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Solitons in a chain of charge-parity-symmetric dimers
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We consider an array of dual-core waveguides, which represent an optical realization of a chain of dimers, with
an active (gain-loss) coupling between the cores, opposite signs of discrete diffraction in the parallel arrays, and
a phase-velocity mismatch between them (which is necessary for the stability of the system). The array provides
an optical emulation of the charge-parity (CP) symmetry. The addition of the intracore cubic nonlinearity gives
rise to several species of fundamental discrete solitons, which exist in continuous families, although the system
is non-Hermitian. The existence and stability of the soliton families are explored by means of analytical and
numerical methods. An asymptotic analysis is presented for the case of weak intersite coupling (i.e., near the
anticontinuum limit), as well as weak coupling between cores in each dimer. Several families of fundamental
discrete solitons are found in the semi-infinite gap of the system’s spectrum, which have no counterparts in the
continuum limit, as well as a branch which belongs to the finite band gap and carries over into a family of
stable gap solitons in that limit. One branch develops an oscillatory instability above a critical strength of the
intersite coupling, others being stable in their entire existence regions. Unlike solitons in conservative lattices,
which are controlled solely by the strength of the intersite coupling, here fundamental-soliton families have
several control parameters, one of which, viz., the coefficient of the intercore coupling in the active host medium,

may be readily adjusted in the experiment by varying the gain applied to the medium.
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I. INTRODUCTION

Charge-parity (CP) symmetry is one of the fundamental
principles in the physics of elementary particles [1]. Except
for the small violation by weak nuclear forces, it holds for
all interactions [2]. The CP operator is the product of the
parity transformation, P, which reverses the coordinates, and
the charge conjugation, C, which interchanges particles and
antiparticles, i.e., essentially, positive and negative electric
charges.

While the usual derivation of the CP symmetry is per-
formed for Hermitian Hamiltonians, this symmetry may hold
for Hamiltonians which are not Hermitian [3]. In fact, Hamil-
tonians which commute with another symmetry operator, viz.,
the parity-time one, P7 (7 is the time-inverting transform),
may include an anti-Hermitian spatially antisymmetric (odd)
part, provided that the Hermitian one has a spatially even
structure [4]. The spectrum of energy eigenvalues, generated
by such P7T -symmetric non-Hermitian Hamiltonians, may be
purely real (i.e., physically relevant) up to a critical strength of
the anti-Hermitian term, at which the P77 symmetry is broken,
making the system (in most cases) physically irrelevant above
this point.
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It is well known that non-Hermitian P77 -symmetric Hamil-
tonians may be emulated theoretically [5] and experimentally
[6], without any connection to the quantum theory, in the con-
text of classical optics, as well as acoustics [7], microwaves
[8], electronics [9], and optomechanics [10], making use of
the fundamental fact that the paraxial propagation equation,
which is commonly used in optics, has essentially the same
form as the quantum-mechanical Schrédinger equation. Ac-
cordingly, the spatially even and odd Hermitian and anti-
Hermitian terms of the underlying Hamiltonian correspond,
respectively, to a symmetric spatial pattern of the local refrac-
tive index and an antisymmetric distribution of local gain and
loss in the waveguide.

Further, the presence of the Kerr nonlinearity, which
is ubiquitous in optics, has suggested the consideration of
Hamiltonians that include the corresponding quartic terms
too. The nonlinearity readily gives rise to families of P7T -
symmetric solitons, which have been explored in various
contexts (see recent reviews [11]). In particular, a natural
setting for the prediction of such one- and two-dimensional
solitons is provided by P7T -symmetric dual-core waveguides
[12]. Although the underlying setting is non-Hermitian, PT -
symmetric solitons exist in continuous families, like in con-
servative systems, rather than as isolated dissipative solitons.

The well-elaborated emulation of the non-Hermitian P77
symmetry in optics suggests one to seek for a possibility
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to realize non-Hermitian Hamiltonians featuring other fun-
damental symmetries in appropriately designed optical set-
tings, a natural candidate being the CP symmetry. This was
proposed in Ref. [13], using a model of dual-core optical
fibers, with opposite signs of the group-velocity dispersion
(GVD) in the two cores and phase-velocity mismatch between
them. The non-Hermitian ingredient of the system is the
specific intercore coupling, which, in a phenomenological
form, can represent gain and loss in the system, assuming
that the coupler is embedded in an “active” medium [14,15].
Alternatively, the same coupling can be derived directly for
two fundamental-frequency components of a nondegenerate
(three-wave) second-harmonic-generating system, assuming
that the depletion of the second-harmonic pump is negligible
[13]. In terms of this system, the P transform is realized as the
swap of the two cores and the simultaneous inversion of the
sign of the temporal variable in the transmission equations,
while C amounts to the replacement of the wave amplitude by
its complex-conjugate counterpart. The nonlinear version of
the CP-symmetric system, derived in Ref. [13], gives rise to
a family of stable gap solitons, even if the Kerr nonlinearity
breaks the CP symmetry. A possibility to implement non-
Hermitian CP symmetry in the context of matter waves was
elaborated in terms of a two-component atomic Bose-Einstein
condensate with the spin-orbit coupling between the compo-
nents, assuming that one of them carries the gain and the other
one is subject to the action of loss with the same strength [16].

In this work, we aim to derive a version of non-Hermitian
CP-invariant systems, which calls for implementation in
terms of an appropriate optical system. The system is realized
as an array of dual-core optical waveguides in the spatial
domain, with the temporal-domain GVD replaced by the
discrete diffraction [17] in two parallel guiding arrays of the
system. While in dual-core fibers it is easy to realize the
setting with opposite signs of the temporal GVD in paral-
lel cores [18], the implementation of opposite signs of the
discrete diffraction is a challenging element of the model.
As we discuss below, this can be realized by means of the
diffraction-management technique [19]. We construct several
species of fundamental discrete solitons in the framework of
the obtained system, which includes the Kerr nonlinearity.
Similar to the abovementioned P7 -invariant solitons, they
exist here in continuous families, despite the non-Hermitian
character of the system. The soliton families are obtained
in approximate analytical and full numerical forms, starting
from the anticontinuum limit (uncoupled array). One family,
constructed in the system’s finite band gap, continues, as a
completely stable one, into the abovementioned gap solitons
found in the continuum-limit variant of the system. Other
families are found in semi-infinite gaps. They all terminate
before reaching the continuum limit. One family features an
internal boundary of oscillatory instability, all others being
stable as long as they exist.

Previously, various species of one- and two-dimensional
(1D and 2D) lattice solitons, such as 1D twisted modes [20]
and discrete vortices [21], which may be (partly) stable in
the discrete form, but vanish or suffer destabilization in the
continuum limit, have been found in conservative models,
such as the discrete nonlinear Schrédinger equation (NLSE)
[22], but they have not been found in non-Hermitian systems.

It is worthy to note that all families revealed by the present
analysis in semi-infinite gaps represent several species of fun-
damental solitons (on-site-centered single-peak ones), while
the abovementioned twisted and vortex modes in conservative
lattices are higher-order states. Further, it is relevant to stress
too that, in the context of the discrete NLSE, the existence
and stability of such discrete 1D and 2D states are controlled
by the single effective parameter, viz., the relative strength
of the intersite coupling, with respect to the strength of on-
site nonlinearity [22]. On the other hand, the families of 1D
discrete solitons, which are reported in the present work, may
be better fitted to experimental settings, as their existence
and stability are additionally controlled by the phase-velocity-
mismatch and gain-loss parameters. In particular, the latter
coefficient can be easily adjusted by varying the gain applied
to the host active medium.

The manuscript is organized as follows. The model is
introduced in Sec. II. The perturbation theory, which makes
use of weak couplings, is applied to fundamental discrete
solitons in Sec. III. In addition to the weak coupling between
the sites (i.e., between C’P-symmetric dimers), the analysis
is also performed for a small gain-loss coefficient, which
accounts for the active coupling between the cores of the
dimer elements. The existence and stability of the discrete
solitons are then considered by means of numerical methods
in Sec. IV, finding stationary states and solving the eigen-
value problem for small perturbations around them. Results
of the numerical calculations are compared to their analytical
counterparts. In particular, we produce stability regions for the
fundamental on-site solitons, which are controlled, as stated
above, by both the intersite-coupling strength and the gain-
loss parameter of the interdimer coupling, in addition to the
intercore phase-velocity mismatch. We also explore dynamics
of unstable solitons by means of direct simulations. The paper
is concluded by Sec. V.

II. THE MODEL

The dimerized chain of couplers under the consideration is
described by coupled equations for amplitudes u, and v, of
electromagnetic waves in the coupled cores:

Uy :i|un|2un+i5A2un+yvn_iqun» 0

. , 2 . .
Uy = ivp|" v, — i€Aov, + YUn +1iqun,

where the dot stands for the derivative with respect to the
evolution variable z, which is the propagation distance in
the array of optical waveguides, the cubic terms represent the
usual intracore Kerr nonlinearity, and € > 0 is the coefficient
of the horizontal linear coupling with opposite signs, acting
along each subchain between adjacent sites, Ayu,, = (1,41 —
2u, +u,—1) and Arv, = (V41 — 2V, + v,—1) being the re-
spective finite-difference second derivatives, which represent
the discrete spatial diffraction in the parallel arrays (¢ < 0
may be replaced by € > 0 simply by renaming u,, <— v,).
The opposite signs of the discrete diffraction in the two
parallel arrays (with spacing d), which is an essential
ingredient of the present system, may be realized by
means of the diffraction-management technique [19], i.e.,
coupling into one of the arrays a light beam with a small
perpendicular component «; = /(2d) of the wave
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vector, the corresponding discrete-diffraction coefficient

being  ~cos(k d). Another essential ingredient
of the present system is the vertical coupling
between the parallel arrays, represented by real

coefficient y >0 (y <0 may be replaced by y > 0,
renaming v, — —v,), which acts as the gain or loss in
the active system [14]. The last terms in Egs. (1), with
coefficient g 2 0, represent a phase-velocity mismatch
between the cores. While ¢ may be scaled to be %1, it is more
convenient to keep it as a free parameter.

It is straightforward to check that the linearized version of
Egs. (1) is symmetric under the abovementioned CP trans-
formations u, — v; and v, — u};, where * stands for the
complex conjugation; i.e., the linear system supports the CP
symmetry, while the Kerr terms are not compatible with the
transformation [13]. Our objective is to construct discrete
solitons of the full nonlinear system, subject to the localization
conditions, u,, v, — 0asn — +oo.

The continuum limit of system (1), which corresponds to
€ — oo and the discrete coordinate n replaced by a continu-
ous one, x, produces a system of coupled NLSEs:

u 9%u

o2 . .
— = +i—+yv— ,
PP ilul“u l8x2 yv —iqu
2)
av 1 |2 9% n n
— =i|v—i—s u—+iqu.
a2 ax2 YU T

This system was investigated by means of analytical and nu-
merical methods in Ref. [13]. In the opposite (anticontinuum)
limit, with € = 0 [23,24], the chain (1) amounts to a set
of isolated dimers with a complex intercore coupling. Such
dimers with 2 degrees of freedom have been studied in detail
in Ref. [14].

Stationary solutions to Eqgs. (1) with the real propagation
constant — K are sought for in the usual forms,

—iKz —iKz
Uy, = Ane s Uy = Bne s (3)

with complex amplitudes A, and B, obeying the coupled
algebraic equations:

KA, = —A*A* —€(A,y1 — 24, + A,) +iyB, +qA,,
KB, =—B>B' +¢e(B,y1 — 2B, + B,_1) +iyA, — qB,.
4)

Using the invariance of Egs. (4) with respect to the phase
shift, one can infer that localized stationary solutions can be
found with real-valued A, and purely imaginary B,. On the
other hand, looking for solutions to the linearized version of
Egs. (4) plane waves, (A,, B,) = (A, By) exp (ikn) with the
real wave number k, we obtain the dispersion relation for the
linearized system:

K? = [q + 4e sin® (k/2)]* — y>. 6)

An essential corollary of Eq. (5) is that the stability of the zero
solution, which plays the role of the background for bright
solitons, holds under the condition K2 > 0, i.e.,

qzv, (6)

for positive ¢, and

g < —(de+vy), )

for negative g. These conditions demonstrate that the presence
of the phase-velocity mismatch, g # 0, is necessary for the
stability of localized states (recall that we have set y > 0
and € > 0). The increase of the gain-loss coefficient, y, from
small values leads to the breaking of the CP symmetry in the
linearized system at critical points, y., = g for g > 0, and at
Yer = |q| — 4€ (provided that |g| exceeds 4¢ in the latter case,
otherwise the CP symmetry is always broken).

If condition (6) holds, the existence of discrete solitons
may be expected in spectral band gaps, i.e., intervals of values
of K? which cannot be covered by Eq. (5) with sin?(k/2) < 1.
These are finite and semi-infinite band gaps, viz.,

K*<qg*—y* or K*>(q+4e)—y>,  ®

in the case defined by Eq. (6), and
K? < (qg+4e)* —y? or K?>q*>—y2, )

in the case of Eq. (7). Note that, in the continuum limit,
which is represented by Eq. (2), the stability condition for the
zero solution is given by Eq. (6) [while Eq. (7) is obviously
irrelevant in this limit], and the respective band gap is the
finite one, defined by the first inequality in Eq. (8) [13], while
the sezzmi-inﬁnite band gap is expelled to infinitely large values
of K~-.

It is relevant to stress that the identification of the band
gaps as the habitat for solitons in the non-Hermitian system
is not self-obvious. Nevertheless, this principle, suggested
by studies of conservative systems, is valid, as long as the
spectrum remains completely real, i.e., the CP symmetry is
not broken, being secured by Eqgs. (6) and (7). The same is
true for solitons in P77 -symmetric systems [11].

To investigate stability of stationary states against pertur-
bations with an infinitesimal real amplitude ¢, the perturbed
solution is defined as u,, = [A,, + ¢(Q, + i R,)e**]e X% and
vy = [B, + (S, +iT,)e*]e k%, where the eigenvalue A
should be found from a numerical solution of the system of
linearized equations for real form-factors Q,, R, and S,, T,
in which it is taken into regard that amplitudes A, and B, are
real and purely imaginary, respectively, as stated above:

AQ, = — (A} + K —q)Ry — €(Rys1 — 2Ry + Ry_1) + ¥ Sy,
AR, = (3A; + K —q)Qn+€(Qui1 —20u+ Qut) + v Ty,
7S, = (3B; — K — q)T, + €(Tyi1 — 2T, + Ty—1) + ¥ Qu,
AT, = (— B:+K +q)Sy — €(Sps1 — 28+ Su—1) + ¥ Ry
(10)

As usual, the stationary solution is linearly stable if the
condition Re(A) < 0 holds for all eigenvalues, and is unstable
otherwise.

III. ANALYTICAL CALCULATIONS
A. The anticontinuum limit

In the decoupled array, with € = 0, stationary §olutions of
Egs. (4) can be written as A" = do and B\”’ = iby, with real
do and by. Upon substitution of this into Eqs. (4), one obtains

by = (ao/y)[—a; + (q — K)]. (11)
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where d solves the polynomial equation
g —3(q — K)aj +3(q — K)a
+r2 g+ K) — (¢ — K)1a
+Iy* =2 (¢* — K*)lap = 0. (12)
One solution of Eq. (12) is a trivial one, dy = by =0,
nontrivial solutions for Zzg being roots of a quartic polyno-
mial, which can be formally solved in an analytical form,
producing, however, impractically cumbersome expressions
[25]. The analysis of Eq. (12) simplifies for small values of
the intercore coupling, y, and g close to £1, viz.,
q=+1-qy, (13)
with ¢ ~ 1. First, for ¢ = +1 — gy, expanding Eq. (12) up to
O(y?), we find four relevant roots:

. 200-K)—vyq -~ ~1-Ky
d0:—+~-~, 0=—+ .,
24/1—K 1+ K

(14)
V=1 +K ~
R (RS U Ny SR
1-K
(15)
V=-0+K)—g¢yJ1-K
do=+1—K +
aop 20— K) +
bo=+y—(1+K)+---, (16)
which exist at K < +1, K < —1, and K < —1, respectively.
Similarly, for ¢ = —1 — gy we also find four roots:
- 2K +1)+qy ~
== 7 T 4., b=0, 17
do NETEY e 0 (17)
V1 —K -
5,0:_—3/ iy bp=~A1—K+---, (18)
1+ K
1-K—-gys/—(1+K
o — /——(1+K):|:\/ gy v/—( )+__.’
2(1 — K)
bo=FV1I—-K+---, (19)

which exist at K < —1, K < +1, and K < —1, respectively.

B. Discrete solitons in the weakly coupled arrays

Because solutions @, and by at each site n are mutually
independent in the decoupled array, one can construct in-
finitely many combinations, using different solutions for
and by. Here, we focus on fundamental bright solitons of
the on-site-centered type in the case of weak coupling, i.e.,
small €, which can be constructed by the continuation of the
modes available at € = 0. This is a well-known method for
finding various modes in discrete systems, starting from the
anticontinuum limit [22]. Up to order €2, such solitons are
constructed in an approximate form:

ao + E('i(),l, n=20,
An = 6&1'1, I’I::l:l,
0, n#0,+l,
N N (20)
ibo—i‘iéboql, n=0,
B, = {ieby,, n==l,
0, n#0,£l,

where dj, by # 0 is one of the nonzero pairs given by
Egs. (14)—(19), and the next-order terms are obtained pertur-
batively from Egs. (4), following the lines of Ref. [26]:

2ybo + 2do(q + K + 3b5)
y?—(q— K —3a3)(q + K +3b})’

do,1 =
) 1)
2ydy + 2bo(q — K — 3aj)
y?— (¢ — K —3a)(q + K +3b3)
e Z)’bo—ﬁo(Q-FK) 3 Z—Yﬁo—bo(q—K)
R R Ve &)
(22)

by, =

C. Stability eigenvalues of the discrete solitons

In the framework of the weak-coupling limit elaborated
in Secs. IITA and IIIB, we implement similar asymptotic
expansions to solve semianalytically the stability-eigenvalue
problem based on Egs. (10), i.e., we substitute in those equa-
tions

X=X+ /exV+ex® 4., (23)

with X ={A, Q,, Ry, Su, T,}. Assuming the presence of
the second independent small parameter, y (the intercore
coupling parameter), coefficients in Eq. (23) are further
expanded as

X0 = x0U0 4 )/X(j‘l) + y2x(iv2) 4+, (24)

j=0,1,2,.... Details of the respective calculations are not
shown here, as they directly follow the method elaborated
in Ref. [26]. Below, we report final results produced by this
approach. It is relevant to stress that, while the expansion in
terms of the small intersite coupling constant is a well-known
approach, which has been elaborated for many conservative
systems [22-24], the analysis for non-Hermitian systems is
developed here, and the use of the expansion in terms of two
small parameters is an essential technical peculiarity, which
may occur in the analysis of other non-Hermitian systems.

Due to the phase invariance, perturbation modes around the
discrete solitons have a trivial eigenvalue of A = 0. In the case
of g = +1 — gy [see Eq. (13)], the discrete soliton (20), with
o and by taken as per Eqgs. (14), has a nonzero eigenvalue
given, in the present approximation, by

A=il(l4+K) =Gy + 0P +iel2+ 0(y)] + 0(¥?),
(25)

while for &g and by taken as per Eqgs. (15), a nonzero stability
eigenvalue is

A=i[(—1+K)+4y + O(y)]—iel2+ O(yH)] + O(¥?).
(26)

In the case of ¢ = —1 — gy, the discrete soliton (20), with ao
and b taken as per Eqgs. (17), has a nonzero eigenvalue given
by
h=il(=14+K)—=qy + 0(y?)]
+iel24+ 0]+ 0, 7)
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FIG. 1. The stable discrete-soliton family initiated, in the analytical approximation, by Eqgs. (20) and (14) and its stability for K = —3,
y = 0.1, and ¢ = 1.2. (a) The solution profile for € = 0.4 with the taller (blue) and shorter (red) curves corresponding to |u,| and |v,],
respectively. (b) The corresponding spectrum of stability eigenvalues in the complex plane. (c) Imaginary eigenvalues (i.e., stable ones) as a
function of € [one branch is shown, the other one being its mirror image, cf. panel (b)]. (d) Zoom-in of panel (c) showing the separate eigenvalue
initiated in the anticontinuum limit by the analytical approximation based on Eq. (25) (the approximation is displayed by the dashed line).

while, for do and by taken as per Egs. (18), it is

A=i[(l+K)+ 4y + 0] —iel2+ 0D + 0(¥?).

(28)
In the present approximation, we conclude that the discrete
solitons are stable, as all the corresponding eigenvalues are
imaginary.

In the same approximation, it is not possible to produce
nontrivial eigenvalues for the discrete soliton with @, and bo
given by Eqgs. (16) and (19), because, in both cases defined by
Eq. (13) with small y, the situation turns out to be degenerate,
with all the eigenvalues remaining equal to zero.

IV. NUMERICAL RESULTS

Proceeding to the numerical analysis, we solved the steady-
state equations, Egs. (4), by means of the Newton-Raphson

method and then explored the stability of the numerical so-
lutions by solving the eigenvalue problem (10). Below, we
present the numerical results as well as their comparison with
the analytical calculations presented above.

First, we have considered families of fundamental discrete
solitons which are initiated, at small €, by the approximation
based on Egs. (20), with @, and by taken as per Eqgs. (14).
As mentioned above, in the continuum limit, corresponding
to € — 0o, stable gap solitons exist under condition (6), in
the spectral gap defined by the first inequality in Eq. (8) [13].
Our results demonstrate that, under the same conditions, there
is a family of fundamental discrete solitons which carries over
into its continuum-limit counterpart, which has been studied
in detail in Ref. [13]. In this case, the characteristics of the dis-
crete solitons are quite similar to those found in the continuum
limit; therefore in what follows we concentrate on solutions
that do not exist in the continuum limit, i.e., the respective
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FIG. 2. The evolution of a discrete soliton, corresponding to the configuration displayed in Fig. 1(a) beyond the critical value of the

coupling constant, viz., at € = 0.5. Depicted in the left and right panels is the evolution of discrete fields |u,
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FIG. 3. The same as Fig. 1, but for the fundamental discrete soliton given in the approximate analytical form by Egs. (20) and (15), and
the set of its stability eigenvalues, for K = —3, y = 0.3, and ¢ = 1.1. In panel (a), the shorter (blue) and taller (red) curves correspond to |u,|
and |v, [, respectively. The dashed line in panel (d) represents the separate eigenvalue, as given by the analytical approximation (26).
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FIG. 4. Discrete out-of-phase fundamental solitons initiated by the analytical approximation based on Eqgs. (20) and (16), with the “—"" sign
in the expressions of é, and b,. Parameters are K = —3, ¥ = 0.1, and ¢ = 1.2. (a) The solution profile for ¢ = 0.35 with the taller (blue) and
shorter (red) curves corresponding to |u,| and |v,|, respectively. (b) The spectrum of the corresponding stability eigenvalues in the complex

plane. (c) Imaginary (stable) eigenvalues as a function of €.

families terminate before reaching the continuum limit. In all
cases, this happens to fundamental discrete solitons belonging
to semi-infinite band gaps, as these band gaps themselves are
pushed out to infinity in the continuum limit.

In Fig. 1, we display numerical results for the fundamental-
soliton family initiated by Egs. (20), with @, and by again
taken as per Eqgs. (14), while fixed (in this figure) K = —3
belongs to the semi-infinite band gap defined by the second
inequality in Eq. (8), rather than the first (finite) one. The ana-
Iytical expression (25) for the separate eigenvalue is displayed
too, showing reasonable proximity to its numerical counter-
part. It is seen that these solutions are linearly stable. In this
case, there is a critical (cutoff) value, €, of the coupling
constant € at which the discrete-soliton family terminates. The
cutoff can be readily explained, noting that in Fig. 1 we choose

q > v, i.e., the second inequality in Eq. (8) holds, for given
K, in the interval

+

—€. <€ <€, (29)
et =1VK +y L9 (30)

ie., —1.05 < € < 0.45, in the present case (K = —3, g =
1.2, y =0.1 ). The cutoff value € = €; > 0 in Fig. 1 cor-
responds to the situation when the lower branch of the con-
tinuous spectrum [see panel (c)] touches the horizontal axis,
signaling the onset of delocalization of the discrete soliton.
In Fig. 2, we plot a typical example of the evolution of a
discrete soliton past the critical point; i.e., we use the discrete
soliton, found at 0 < €, — € K €, as the input for direct
simulations on the other side of the point, at 0 < € — € K

25 6 |
2t 4t
2+
— 15} |
= Z o !
= qL £
I
05 al FIG. 5. The same as Fig. 1, with € =
035, K = -3,y =0.1,and ¢ = 1.2, but
Ol > e Y 0 o5 for in-phase fundamental solitons corre-
Re()\) sponding to the analytical approximation
(b) based on Egs. (20) and (16), with thP: ‘e
sign in the expressions for d, and by. In
e ‘ ‘ ‘ panel (a), the taller (blue) and shorter (red)
51 041 curves correspond to |u,| and |v,|, re-
0:35¢ spectively. Panel (d) shows real (unstable)
4r 03¢ eigenvalues as a function of the intersite
Zal <0.25; coupling €.
E° & 02}
27 0.15}
E =
1t
0.05}
0 0 : : : : : :
0 0.1 0.2 0.3 0.28 029 03 031 032 033 034
€ €
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FIG. 6. (a) The boundary of the instability region for in-phase discrete fundamental solitons (introduced in Fig. 5), at two values of the
intercore coupling constant y. The solitons are unstable below the curves. (b, c¢) The evolution of an unstable in-phase discrete soliton for

€ = 0.35, whose stationary shape is displayed in Fig. 5(a). Depicted in the panels (b) and (c) is the evolution of |u,|* and |v,|?, respectively.
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FIG. 7. The same as Fig. 1, but for the discrete soliton initiated, in the approximate form, by Eqs. (20) and (17), and its stability spectrum
fore =0.1, K = =2, y = 0.3, and ¢ = —0.9. In panel (a), the taller (blue) and shorter (red) curves correspond to |u,| and |v,|, respectively.
The approximation for the separate eigenvalue is given by Eq. (27), shown by the dashed line in panel (d).
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FIG. 8. The same as Fig. 1, but for the discrete soliton initiated, in the approximate form, by Eqs. (20) and (18), and its stability for
€ =0.1, K = -2,y =0.1 and ¢ = —1.2. In panel (a), the shorter (blue) and taller (red) curves correspond to |u,| and |v,|, respectively. The
approximation for the separate eigenvalue is given by Eq. (28), shown by the dashed line in panel (d).

€. The simulations exhibit “breathing” dynamics, with a
gradually decaying breathing amplitude of the second field,
as seen in Fig. 2(b). The decay is caused by an emission of
radiation (linear waves) from the pulsating soliton. Thus, it
indeed suffers the delocalization, gradually decaying via the
radiation loss.

Next, we consider the family of discrete solitons which is
initiated, in the analytical approximation, by Egs. (20), with d,
and b, taken as per Egs. (15), assuming K < —1. This family
also belongs to the semi-infinite gap, defined by the second
inequality in Eq. (8) and by Eq. (29). The solution profile and
its stability are displayed in Fig. 3. The approximation (26)
is also presented, again showing reasonable agreement with
the numerical findings. This branch of the discrete solitons
again ceases to exist at € > €, when fixed K leaves the semi-
infinite gap.

To complete the analysis of the system with the positive
phase-velocity mismatch, g > 0, we consider discrete solitons
originating from the analytical approximation (20) with &, and

by given by Egs. (16), which again requires K < —1 for its
existence. Due to the “+£” sign in Egs. (16), there are two types
of solutions that we refer to as the in-phase and out-of-phase
discrete solitons, which correspond, respectively, to identical
and opposite signs of the two components, while both species
are shaped as fundamental solitons.

The profile and stability of the out-of-phase solitons are
shown in Fig. 4, where one can see that the solitons are
again stable in their entire existence region. For the chosen
parameters, K = —3, y = 0.1, and ¢ = 1.2, we obtain from
Egs. (29) and (30) that the semi-infinite gap is bounded
by e, = 0.4525. This agrees with the numerical results in
Fig. 4, where the soliton family can only be computed up to
the critical coupling, which is located beyond the frame of
Fig. 4(c).

Further, we depict the same for the in-phase solitons in
Fig. 5. Different from their out-of-phase counterparts, these
species of the discrete fundamental solitons become unstable
beyond a critical point, which is found inside of its existence
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interval. The instability is caused by a collision of two eigen-
values on the imaginary axis (where one of them bifurcates
from the continuous spectrum), thus creating a quartet of
complex eigenvalues, i.e., giving rise to oscillatory instability.
This is a known generic scenario of the onset of instability
of discrete solitons (cf. Refs. [21,26]). The stability region, as
well as typical evolution initiated by the instability, is shown
in Fig. 6. It is clearly seen that the amplitude of the unstable
solution increases with oscillations, indicating an eventual
blow-up (recall that we are dealing with a nonconservative
system, where such an outcome is possible).

We have also considered the case of g < 0, i.e., negative
phase-velocity mismatch in Eqgs. (1) and (4). In this case, the
discrete fundamental solitons belong to the semi-infinite gap
defined by the second inequality in Egs. (9) and (7). For fixed
g and y, the existence range of the solitons cannot be extended
towards the continuum limit (¢ — 00), as Eq. (7) imposes the
limitation

€ < 3391 =) @D

In Figs. 7 and 8 we display the discrete solitons which are
initiated by the analytical approximation based on Egs. (20)
with &g and b taken as per Egs. (17) and (18), respectively.
We also plot the analytical approximation for the separate
eigenvalue given by Egs. (27) and (28), where good agreement
is again observed. In panel (c) of both Figs. 7 and 8, the critical
value of the coupling constant €, above which condition (31)
does not hold, corresponds to the situation when the two
branches of the continuous spectrum merge. In this case, we
do not display numerical results for discrete solitons initiated
by the analytical approximation based on Eqs. (20), with d
and by taken as per Egs. (19), because the respective results
for stable solutions are quite similar to those displayed in
Figs. 7 and 8.

V. CONCLUSION

In this work, we have presented a model of the dual-core
optical waveguiding array, which may be used to emulate the
CP-symmetry in the discrete system. Necessary ingredients
of the system are opposite signs of the discrete diffraction in
the two parallel arrays (cores), which may be implemented
by means of the diffraction-management technique, and the
active coupling between the arrays, which accounts for the
gain and loss in the system, the stability of the zero state be-
ing provided by a sufficiently large phase-velocity mismatch
between the parallel arrays. The analytical results, obtained
by means of the extension from the anticontinuum limit, and
the numerical findings show the existence of several families
of discrete fundamental solitons in the system. Unlike the
continuum limit of the present setting, considered in Ref. [13],
which maintains a single family of gap solitons, the discrete
system supports different types of self-trapped modes, with
the propagation constant falling into semi-infinite gaps of the

corresponding linear spectrum. Most soliton families are sta-
ble, except for one, which develops the oscillatory instability
past the internal stability boundary, as shown in Figs. 5 and 6.

The family populating the finite band gap extends to the
continuum limit, carrying over into the abovementioned stable
gap solitons, while other branches terminate by hitting the
edge of the semi-infinite gaps and suffering delocalization
in this case. Species of higher-order discrete solitons, which
may be stable but disappear or suffer destabilization in the
continuum limit, are known in conservative systems, such
as the 1D twisted states and 2D localized vortices in the
discrete NLSEs. Here, continuous soliton families which exist
solely in the discrete setting are reported in the non-Hermitian
system. On the contrary to the abovementioned findings in
conservative models, in the present one these are families of
fundamental solitons, which feature a noteworthy property of
being completely stable (with the exception of one partially
stable branch) in their existence regions.

Another essential difference from the previously studied
systems is the fact that the discrete soliton families reported
in this work are controlled not only by the single parameter,
viz., the effective strength of the intersite coupling (€, in the
present notation), but also by the phase-velocity mismatch,
g, and the intercore coupling constant in the active host
medium, y. This conclusion suggests significant implications
for the experimental creation of such solitons, because y
can be readily adjusted by varying the gain which maintains
the active host medium (e.g., this may be the power of the
second-harmonic pump which realizes the scheme in terms of
the mismatched three-wave system [13]).

A natural extension of the present work may be the search
for higher-order discrete solitons, such as twisted (dipole)
and multipole states, in addition to the fundamental solitons
presented here. A challenging direction for the further work
is investigation of the 2D version of the system, realized as
a square-shaped network of CP-symmetric coupled waveg-
uiding arrays. In particular, it may be interesting to construct
stable 2D solitons with embedded vorticity.
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