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Optimal conditions for the Bell test using spontaneous parametric down-conversion sources
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We theoretically and experimentally investigate the optimal conditions for the Bell experiment using sponta-
neous parametric down-conversion (SPDC) sources. In theory, we show that a relatively large average photon
number (typically ∼0.5) is desirable to observe the maximum violation of the Clauser-Horne-Shimony-Holt
(CHSH) inequality. Moreover, we show that the violation converges to 0.27 in the limit of large average photon
number. In experiment, we perform the Bell experiment without postselection using polarization-entangled
photon pairs at 1550-nm telecommunication wavelength generated from SPDC sources. While the violation
of the CHSH inequality is not directly observed due to the overall detection efficiencies of our system, the
experimental values agree well with those obtained by the theory with experimental imperfections. Furthermore,
in the range of small average photon numbers (�0.1), we propose and demonstrate a method to estimate the
ideal CHSH value intrinsically contained in the tested state from the lossy experimental data without assuming
the input quantum state.
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I. INTRODUCTION

Quantum-mechanically entangled photon pairs are essen-
tial tools for various optical quantum information and com-
munication protocols [1,2]. Such entangled photon pairs can
be generated with spontaneous parametric down-conversion
(SPDC). To generate perfectly correlated pairs via the SPDC
process, which is probabilistic, it is frequently driven by a
weak pumping regime such that the emitted light contains
only biphotons (a pair of single photons) and higher-order
multiphoton emissions are sufficiently low. This feature is use-
ful when one makes postselection of the coincidence photon
counting events.

The weakly pumped SPDC source has also been used in the
experiment without postselection. One important example is a
loophole-free test of the Bell inequality [3,4]. Violation of the
Bell inequality rules out the possibility of describing the corre-
lation between two parties by the local hidden variable model.
To observe the genuine quantum correlation directly, it is im-
portant that the Bell test is performed without any loopholes,
e.g., the detection loophole. In addition, the loophole-free
Bell test implies new quantum information applications, such
as device-independent quantum key distribution (DIQKD)
[5,6] and random number generation [7]. So far, in photonic
systems, the violation of the Bell inequality closing the de-
tection and locality loopholes [8–11] has been demonstrated
by combining the weakly pumped SPDC sources and highly
efficient detectors.

Though these experiments successfully violate the Clauser-
Horne-Shimony-Holt (CHSH) inequality [12], the amount
of violation was limited to be small (∼10−4) compared to

the maximal violation of 2
√

2 − 2 ∼ 0.83, since the weakly
pumped SPDC source mainly emits vacuum and only a few
biphotons. The average photon number is typically in the or-
der of 10−2. That is, the major component of the quantum state
is vacuum, which does not contribute to yield the violation
of the CHSH inequality. In contrast, when the SPDC source
is pumped strongly, higher-order multiphoton emissions also
suppress the violation, which indicates that there is an opti-
mal balance between a vacuum component and multiphoton
components. In fact, very recently, larger violations of the
CHSH inequality have been reported by using SPDC sources
with a relatively strong pump which produce a non-negligible
amount of multiple pairs [13,14]. Moreover, the theoretical
analysis [15] considering multiphoton pair emissions of the
SPDC sources indicates that the achievable violations of the
CHSH inequality are 0.30 in single-mode case and 0.35 in
multimode case, which means that the experimental violations
are still far from the theoretical limits. (Note that the model
in Ref. [15] can reproduce the experimental violations when
taking the experimental parameters into account.)

In this paper, we further investigate this direction in detail
both theoretically and experimentally to clarify the optimal
parameters of the SPDC sources that maximize the viola-
tion of the CHSH inequality. First we perform theoretical
simulations based on the characteristic function approach,
which can take account of higher-order multiphoton pair
emissions [16,17]. Then we show the optimal parameters
for the system for a given detection efficiency (η) in detail,
especially the optimal average photon numbers (λ) of the two
SPDC sources and their relative ratio. It is revealed that the
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maximal violation is obtained at the relatively high average
photon number regime, where the contribution of multiphoton
pair emissions is not negligible: λ > 0.1 in most cases, and
λ = 0.99 is optimal for η = 1. Surprisingly, the violation of
the CHSH inequality does not vanish, even for larger λ in
the single-mode case, whereas the SPDC source emits mostly
multiphoton pairs in this regime. We show that the violation
converges to 0.27 in the limit of large λ, which is almost
comparable to the maximal violation with the same source
(=0.31). We also show that the measurement angle of the
Bell test is almost independent of the detection efficiency. It
is noteworthy that this feature allows us to reduce the number
of optimization parameters and therefore is practically useful
for saving computational resources.

Second, to test the theoretical predictions, we per-
form the Bell-test experiment without postselections using
polarization-entangled photon pairs generated by SPDC. We
collected all the events, including no-detection (vacuum)
events, and calculated the CHSH value for each average
photon number. While the overall detection efficiencies of
our system are insufficient to directly observe the violation
of the CHSH inequality, the CHSH values obtained by the
experiment agree well with the theory in a wide range of
parameters. Furthermore, for the low average photon number
regime of λ � 0.1, we propose and demonstrate a method
to estimate the ideal probability distributions of the Bell test
from the lossy experimental data without assuming the input
quantum state. The results agree with the theory and thus
provide a useful estimation technique for quantum optics
experiments with a certain amount of losses.

The paper is organized as follows. In Sec. II, we briefly
review the Bell test using SPDC sources and describe our
theoretical model, including higher-order photon numbers and
experimental imperfections. In Sec. III, we present our numer-
ical results. The experimental setup is described in Sec. IV. In
Sec. V, we present our experimental results and introduce the
method to compensate the loss of the system. We conclude the
paper in Sec. VI.

II. BELL TEST VIA THE SPDC SOURCES

The schematic diagram of the Bell test is shown in
Fig. 1(a). A pair of particles is distributed from the source
to two receivers, Alice and Bob. They randomly choose
the measurement settings, Xi ∈ {X1, X2} and Yj ∈ {Y1, Y2},
respectively. All the observables produce binary outcomes
ai, bj ∈ {−1,+1}. Alice and Bob repeat the measurement and
calculate the CHSH value

S = 〈a1b1〉 + 〈a2b1〉 + 〈a1b2〉 − 〈a2b2〉, (1)

where 〈aibj 〉 = P (a = b|Xi, Yj ) − P (a �= b|Xi, Yj ). Here,
S > 2 indicates that the particles shared between Alice and
Bob possess nonlocal quantum correlation which cannot be
reproduced by any local hidden variables. The maximal value
of S allowed by quantum mechanics is 2

√
2, which is known

as the Cirelson bound [18] and achieved by using a maximally
entangled pair.

Next, the realistic model of the Bell test with SPDCs is
shown in Fig. 1(b). The SPDCs emit entangled photon pairs,
or more precisely, the two-mode squeezed vacuum (TMSV)

FIG. 1. (a) The schematic diagram for the Bell experiment. Alice
and Bob share a pair of particles and choose the measurement
settings Xi ∈ {X1, X2} and Yj ∈ {Y1, Y2}, respectively. The measure-
ment outcomes are binary, i.e., ai, bj ∈ {−1, +1}. (b) The realistic
model for the Bell experiment. An entangled photon pair is generated
by means of a pair of two-mode squeezed vacua (TMSV) over
polarization modes. The polarization measurement is realized by
the polarization mixing followed by the on-off type, single-photon
detectors with dark counts.

whose Hamiltonian is represented by Ĥ = ih̄(ζ1â
†
HA

â
†
VB

+
ζ2â

†
VA

â
†
HB

− H.c.), where â
†
j is the photon creation operator in

mode j and ζk = |ζk|eiφk is the coupling constant of TMSVk

(k = 1, 2), which is proportional to the complex amplitude of
each pump. In the following, φk is fixed as φ1 = 0 and φ2 =
π . H and V denote the horizontal and vertical polarizations,
respectively. The generated quantum state is described by

|�ent〉 = exp(−iĤ t/h̄)|0〉 (2)

=
∞∑

n=0

1

coshr1coshr2

√
n + 1|�n〉, (3)

where

|�n〉 = (−i)n

n!
√

n + 1
(tanhr1â

†
HA

â
†
VB

− tanhr2â
†
VA

â
†
HB

)n|0〉. (4)

Here |0〉 is the vacuum state, and rk = |ζk|t is the squeezing
parameter of TMSVk. Note that the average photon number of
TMSVk is given by λk = sinh2rk . The state clearly consists
of an infinite series, and the contribution from higher-order
photon numbers cannot be negligible, even with finite λk . The
polarizer with angle θ works as a polarization-domain beam-
splitter mixing the H and V modes, where its transmittance
and reflectance are cos2θ and sin2θ , respectively. The over-
all detection efficiencies, including the system transmittance
and the imperfect quantum efficiencies of the detectors, are
denoted by ηl for l = 1, 2, 3, 4. This is modeled by inserting
the losses in each arm before the detectors with unit efficiency
[see Fig. 1(b)]. We consider that the detectors D1, D2, D3,
and D4 are on-off–type, single-photon detectors which only
distinguish between vacuum (off: no-click) and nonvacuum
(on: click). Dark count, which is a wrong click of the detector,
is also taken into account in the model.

063842-2



OPTIMAL CONDITIONS FOR THE BELL TEST USING … PHYSICAL REVIEW A 98, 063842 (2018)

FIG. 2. (a) Log-linear plot of the average photon number λ vs S.
For each point we fix λ and optimize the other parameters. (b) The
overall detection efficiency η vs S for the three different ranges of λ.
For each η we fix the ranges of λ and perform optimizations.

III. NUMERICAL RESULTS

To numerically calculate S in Eq. (1) with the above
SPDC model, we use the approach based on the characteristic
function [16,17]. This approach is applicable when the system
is composed of Gaussian states and operations, and on-off
detectors. The Gaussian state is defined by the state whose
characteristic function (or equivalently, Wigner function) has
a Gaussian distribution, including TMSV states. The Gaussian
operation is also defined as an operation transforming a Gaus-
sian state to another Gaussian state, which includes the opera-
tions by linear optics and second-order nonlinear processes.
The setup in Fig. 1(b) includes only these means and thus
meets the condition above. See Appendix and Ref. [16] for
more details of this approach. Note that a similar calculation
with a different approach is reported in Ref. [15].

We calculate the probability of all the combinations of the
photon detection (click) and no-detection (no-click) events
for each polarizer angle and obtain the probability distri-
butions. We denote, for example, the probability of observ-
ing clicks in D1 and D2, and no-clicks in D3 and D4 as
P (c1, c2, nc3, nc4). Each Alice and Bob determines her or his
local rule and assigns +1 or −1 for each detection event. Since
there are four possible local events for each Alice and Bob,
i.e., (i) only the one detector clicks, (ii) only the other detector
clicks, (iii) both of the two detectors simultaneously click, and
(iv) no detector clicks, there are 16 possible choices for each
Alice and Bob to assign ±1. We introduce the following sim-
ple local assignment strategy for Alice (Bob): only D1(D2)
clicks → −1 and otherwise → +1, respectively. We note that

FIG. 3. (a) The overall detection efficiency η vs the optimal
average photon numbers (λ1 and λ2). (b) η vs λ1/λ2. (c) η vs the
optimal angles of the polarizers. In the simulations, we assume that
η := η1 = η2 = η3 = η4 and ν = 0.

this local rule is only related to the optimal measurement
angles and does not affect the maximum violation and the
optimal input quantum state. Under the condition that Alice
(Bob) chooses the angle θA1(θB1), respectively, the probability
that both Alice and Bob obtain the outcome −1 is cal-
culated by P (−1,−1|θA1, θB1) = P (c1, c2, nc3, nc4). Simi-
larly, the other conditional probabilities P (+1,−1|θA1, θB1),
P (−1,+1|θA1, θB1), and P (+1,+1|θA1, θB1) are also cal-
culated by the detection probabilities, which enables us
to calculate S. See Appendix for the details of the
formulas.

Figure 2(a) shows the relation between the average photon
number and S in an ideal system, where all the detection effi-
ciencies are unity and detectors have no dark counts (i.e., η1 =
η2 = η3 = η4 = 1 and ν = 0). We define λ := max{λ1, λ2},
and then for given λ, numerically optimize the other average
photon number and {θA1(B1), θA2(B2)} via the Nelder-Mead
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FIG. 4. The setup for the Bell experiment. To generate entangled photon pairs by SPDC, we used counterpropagating pump pulses to excite
the PPKTP crystal in the Sagnac loop interferometer. Alice and Bob choose the measurement angles {θA1, θA2} and {θB1, θB2}, respectively,
and assign +1 or −1 for each detection event to calculate the S value. DFB: distributed feedback laser, EDFA: erbium-doped fiber amplifier,
PPLN/W: periodically poled lithium niobate waveguide, PPKTP: periodically poled potassium titanyl phosphate, QWP: quarter-waveplate,
HWP: half-waveplate, DM: dichroic mirror, PBS: polarization beamsplitter, FPBS: fiber-based PBS.

method such that S is maximized. The blue solid curve shows
the optimal values of S. The maximum value is around 2.31,
which coincides with the theoretical result by Vivoli et al.
[15]. We find that the maximum violation is obtained at λ =
0.99, which is much larger than those used in the previous
experiments [8–11]. Rather surprisingly, the blue solid curve
converges to 2.27 as λ becomes larger, while the smaller
average photon number is almost constant at around 0.70.
This is contrasted with the multimode case [13,14] where the
violation vanishes in the limit of large λ. The red dashed curve
shows the optimized S under the restriction of λ := λ1 = λ2.
It takes a maximum value of 2.30 at around λ = 0.66 and then
monotonically decreases as λ becomes larger.

Next, we show the loss tolerance of S for the three different
ranges of λ in Fig. 2(b). In the simulation, we assumed
that η := η1 = η2 = η3 = η4 and ν = 0. λ1, λ2 and the mea-
surement angles are optimized for each η. The red thick
curve, blue dashed curve, and yellow thin curve represent S

optimized under the conditions of 0 � λ, 0 � λ � 0.1, and
0 � λ � 0.01, respectively. The figure shows that the limited
λ strongly restricts the maximum S in any η. The result
indicates that the maximum S obtainable in the previous Bell
experiments using SPDC sources with small λ is intrinsically
limited and thus suggests a use of higher pumping of the
SPDC sources to obtain a larger CHSH violation.

Finally, we show the optimal parameters for a given η

in Figs. 3(a)–3(c). The optimal average photon numbers are
shown in Fig. 3(a). Even when η = 1, the two optimal average
photon numbers are unbalanced. The ratio between λ1 and λ2

is shown in Fig. 3(b). We found that the ratio of λ1/λ2 mono-
tonically and continuously decreases as η decreases. This
result qualitatively agrees with the analysis based on qubit
systems in Ref. [19]. The optimal angles of the polarizers are
shown in Fig. 3(c). Interestingly, the optimal angles are almost
constant regardless of η.

IV. EXPERIMENTAL SETUP

Theoretical predictions in the above section are veri-
fied using the experimental setup illustrated in Fig. 4. We
choose the measurement angles as {θA1, θA2} = {0, π/5} and

{θB1, θB2} = {3π/5,−3π/5}, by which S is expected to be
S = 2.30 with λ1 = λ2 = 0.62 when the overall detection
efficiency is unity and the dark count probabilities are zero.
These angles are slightly different from those shown in
Fig. 3(b) since we apply the condition λ1 = λ2 for simplicity.
A distributed feedback (DFB) laser generates pulsed light at
1550 nm. The DFB laser is directly modulated by electrical
pulses with 100-kHz repetition and 300-ns duration. The out-
put laser pulse is amplified by an erbium-doped fiber amplifier
(EDFA). The output of EDFA is vertically polarized by a half-
waveplate (HWP) and a polarizing beamsplitter (PBS), and
then coupled to the 34-mm-long, type-0, periodically poled
lithium niobate waveguide (PPLN/W) for second harmonic
generation (SHG). Amplified spontaneous emission from the
EDFA and unconverted fundamental light of the SHG are
removed by the dichroic mirrors (DMs). The polarization of
the SHG pulses are adjusted by using a HWP and a pair
of quarter-waveplates (QWPs). The maximum pulse energy
(average power) of our SHG pulses is 0.2 μJ (20 mW). To
generate polarization-entangled photon pairs by the SPDC
process, SHG pulses are used to pump a 30-mm-long, type-II,
periodically poled potassium titanyl phosphate (PPKTP) crys-
tal in a Sagnac loop interferometer with a PBS [20]. The two-
qubit component of the generated state forms a maximally
entangled state |�−〉 = (|HV 〉 − |V H 〉)/

√
2, where |H 〉 and

|V 〉 denote the H and V polarization state of a single photon,
respectively. One half of the photon pair passes through the
DM and goes to Alice’s side while the other photon goes to
Bob’s side. Alice and Bob set measurement angles {θA1, θA2}
and {θB1, θB2}, respectively, by means of the HWPs and fiber-
based PBSs (FPBSs). Finally, the photons are detected by
four superconducting single-photon detectors (SSPDs), D1
and D3 for Alice, and D2 and D4 for Bob, respectively. The
quantum efficiencies of these SSPDs are around 75% [21].
The dark count probabilities of the SSPDs are 3.0 × 10−4

per a detection window of 300 ns, corresponding to the pulse
duration. The modulation signal for the DFB laser is also used
as a starting signal for a time-to-digital converter (TDC), and
the detection signals from D1, D2, D3, and D4 are used as stop
signals of the TDC. All combinations of click and no-click
events are collected without postselection. We assign events

063842-4



OPTIMAL CONDITIONS FOR THE BELL TEST USING … PHYSICAL REVIEW A 98, 063842 (2018)

FIG. 5. (a) The S values obtained by the theory with unity
detection efficiencies (red square), the theory with experimental pa-
rameters (yellow circle), and the experimental results (blue triangle)
for the various values of λ. The black diamonds represent the S

values obtained by compensating the losses of the system in the range
of λ � 0.1. (b) The enlarged figure of the enclosed part.

of D1 (D2) clicks on Alice’s (Bob’s) side as −1 and all the
others as +1, then calculate S.

V. EXPERIMENTAL RESULTS

Before performing the Bell-test experiment, we estimate
the overall detection efficiencies ηl . Suppose a TMSV is
detected by two detectors, D1 and D2. The overall detection
efficiencies of the two modes (η1 and η2) are well estimated
by the following equation [22]:

η1(2) = C12

S2(1)
. (5)

Here C12 is the coincidence count between D1 and D2, and
S2(1) is the single-detection count at D2(1). Note that the aver-
age photon number of the TMSV photons is small enough for
this measurement. In our theoretical model shown in Fig. 1(b),
we have assumed the same detection efficiencies for TMSV1
and TMSV2. Thus, in the experiment we carefully align the
optical system such that the overall detection efficiencies for
TMSV1 and TMSV2 are the same as each other. We es-
timated them as η1 = 10.48 ± 0.69%, η2 = 12.76 ± 0.97%,
η3 = 12.72 ± 0.53%, and η4 = 11.86 ± 0.24%.

Once ηl is estimated, the average photon number (λk) of
TMSVk is calculated by using the following relation:

S1(2)

N
= λkη1(2)

1 + λkη1(2)
, (6)

where N is the number of the total events, which corresponds
to the number of the start signals of the TDC.

In the Bell-test experiment, the difference between λ1 and
λ2 is set to be less than 1%. Thus we denote λ := λ1 = λ2 in
the following. The results of the Bell experiment are shown in
Fig. 5(a). We perform the Bell experiment for various values
of λ by changing the energy of the pump pulse. Though the
overall detection efficiencies of our system are not in the
range of directly observing the CHSH violation, it is still

possible to compare our experimental results and the theory
calculated with experimentally observed parameters: the av-
erage photon numbers, measurement angles, detection ef-
ficiencies, and dark counts. The experimental results (blue
triangles) and theoretical values with experimental parameters
(yellow circles) are in good agreement for each λ, which indi-
cates that the theoretical model well explains the experimental
results.

In the low average photon number regime (λ � 0.1), it
is possible to compensate the imperfection of the overall
detection efficiencies without assuming the quantum states
distributed to Alice and Bob. In other words, one can estimate
the intrinsic nonlocality that could be observed with the unity
detection efficiencies. Under the assumption that each detec-
tor detects at most one photon, the experimentally obtained
probability distribution Pexp = (p1, p2, . . . , p16)T composed
of the 16 combinations of the detection probabilities and the
ideal probability distribution with the unity detection efficien-
cies Qideal = (q1, q2, . . . , q16)T are connected by the linear
transmission matrix T as

Pexp = T Qideal (7)

for each measurement setting. Here, p1 =
P (nc1,nc2,nc3,nc4), p2 = P (c1,nc2,nc3,nc4), and so on.
T is the upper triangular matrix whose matrix elements are
composed of the products of ηl and (1 − ηl ). For example, the
fourfold coincidence probabilities p16 and q16 are connected
by p16 = q16

∏4
l=1 ηl . One may think that Qideal is estimated

by simply calculating Qideal = T−1 Pexp. However, in this
case, the elements of Qideal could be negative since Pexp

contains experimental errors. Thus we determine the most
likely elements of Qideal such that the L2 distance between
Pexp and T Qideal is minimum under the condition that
qi � 0 and

∑16
i=1 qi = 1. Namely, we estimate the probability

distribution Qideal which minimizes the function

16∑
i=1

⎛
⎝pi −

16∑
j=1

Tij qj

⎞
⎠

2

. (8)

The S values calculated by Qideal are shown in Figs. 5(a) and
5(b) by the black triangles. The results agree with but are
slightly below the theory plots for the ideal state and detectors
(red square), which reflects the deviation of the generated
state from ideal TMSVs due to experimental imperfections. In
particular, these two plots start to deviate at λ > 0.05, where
the probability of detecting multiphotons at each detector
starts to be non-negligible.

VI. CONCLUSION

In conclusion, we theoretically and experimentally inves-
tigate the optimal conditions for the Bell test with SPDC
sources. We perform the numerical simulation, including
multiphoton emissions from the SPDC sources and various
imperfections, and see the maximal violation of the CHSH
inequality as S = 2.31, which agrees with the previous re-
sult in Ref. [15]. Then we show the optimal experimental
parameters to maximize the CHSH values for a given average
photon number of TMSVs or the overall detection efficiency
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by numerical simulations. In particular, we show the CHSH
value takes its maximum when the average photon number is
much larger than those utilized in the previous experiments
[8–10]. Interestingly, it is found that the maximum violation
of the CHSH inequality converges to 0.27 when one of the
two average photon numbers is extremely large. This result
indicates that the violation of the CHSH inequality is not
determined by a mere trade-off between the amount of vac-
uum and multiple pairs in the single-mode case. Next, we
perform the Bell-test experiment without postselection using
polarization-entangled photon pairs generated by SPDC to
test these theoretical predictions. The experimentally obtained
CHSH values agree well with those obtained by the theory.
Moreover, in the range of small average photon numbers,
we also propose and demonstrate a method to estimate the
CHSH value of the quantum state before undergoing losses
by compensating the detection losses without assuming the
input quantum state. The result shows good agreement with
the theoretical model in the range of λ � 0.1. This approach
is useful in estimating the properties of quantum states via
imperfect detectors.
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APPENDIX: DETAILED CALCULATIONS BASED
ON THE CHARACTERISTIC FUNCTION

We describe a procedure to calculate the probability distri-
butions and the CHSH value S using the theoretical model
given in Sec. II. First, we review the basic tools used in
the characteristic function approach which is often used in
Gaussian continuous-variable quantum systems. This method
allows us to deal with the quantum state generated by the
SPDC process without the need for any approximations such
as photon number truncation. Next, we present the method
to calculate the detection probabilities. Finally, we describe
the procedure to calculate S using the obtained probability
distribution.

1. Preliminary

a. Characteristic function

Let us consider N bosonic modes associated with a tensor
product Hilbert space H⊗N = ⊗N

j=1 Hj , where Hj is an
infinite-dimensional Hilbert space. We define annihilation and
creation operators corresponding to each mode as âj and â

†
j ,

respectively. They satisfy the commutation relation given by

[âj , â
†
k] = δjk. (A1)

We also define the quadrature operators of a bosonic mode as

x̂j = 1√
2

(âj + â
†
j ), (A2)

p̂j = 1√
2i

(âj − â
†
j ). (A3)

Note that we choose as a convention h̄ = ω = 1. Their com-
mutation relation is calculated as

[x̂j , p̂k] = iδjk. (A4)

We define a density operator acting on H⊗N as ρ̂. The
characteristic function of ρ̂ is defined by

χ (ξ ) = Tr[ρ̂Ŵ (ξ )], (A5)

where

Ŵ (ξ ) = exp(−iξT R̂) (A6)

is the Weyl operator. Here, R̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N )T

and ξ = (ξ1, . . . , ξ2N )T are a 2N vector consisting of quadra-
ture operators and a 2N real vector, respectively.

b. Gaussian states

A Gaussian state is a quantum state whose characteristic
function has a Gaussian distribution:

χ (ξ ) = exp

(
−1

4
ξT γ ξ − idT ξ

)
, (A7)

where γ is a 2N × 2N matrix called the covariance matrix
and d is a 2N -dimensional vector known as the displacement
vector. The covariance matrix of the TMSV state generated by
a SPDC source is given by

γ TMSV(λ) =
[
γ +(λ) 0

0 γ −(λ)

]
, (A8)

where

γ ± =
[

2λ + 1 ±2
√

λ(λ + 1)

±2
√

λ(λ + 1) 2λ + 1

]
, (A9)

while d = 0. As is described in Sec. II, λ = sinh2r corre-
sponds to the average photon number per mode.

c. Gaussian unitary operations

A Gaussian unitary operation is defined as a unitary op-
eration transforming a Gaussian state to another Gaussian
state, which includes the operations by linear optics and
the second-order nonlinear process. Any Gaussian unitary
operation acting on a Gaussian state is characterized by the
following symplectic transformations:

γ → ST γ S, d → ST d, (A10)

where S is a symplectic matrix corresponding to the Gaussian
unitary operation. The symplectic matrix for a beamsplitter on
mode A and mode B is given by

St
AB =

⎡
⎢⎢⎢⎣

√
t

√
1 − t 0 0

−√
1 − t

√
t 0 0

0 0
√

t
√

1 − t

0 0 −√
1 − t

√
t

⎤
⎥⎥⎥⎦,

(A11)

where t is the transmittance of the beamsplitter. Hereafter, we
simplify the description of a block-diagonalized matrix like
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Eq. (A11) as

St
AB =

[ √
t

√
1 − t

−√
1 − t

√
t

]⊕2

. (A12)

d. Measurements

We consider that the detectors D1, D2, D3, and D4 in
Fig. 1(b) are on-off type, single-photon detectors, namely,
they only distinguish between vacuum and nonvacuum. De-
noting the dark count probability of the detectors by ν, the
POVM elements of the on-off detectors are described by

�̂off (ν) = (1 − ν)|0〉〈0| (A13)

and

�̂on(ν) = Î − �̂off (ν), (A14)

where Î is the identity operator. The detection probability
is calculated by introducing the characteristic functions of
the positive operator-valued measure (POVM) elements. Sim-

ilar to the state, the characteristic function of the POVM
element �̂ is given by χ�(ξ ) = Tr[�̂Ŵ (ξ )]. When a single-
mode Gaussian state ρ̂ with characteristic function χρ (ξ ) =
exp(− 1

4ξT γ ξ ) is measured, the detection probability is given
by

Pon = Tr[ρ̂�̂on] = 1 − (1 − ν)Tr[ρ̂|0〉〈0|]
= 1 − 2(1 − ν)√

det(γ + I )
. (A15)

e. Linear loss

The linear photon losses in the system, such as a coupling
efficiency to the single-mode fiber and imperfect quantum
efficiency of the detectors, are modeled by performing a
beamsplitter transformation of transmittance t between the
lossy mode and a vacuum mode, and tracing out the vacuum
mode. The transformation of the linear loss on the state with
covariance matrix γ can be described as

Lt γ = KT γK + α, (A16)

where K = √
tI and α = (1 − t )I .

2. Detection probabilities

Using the above basic tools, we present the procedure to calculate the detection probabilities. As shown in Fig. 1(b), the
entangled photon pair source consists of two TMSV sources over polarization modes. The covariance matrix of the output state
is given by

γ TMSV12
HAVAHBVB

=

⎡
⎢⎢⎢⎣

2λ1 + 1 2
√

λ1(λ1 + 1) 0 0

2
√

λ1(λ1 + 1) 2λ1 + 1 0 0

0 0 2λ2 + 1 −2
√

λ2(λ2 + 1)

0 0 −2
√

λ2(λ2 + 1) 2λ2 + 1

⎤
⎥⎥⎥⎦

⊕2

. (A17)

Note that the relative phase between TMSV1 and TMSV2 is set to π as described in Eq. (4). In the experiment, the two TMSV
sources are embedded in the Sagnac loop. In this case, the covariance matrix of the output state is transformed into [16]

γ SL
HAVAHBVB

=

⎡
⎢⎢⎢⎣

2λ1 + 1 0 0 2
√

λ1(λ1 + 1)

0 2λ2 + 1 −2
√

λ2(λ2 + 1) 0

0 −2
√

λ2(λ2 + 1) 2λ2 + 1 0

2
√

λ1(λ1 + 1) 0 0 2λ1 + 1

⎤
⎥⎥⎥⎦

⊕2

. (A18)

The covariance matrix in Eq. (A18) is first transformed by the (polarization-domain) beamsplitter operations S
θA

HAVA
S

θB

HBVB
.

The covariance matrix after the transformation is given by

γ BS
HAVAHBVB

:= S
θBT
HBVB

S
θAT
HAVA

γ SL
HAVAHBVB

S
θA

HAVA
S

θB

HBVB
. (A19)

The overall system losses, including imperfect quantum efficiencies of the detectors, are considered by performing linear-loss
operations Lη1

HA
, Lη3

VA
, Lη2

HB
, and Lη4

VB
on corresponding modes. The covariance matrix just before the detectors is given by

γ final
HAVAHBVB

= Lη1
HA

Lη3
VA
Lη2

HB
Lη4

VB
γ BS

HAVAHBVB
(A20)

= K
η1η3η2η4T

HAVAHBVB
γ BS

HAVAHBVB
K

η1η3η2η4
HAVAHBVB

+ α
η1η3η2η4
HAVAHBVB

, (A21)

where

K
η1η3η2η4
HAVAHBVB

=

⎡
⎢⎢⎢⎣

√
η1 0 0 0

0
√

η3 0 0

0 0
√

η2 0

0 0 0
√

η4

⎤
⎥⎥⎥⎦

⊕2

(A22)
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and

α
η1η3η2η4
HAVAHBVB

=

⎡
⎢⎢⎢⎣

1 − η1 0 0 0

0 1 − η3 0 0

0 0 1 − η2 0

0 0 0 1 − η4

⎤
⎥⎥⎥⎦

⊕2

. (A23)

The detection probabilities are calculated by performing �̂on/off (ν) on corresponding modes. For example, the probability of
observing clicks in D1 and D2 and no-clicks in D3 and D4 is given by

P (c1, c2, nc3, nc4|θA, θB ) = Tr
[
ρ

γ final
HAVAHB VB �̂on

HA
(ν)�̂on

HB
(ν)�̂off

VA
(ν)�̂off

VB
(ν)

]
(A24)

= Tr
[
ρ

γ final
HAVAHB VB (Î − (1 − ν)|0〉〈0|HA

)(Î − (1 − ν)|0〉〈0|HB
)(1 − ν)|0〉〈0|VA

(1 − ν)|0〉〈0|VB

]
(A25)

= 4(1 − ν)2√
det

(
γ final

VAVB
+I

) − 8(1 − ν)3√
det

(
γ final

HAVAVB
+I

) − 8(1 − ν)3√
det

(
γ final

HBVAVB
+I

) + 16(1 − ν)4√
det

(
γ final

HAVAHBVB
+I

) , (A26)

where γ final
VAVB

, γ final
HAVAVB

, and γ final
HBVAVB

are the submatrices of γ final
HAVAHBVB

.

3. Calculation of S

As in Eq. (1), S is obtained by calculating P (a = b|θAi
, θBj

) and P (a �= b|θAi
, θBj

) for i, j = {1, 2}. For simplicity, omitting
the conditions of the angles, these conditional probabilities are given by

P (a = b) = P (+1,+1) + P (−1,−1) (A27)

and

P (a �= b) = P (+1,−1) + P (−1,+1). (A28)

In our model, each probability in the right-hand side of Eqs. (A27) and (A28) is calculated as follows:

P (−1,−1) = P (c1, c2, nc3, nc4), (A29)

P (+1,−1) = P (c1, c2, c3, nc4) + P (nc1, c2, c3, nc4) + P (nc1, c2, nc3, nc4), (A30)

P (−1,+1) = P (c1, c2, nc3, c4) + P (c1, nc2, nc3, c4) + P (c1, nc2, nc3, nc4), (A31)

P (+1,+1) = 1 − P (−1,−1) − P (+1,−1) − P (−1,+1). (A32)
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