here, the exact
frequency dependence of the loss factor κs is calculated using
its integral definition:

κs ≡
∫

S
SPDC

ω (ϑs, ϑi, ϕs, ϕi )tgϑidϑidϕi∫
Sω(ϑs, ϑi, ϕs, ϕi )tgϑidϑidϕi

=
∫

g
Spon
si dϑidϕi∫
gsidϑidϕi

.

(17)

FIG. 4. Spectral behavior of the THz-loss factors which account
for different contributions of external idler radiation and internal
idler-field fluctuations of the same spectral brightness 1 photon/mode
into the optical parametric signal in a 5 mm-long Mg:LiNbO3 crystal.
Dashed red line: κs calculated according to Eq. (17), considering
that both the externally induced waves and internal idler-wave fields
occupy the whole angular aperture of the frequency converter (wp =
1 mm). Black solid line: κs,eff calculated by Eq. (18), i.e., taking into
account the phase-matched modes only. Inset: Spectral dependence
of the crystal absorption coefficient.

Spectral dependence of the approximate loss-factor value,
determined as relation

κs,eff ≡ S
SPDC

ω (ϑs0, ϑi0, π, 0)

Sω(ϑs0, ϑi0, π, 0)
,

is shown also. It is seen that κs,eff is close to κs within
the whole actual range of THz frequencies characterized
by moderate idler-wave crystal absorption. Coincidence is
usually much better than 10% of the loss-factor value. Under
phase-matching conditions

g
Spon
si

∣∣
�kz=0 = 2(γsiL)2 μiL − 1 + e−μiL

(μiL)2

and

gsi

∣∣
�kz=0 = (γsiL)2

(
1 − e−μiL

μiL

)2

,

so that one can easily obtain the suitable expression for
precalculation of κs :

κs ≈ κs,eff = 2
μiL − 1 + e−μiL

(1 − e−μiL)2 . (18)

Being determined this way, κs,eff does not depend on the
direction of the signal radiation. Moreover, μi in Eq. (18)
is taken for the phase-matched idler angle ϑi = ϑi0 only.
Our calculations show that κs ≈ κs,eff also for those signal
directions where the phase-matching conditions are not sat-
isfied exactly, i.e., where Eq. (17) is considered for ϑs 
= ϑs0

and ϕs 
= π . Figure 4 also demonstrates how fast the loss
coefficient κs of 5-mm-long Mg:LiNbO3 crystal grows when
the crystal absorption coefficient increases with the terahertz
idler frequency.

The fortunate coincidence of angular forms of spontaneous
and induced signals allows considering separately the effects
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caused by absorption, and the multimode effects caused by
finiteness of the nonlinear volume. The dimension effects un-
der strongly frequency nondegenerate parametric process lead
to high angle diversity of the active idler (lower frequency)
modes, whereas the loss effects manifest uniformly in all these
modes. This gives a possibility to describe the numbers of
spontaneous and induced signal photons by the same mode
distribution of the gain coefficient gsi [Eq. (11a)] and account
for specificity of the spontaneous signal by the loss factor
κs ≈ κs,eff identically for all the idler modes:

〈
NSpon

s (L)
〉 = κs

∑
i

gsi (1 + 〈NT 〉), (19a)

〈
NDFG

s (L)
〉 =

∑
i

gsi (〈Ni (0)〉 − 〈NT 〉). (19b)

The DFG process can be used for nonlinear-optical detec-
tion of an external idler radiation via up-conversion into the
optical range, where the signal radiation is easily measured
by a conventional photodetector. Such method was realized
recently in a number of papers for noncoherent terahertz wave
detection with continuous-wave or nanosecond-pulsed lasers
[31–33]. As it seen from Eq. (13), the idler angle dependence
of Sω determines the spatial resolution of such a detector [19].
Figure 3 shows examples of how the azimuthal and polar
resolution scales with the dimensions of the nonlinear volume.

For a single-mode parametric frequency converter, it was
shown also that the pure spontaneous signal can be used for
calibration of the absolute sensitivity of such a nonlinear-
optical detector [16,17,19,34]. Taking the two readings of
a signal photodetector, that are the pure spontaneous signal
P

Spon
s , obtained in the absence of any external idler-wave

source, and Ps = P
Spon
s + P DFG

s , obtained when the external
source is switched on, one determines the absolute value of
the external source brightness as

〈Ni (0)〉 = κs

(
Ps/P

Spon
s − 1

)
(1 + 〈NT 〉) + 〈NT 〉. (20)

Here, the spectral brightness is measured in quantum
units “photons per mode” [20]. If necessary, it can be easily
recalculated as Bω = h̄ωi

3

(2π )3c2 〈Ni (0)〉 in standard photometric

units. It is noteworthy that, in a multiple mode case, 〈Ni (0)〉
determined according to Eq. (20) is the mean number of
photons in all idler modes that can make contribution into
the signal Ps(i.e., for which Sω 
= 0). Averaging is made
over the angles of idler modes accounting for the differential
sensitivity function distribution:

〈Ni (0)〉 ≡
∫

Sω(ϑs0, ϑi, π, ϕi )〈Ni (0)〉tgϑidϑidϕi∫
Sω(ϑs0, ϑi, π, ϕi )tgϑidϑidϕi

. (21)

〈Ni (0)〉 coincides with 〈Ni (0)〉 in the central modes only
for sufficiently isotropic radiation, which fills uniformly all
the angles where the differential sensitivity has meaningful
values. This property has to be taken into account, since
adequate brightness estimation can be done only for sources
with a large angular divergence. Thus, decreasing of the
angular width of Sω is crucial both for better spatial resolution
and for more accurate absolute brightness measuring. This can
be done by proper choice of the crystal length and the pump

beam radius. Nevertheless, increasing the dimensions of the
nonlinear volume has a limited effect since the SPDC-based
calibration can be done with an appropriate accuracy when
the loss factor is close to 1. This limits the spectral range
of measurements in a crystal with the absorption coefficient
growing at high frequencies (Fig. 4). The relations obtained in
this section, mainly Eqs. (15), (16), and (18), will help us to
choose optimal parameters of the nonlinear crystal according
to characteristics of the terahertz wave source under detection.

Summarizing this section, we obtained general expressions
for the two types of readings of a narrow-band signal photode-
tector, one for the spontaneous PDC and one for DFG induced
by an external idler radiation. It was found that angular
divergences of the idler modes depend on the idler frequency
and sizes of a nonlinear volume in a very similar way for both
processes. With rather high accuracy, the relation between
spontaneous and induced signals can be described by one loss
factor for all active directions of idler waves. These results are
important for analyzing the angular sensitivity and the input
angular aperture of a nonlinear terahertz wave detector, as well
as for application of the SPDC method for absolute calibration
of the spectral brightness.

V. IDLER PHOTONS

Now let us turn to the long-wave photons generated at
idler frequencies as it is predicted by the GKL Eq. (2). In
contrast to their optical (signal) partners, the idler photons are
accompanied by substantial classical thermal fluctuation fields
at the same frequencies, and, secondly, can be absorbed by a
crystal. In this section we consider the case when there are
no special sources of external input idler and signal radiation
apart from thermal equilibrium idler-wave radiation of the
environment. Then the total number of output idler photons
is depicted by the last two terms in Eq. (2). The term 〈NT 〉
is responsible for thermal radiation of the crystal itself. The
final contribution describes idler-wave photons spontaneously
generated via the crystal’s nonlinearity:

〈
N

Spon
i (L)

〉 =
∑

s

gsi (1 + 〈NT 〉). (22)

This expression has the same structure as the third term in
Eq. (1), which is responsible for the spontaneous part of signal
radiation. Again, since it contains effective brightness of both
types of fluctuations, 1 + 〈NT 〉, this idler radiation can be
interpreted as a result of amplification of the fluctuation fields.
Here, the part proportional to 1 photon/mode depicts the pure
SPDC-generated idler-wave power density. The amplification
coefficients

∑
s gsi do not coincide with the conversion coeffi-

cients (
∑

s ′ |Uss ′ |2 − 1) in the signal part of SPDC. However,
summation in Eq. (22) is carried out with the same gain
coefficients gsi as in the DFG part of signal radiation in
Eq. (11). Asymmetry appears due to crystal transparency at
signal frequencies and moderate opacity at idler frequencies.
If the idler-wave absorption can be neglected, the coefficients
in Eqs. (11), (12), and (22) coincide.

Following the same considerations as in the previous
section, we obtain an expression for the readings of a
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FIG. 5. Angular distributions of the idler-wave detector readings P
Spon
i (ϑi, ϕi ), calculated for the case of no external signal and no idler

radiation at the input of the crystal apart from the equilibrium thermal radiation; type-zero parametric processes in a bulk Mg:LiNbO3 crystal
(L = 5 mm) pumped at 514.5 nm (wp = 1 mm); and three idler frequencies: 0.1 THz (a), 0.5 THz (b), and 1 THz (c).

narrow-band idler-wave detector due to SPDC as

P
Spon
i (ϑi, ϕi ) = Cωi

(1 + 〈NT 〉)
∫

Sω(ϑs, ϑi, ϕs, ϕi )

× tgϑsdϑsdϕs. (23)

Integration is made over all possible directions of the signal
photons, using the same angular response function Sω, as in
the case of the DFG optical signal [see Eq. (16)]. Similarly,
the angle-independent coefficient

Cωi
= σi

ω3
s ω

3
i ni

8πc6ns

(
Lχ (2)A0w

2
p

)2

now accounts for parameters of the narrow-band idler-wave
detector with efficiency ξi , input area Si (recounted to the area

parallel to the crystal output surface as Scr
i ≡ Si

cos ϑi
), spectral

band �ωi , and solid angle of reception ��i via

σi ≡ ξi

Scr
i

S
�ωi��i .

As it is seen from Figs. 2 and 3, Sω is distributed along
a wide range of idler angles, and, according to Eq. (23),
the SPDC-generated idler-wave photons will be spread over
almost the same angles. Integration over all signal angles in-
creases the solid angle of the idler-wave divergence. Figure 5
presents examples of angular distributions of the idler-wave
detector readings P

Spon
i (ϑi, ϕi ) calculated for different idler

frequencies in the same case of type-zero nonlinear interaction
in bulk Mg:LiNbO3 crystal pumped at 514.5 nm as in Figs. 2
and 3. It has been also taken into account that an input area
of the idler-wave detector is reoriented normally to the idler-
wave propagation at each change of the detection angle, so
that σi ∼ 1/ cos ϑi .

In summary, in this section we analyze the number of
output idler photons per mode generated under thermal equi-
librium conditions, i.e., when the temperatures of the crystal
and of the incoming radiation coincide:〈

N
Equil
i (L)

〉 = 〈
N

Spon
i (L)

〉 + 〈NT 〉. (24)

It is found that even in the case of arbitrary idler absorption
the number of SPDC generated idler photons is proportional
to effective brightness of thermal and quantum fluctuations

1 + 〈NT 〉 with exactly the same gain coefficient that describes
the gain coefficient under DFG of signal photons. The cor-
responding readings of a narrow-band idler detector can be
calculated using Eq. (23) by integrating the same angular
sensitivity function Sω over all possible directions of signal
photons.

VI. CONTRIBUTIONS OF THERMAL AND QUANTUM
FIELD FLUCTUATIONS TO SIGNAL AND IDLER

PHOTONS

In the two previous sections we considered the nonlin-
ear signals 〈NSpon

s (L)〉 and 〈NSpon
i (L)〉 generated in thermal

equilibrium conditions. These conditions assume that at the
input of all idler channels there is an equilibrium thermal
radiation of environment with 〈NT 〉 corresponding to the
crystal temperature. Let us now estimate the intrinsic radiation
of the crystal singly, regardless of any nonlinear response to
an external radiation whatever temperature it has.

As it follows from Eq. (1), for the intrinsically radiated
signal photons we have

〈Ns (L)〉 = κs

(∑
i

gsi

)
〈Nq〉 + (κs − 1)

(∑
i

gsi

)
〈NT 〉.

(25)

Here, 〈Nq〉 ≡ 1 is introduced to mark the impact of quan-
tum fluctuations. As it follows from the GKL Eq. (2), an
analogous expression for the idler output should be built from
two parts:

〈Ni (L)〉 = 〈
N

Spon
i (L)

〉 + 〈NT 〉
(

1 −
∑

i ′
|Uii ′ |2

)
. (26)

The first part 〈NSpon
i (L)〉 was considered in the previ-

ous section. Concerning the second part, in the equilibrium
conditions its nonlinear contribution is canceled by thermal
radiation of environment, so that only 〈NT 〉 remains here in
the balance. Nevertheless, it should be taken into account in
its total form here, in the frames of analysis of the intrinsically
radiated idler photons.
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Using Eq. (10d) for the scattering matrix element Uii ′ , we obtain that

〈NT 〉
(

1 −
∑

i ′
|Uii ′ |2

)
= (1 − e−2μiL)〈NT 〉 − e−2μiL〈NT 〉

∑
s

(Lγsi )
2

[
e2ηsi − 2ηsi − 1

(2ηsi )2 + c.c.

]
. (27)

The first part on the right describes thermal radiation of the absorptive crystal, just like the linear Kirchhoff law predicts. The
second term corresponds to nonlinear transformation of thermal fluctuations with a negative gain coefficient:

−e−2μiL
∑

s

(Lγsi )
2

[
e2ηsi − 2ηsi − 1

(2ηsi )2 + c.c.

]
. (27a)

Comparing this relation with Eq. (12a) one can see that this coefficient brings us back to the gain coefficient in the expression
for spontaneously emitted signal photons, but asymmetry due to idler-wave absorption leads to some discrepancies. Once again
note that in the case of zero absorption all the conversion and amplification coefficients coincide.

Following the same approach as in Sec. IV, we introduce the loss factor κi , which depicts the relation between the two transfer
(for 〈NT 〉) coefficients at idler frequencies:

κi (ϑi, ϕi ) =
e−μiLcos2ϕi

∫
e− w2

p (ks⊥+k
i′⊥ )2

2
[

e2ηsi −2ηsi−1
(2ηsi )2 + c.c.

]
cos2ϕstgϑsdϑsdϕs∫

Sω(ϑs, ϑi, ϕs, ϕi )tgϑsdϑsdϕs

. (28)

Our calculations show that, similar to κs,eff , this loss co-
efficient can be approximately determined taking the phase-
matched directions of idler and signal waves:

κi (ϑi, ϕi ) ≈ κi,eff = 2
eμiL − μiL − 1

(eμiL − 1)2 . (29)

Notably, this expression for κi,eff can be converted to
Eq. (18) for κs,eff by changing a sign of the absorption
coefficient, μi → −μi , i.e.,

κs,eff (μi ) = κi,eff (−μi ).

κi,eff rapidly goes down from one to zero when the absorp-
tion coefficient increases with frequency (see an example of
the 1 − κi,eff spectral dependence in Fig. 6). It should be noted
that replacement of the exact κi by its approximate value κi,eff

FIG. 6. Spectral behavior of the relation between contributions
of thermal and quantum field fluctuations, taken at the same
number of photons per mode, 〈NT 〉 = 〈Nq〉 = 1, to the intrinsic
pump-induced radiation at signal (black solid curve) and idler (red
dashed curve) frequencies. Calculations are made for a 5-mm-long
Mg:LiNbO3 crystal with absorption coefficient dependence shown
in the inset.

can lead to a greater loss of accuracy than the same procedure
in the signal range. However, this approximation substantially
simplifies the analysis of relative contributions of thermal and
quantum fluctuations.

Readings of the idler-wave narrow-band detector, which
correspond to this additional part of nonlinear amplification
of thermal fluctuations, can be calculated as

Pi (ϑi, ϕi ) = Cωi
〈NT 〉κi

∫
Sω(ϑs, ϑi, ϕs, ϕi )tgϑsdϑsdϕs.

(30)

Taking this property into account, we now formulate the
expression for the intrinsically radiated idler photons in the
same way as Eq. (25) for the intrinsically radiated signal
photons:

〈Ni (L)〉 =
(∑

s

gsi

)
〈Nq〉 + (1 − κi )

(∑
s

gsi

)
〈NT 〉

+ (1 − e−2μiL)〈NT 〉. (31)

The same parametric gain coefficient gsi ≡ |Usi |2 = |Uis |2
enters both equations. Its distribution over idler (or signal)
modes describes the divergence of parametrically generated
idler (or signal, correspondingly) waves. The distribution
accounts for both the inherent idler-wave absorption and the
multimode character of the low-gain parametric process in a
spatially limited crystal area.

The first terms in Eqs. (25) and (31) present results of the
quantum SPDC effect. The SPDC contributions to populations
of signal and idler modes are different. This occurs due to
a loss coefficient and due to different spectrums of modes,
over which the summation is done in Eqs. (25) and (31). The
greater the difference between the frequencies of idler and sig-
nal photons, the greater the difference in angular divergence of
active idler and signal modes. However, the total number of
output SPDC signal photons, obtained after summation over
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all output modes, ∑
s

〈Ns (L)〉 =
∑
s,i

κsgsi ,

can be equal to a total number of output SPDC idler photons,∑
i

〈Ni (L)〉 =
∑
i,s

gsi ,

but only in the case of negligible absorption.
The second terms in Eqs. (25) and (31) describe the nonlin-

ear parametric impacts of classical thermal field fluctuations
(taken at the crystal temperature). These terms disappear if the
crystal is transparent and κs = κi = 1. Obviously, such crystal
cannot radiate from the classical point of view. Nevertheless,
if absorption takes place (in our case at idler frequencies),
the nonlinear-optical contributions from thermal fluctuations
are nonzero both in the signal and idler parts. Starting from
zero for zero absorption, both contributions grow when the
absorption coefficient increases. The relative contribution of
thermal fluctuations per unit 〈NT 〉 = 1 changes with fre-
quency as (κs − 1)/κs in the case of intrinsic emission at
signal frequency, and as (1 − κi ) in the case of intrinsic
idler nonlinear emission. Figure 6 shows these dependencies
calculated for 5-mm-long Mg:LiNbO3. Finally, at high levels
of absorption, quantum and thermal effective input photons
(〈Nq〉 ≡ 1 and 〈NT 〉) are scaled with the same coefficients.
In the case of the signal output photons 〈Ns (L)〉 this coef-
ficient is κs (

∑
i gsi ); in the case of the idler output photons

〈Ni (L)〉 it is (
∑

s gsi ). However, at moderate values of the
absorption parameter μi , the scaling coefficients for thermal
fluctuations remain always less than the scaling coefficients
for quantum fluctuations. This concerns both signal and idler
output photons. However, taken at the same value of αi , this
difference is more pronounced for the signal photons. It is also
noticeable that the greater the idler absorption coefficient and,
correspondingly, the loss factor κs , the greater the difference
between parametrically generated signal and idler photons.

Finally, the third term stands in Eq. (31) only since it is
responsible for the classical linear Kirchhoff law. Indeed, the
crystal is considered nonabsorptive at signal frequencies and,
therefore, cannot emit signal radiation within the approxima-
tion of linear optics.

VII. CONCLUSIONS

We have studied peculiar properties of signal and idler
photons generated under spontaneous PDC in the strongly
frequency nondegenerate case, when the signal frequency
is shifted from the frequency of the optical pump up to
0.1–2 THz. This mode is attractive because of the possibility
of generating quantum-correlated optical-terahertz biphoton
pairs. However, thermal idler field fluctuations, inherent ab-
sorption of THz radiation, and the multimode character of
PDC in a spatially limited nonlinear volume can significantly
change the properties of signal and idler photons generated
in the strongly nondegenerate case. As a first step, in this
paper we obtained expressions for specific frequency-angular
distributions of photon numbers and power densities detected

at signal and idler frequencies. Calculations were done in the
low-gain limit without paraxial approximations, taking the
Gaussian pump beam profile, and using the method of the
generalized Kirchhoff law developed by Klyshko [20].

It is shown that transverse space constraints in the strongly
frequency nondegenerate regime can cause a huge increase
of the angular divergence of the output idler radiation. At
the same time, inherent idler-wave absorption leads to an
additional effect: the parametric conversion (gain) coefficients
become different for internal field fluctuations and for the
idler radiation incident from outside on a nonlinear crystal.
Fortunately, the ratio between the conversion coefficients de-
pends on absorption in approximately the same way for all
the numerous spatial modes that are effectively involved in
the parametric process. Therefore, with sufficient accuracy,
influence of the two effects can be considered separately.
Spatial limitation gives an angular shape of output idler
radiation that is described by the angular response function
Sω presented by Eq. (16); the same function is responsible
for angular resolution under detection of an external THz
radiation by means of parametric frequency up-conversion.
Absorption is manifested in the amplitudes of corresponding
gain coefficients. The ratios between the coefficients in the
signal and idler channels are defined by the THz-loss factors
κs and κi , correspondingly. It is noteworthy that Eqs. (18) and
(29), obtained independently for each factor, can be converted
from one to another by simply changing the sign of the
absorption coefficient, so that κs (−αi ) = κi (αi ). The obtained
general relations will help in choosing the optimal pump and
crystal spatial parameters for detecting and generating more
or less directed THz beams in thermal equilibrium conditions.

In addition, we studied specifically the structure of in-
trinsic emission of a crystal taken without any equilibrium
or nonequilibrium contributions from external sources. GKL
equations predict in this case the nonlinear emission in both
signal and idler channels, and the background of idler photons
emitted due to the linear Kirchhoff effect. The nonlinear
emission in both channels consists of two types of contribu-
tions, one from the quantum field fluctuations and another one
from the intrinsic thermal fluctuations at idler frequencies.
We show that, in full agreement with fluctuation-dissipation
logic, contributions from thermal fluctuations disappear if
absorption is negligible. Equations (25) and (31) demonstrate
how the relative impact of thermal fluctuations grows when
absorption is increased. Finally, in the high absorption limit,
the parametric gain coefficients become equal for quantum
and thermal fluctuations. They also show that contribution of
quantum noise to the total number of PDC-generated signal
photons remains κs times more than the same contribution to
the number of idler photons.

The results obtained here by the GKL method for PDC-
generated photon numbers do not contradict the results of
other treatments that have been done previously for simpler
cases of nonabsorptive [19] or spatially unlimited [12] nonlin-
ear volumes. They demonstrate reliability and convenience of
this approach in solving more challenging tasks. In forthcom-
ing work the same approach will be extended to analysis of
the second-order correlation functions of the optical-terahertz
biphotons.
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