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Stable discrete soliton molecules in two-dimensional waveguide arrays
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We consider a bound state of two discrete solitons in a two-dimensional waveguide array. Using numerical
and variational calculations, we investigate the effect of binding on the mobility of the two solitons, which we
found to be marginal. Considering anisotropic waveguides, where coupling in one direction is stronger than in
the other, we show that mobility is enhanced considerably along the weaker-coupling direction. We show also
that a stable bound state of two solitons exists in such a setup where each one of the two solitons is located at a
different waveguide. The stability of the resulting soliton molecule is provided by the Peierls-Nabarro potential
and the mobility of the individual solitons is facilitated by the anisotropy. Considering a combination of two
out-of-phase solitons, we find that they form a metastable state of a single soliton that suddenly splits into two
solitons propagating away from each other.
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I. INTRODUCTION

Discrete solitons were shown to exist in arrays of coupled
waveguides [1,2] exhibiting unique behavior in contrast with
their continuum counterparts. This was revealed through a
number of phenomena [3–11]. Prominent among these is the
dissipative flow due to the presence of the Peierls-Nabarro
(PN) effective potential [7–10]. Due to its crucial effect on
the soliton stability and dynamics, the height and profile of
the PN potential has been extensively investigated by many
authors [8,12]. Interest in discrete solitons was then boosted
by their application in the all-optical operations [13].

The experimental observation of discrete solitons in two-
dimensional (2D) optically induced nonlinear photonic lat-
tices [14] stimulated further interest due to the additional
advantages brought by the dimensionality [15–17]. Three fun-
damental types of 2D stationary solitons were found, namely,
the site-centered, bond-centered, and hybrid solitons [18].
Recently, we have shown that with anisotropic waveguide
arrays the hybrid soliton splits into two types, namely, the
hybrid-X and hybrid-Y solitons [19]. We have also shown
that anisotropy greatly enhances the mobility of discrete
solitons. In general, two-dimensional discrete solitons exhibit
poor or no mobility due to their strong pinning by the PN
potential. Several ideas have been proposed to enhance the
mobility for both one-dimensional [20] and two-dimensional
[21] waveguide arrays, including also modulated nonlinearity
[22], defects [23], PT symmetric couplers [24], etc.

The binding mechanism between solitons in optical fibers
is a subject of interest from both the fundamental and applied
points of view due to the increase of data rates in optical
telecommunication [25]. Similarly, it is interesting to inves-
tigate the possibility of forming a bound state of two solitons
in two-dimensional (2D) waveguide arrays. The present paper
is building on our previous work [19] where we have shown

*u.alkhawaja@uaeu.ac.ae

that discrete solitons become highly mobile in 2D waveguide
arrays with anisotropic coupling strengths. Specifically, our
main objectives include: (i) studying the effect of the binding
between the two solitons on their mobility, (ii) calculating the
force and potential of interaction between the two solitons,
(iii) calculating the PN potential for the two solitons and how
the soliton-soliton interaction modulates it, and (iv) investi-
gating the possibility that a robust stable bound state between
two solitons exists.

The stability and dynamics of discrete solitons are well
described by the discrete nonlinear Schrödinger equation
(DNLSE), which is nonintegrable but can be solved using
variational, perturbative, and numerical methods [26–32]. Us-
ing both numerical and variational calculations, we achieve
all of the above-mentioned objectives, and specifically, we
show that a robust unpinned soliton molecule indeed exists
in anisotropic waveguides. Another interesting phenomenon
is a soliton molecule fission where a bound state of two out-
of-phase solitons suddenly splits into two solitons propagating
away from each other.

The rest of the paper is organized as follows. In Sec. II we
present the DNLSE model that describes the evolution of the
solitons. In Sec. III, we solve the model numerically to obtain
the equilibrium width and ground-state energy of the two
solitons. In Sec. IV, we present a variational calculation and
calculate the energy functional and the PN potential. In this
section, we reproduce the equilibrium properties of the soliton
molecules obtained numerically, calculate the PN potential,
and the soliton-soliton interaction. In Sec. V, we investigate
the soliton molecule and soliton fission in an anisotropic
waveguide array. Finally, we end by summarizing our main
results in Sec. VI.

II. MODEL EQUATION

The propagation of discrete solitons in two-dimensional
waveguide arrays is described, within the tight-binding
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model [13], by the scaled 2D discrete nonlinear Schrödinger
equation

i
∂

∂t
�m,n + (dx�m+1,n + dx�m−1,n + dy�m,n+1 + dy�m,n−1

− 2(dx + dy )�m,n) + γ |�m,n|2�m,n = 0, (1)

where �m,n is the field envelope at site (m, n), γ is the
strength of the nonlinearity, which is considered here to be
positive in order to analyze bright solitons, and the coupling
coefficients between waveguides in the horizontal and ver-
tical directions are represented by dx and dy , respectively,
and t corresponds to the distance along the waveguides. We
have already used this model in [19] to study the stability
and mobility of single 2D discrete solitons in isotropic and
anisotropic waveguides. Here, we consider a soliton molecule
instead of a single soliton in an anisotropic waveguide array
such that the coupling between the waveguides along one
direction is stronger than the other. There are three stationary
2D soliton types, known in the literature for the isotropic
version of Eq. (1), which are named the site-centered (SC),
bond-centered (BC), and hybrid solitons. Some references
might use other names. As we have pointed out recently [19],
for the anisotropic case the hybrid soliton splits into two
different forms, namely, hybrid-X (HX) and hybrid-Y (HY).
In principle, we can consider each soliton in the molecule to
be any of these types. However, for simplicity, we consider
both solitons to be the site-centered type.

The purpose of this work is to investigate the stability and
mobility of such a discrete soliton molecule in 2D waveguide
arrays. Specifically, we will investigate the effect of binding
on mobility. It is established that a single 2D soliton exhibits
very weak mobility in 2D waveguide arrays. The question we
will address here is whether a 2D soliton molecule would be
more mobile than a single soliton or not. The existence and
mobility of the 2D solitons molecules will be investigated
in both isotropic and anisotropic waveguide arrays. To that
end, we consider, generally different horizontal and vertical
coupling strengths. In reality, this can be easily realized
by modulating the waveguide separations. In the following
two sections, we investigate this problem first numerically
and then variationally. The numerical calculation leads to
the equilibrium width and ground-state energy. The varia-
tional calculation reproduces these results and helps to derive
an analytical expression of the soliton-soliton and soliton-
waveguide interaction potentials.

III. EQUILIBRIUM WIDTH AND ENERGY:
NUMERICAL SOLUTION

In this section, we calculate the equilibrium properties
of the soliton molecule and then study its mobility by solving
the model Eq. (1) numerically. This will allow us to find
the possible stable soliton molecule states. We employ the
finite-difference method of Ref. [30] that is slightly modified
to take into account the possibility of having an anisotropic
waveguide array. We assume an (L × L)-dimensional square

FIG. 1. In-phase (upper panel) and out-of-phase (lower panel)
soliton molecule profiles obtained by numerical solution of Eq. (1)
with isotropic waveguide array. The plots on the right-hand side show
the two cross-section profiles. Parameters used: L = 30, P = 2, γ =
4, dx = dy = 0.5.

lattice. The initial condition is given in matrix form [H ] of the
following type, namely,

[H ]M,N = 2 dx + 2 dy − γ |�M,N |2, (2)

[H ]M+1,N = [H ]M−1,N = −dx, (3)

[H ]M,N+1 = [H ]M,N−1 = −dy, (4)

where M = m + (l − 1)n and N = n + (l − 1)m, l =
1, 2, ....L for the square lattices of size L × L. Solving the
linear eigenvalue problem refines the prediction of �m,n as the
eigenfunction corresponding to the most negative eigenvalue.
This procedure is repeated until the desired precision is
obtained.

For the initial profile, one can in principle choose a com-
bination of any soliton type out of the four types of stationary
soliton profiles. Here, for the sake of simplicity, we choose
only SC type trial functions as follows:

�m,n = A
(
e
− (m−n1x )2

η1
2 − (n−n1y )2

η2
2 + e

− (m−n2x )2

η1
2 − (n−n2y )2

η2
2 +iφ)

, (5)

where A is the normalization constant, and n1x,1y and n2x,2y

are the coordinates peak positions of the first and second
solitons, η1,2 are the widths of the first and second soliton in
horizontal and vertical directions, respectively, and φ is the
phase difference between the two solitons.

We solve the model Eq. (1) using a trial function of the
form given by Eq. (5) to find the two ground-state stationary
soliton molecule states as shown in Figs. 1 and 2. In these
figures the upper panel displays the in-phase stationary pro-
files for a combination of two solitons and the lower panel
shows the out-of-phase profiles for an isotropic waveguide
array. Considering anisotropic waveguide arrays by changing
the coupling strength, such as, for instance, dx = 2 and dy =
0.15, leads to elongation of the width of the soliton molecule
in one direction. A comparison of soliton cross sections in
isotropic and anisotropic waveguides is shown in Fig. 3.

IV. VARIATIONAL CALCULATION

The advantage of using a variational calculation is to derive
an analytical expression for Peierls-Nabarro (PN) potential
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FIG. 2. In-phase (upper panel) and out-of-phase (lower panel)
soliton molecule profiles obtained by numerical solution of Eq. (1)
with anisotropic waveguide array. Parameters used are the same as
for the isotropic case in Fig. 1 but with dx = 1.0 and dy = 0.2.

which helps us to calculate the barrier in both horizontal and
vertical directions.

We start from the Lagrangian corresponding to Eq. (1),
which takes the following form:

L =
∞∑

m=−∞

∞∑
n=−∞

[
i

2

(
�m,n

∂

∂t
�∗

m,n − �∗
m,n

∂

∂t
�m,n

)
− E

]
,

(6)

where the dispersion and nonlinear terms define the energy
functional

E = −
∞∑

m=−∞

∞∑
n=−∞

{
�∗

m,n[dx �m−1,n + dx �m+1,n + dy�m,n−1

+ dy�m,n+1 − 2(dx + dy )�m,n] + 1

2
γ |�m,n|4

}
. (7)

There are three kinds of trial functions which have been
used widely in the literature to calculate the energy function,
namely, (i) Gaussian, (ii) exponential, and (iii) secant func-
tion. As mentioned in [33], by using a secant trial function
the summations in the Lagrangian cannot be performed in
compact form and only asymptotic expressions can be ob-
tained. This is not the case with exponential and Gaussian
trial functions, where it is possible to perform the sums
and generate a compact Lagrangian form. Here we use the
Gaussian trial function since it results in simpler expressions
and requires no prior assumptions on the location of the peak

FIG. 3. Comparison between the cross sections of isotropic
and anisotropic in-phase soliton-molecule profiles from Figs. 1 and
2. Dashed red and solid blue lines correspond to isotropic and
anisotropic waveguide arrays, respectively.

FIG. 4. In-phase and out-of-phase isotropic soliton molecules
obtained by both numerical (red dots) and variational method (blue
solid line) for the choice of parameters L = 20, P = 2, γ = 4, dx =
dy = 0.5 with the assumption of φ = 0 and π to achieve in-phase
(left) and out-of-phase (right) solitons.

of the solitons. This enables us to consider the hopping of
the soliton across the sites of the waveguide. The exponential
trial function will be used only in Sec. V B to confirm the
expression obtained for the potential of interaction in a soliton
molecule obtained using the Gaussian trial function.

We start the variational calculation by normalizing the trial
function given by Eq. (5) to the constant power P ,

P =
∞∑

m=−∞

∞∑
n=−∞

|�m,n|2, (8)

which gives A in terms of the elliptical function ϑ3(x, y),

A =
√

P√
π
2

√
η1η2[A1 + (A2 + A3)]

, (9)

where

A1 = ϑ3(−n1xπ,X1)ϑ3(−n1yπ,X2)

exp
(− n1x

2+n2x
2

4η1
2 − (n1y−n2y )2

4η2
2 − iφ

2

) ,

A2 = (1 + e2mφ )ϑ3

(
− 1

2
(n1x + n2x )π,X1

)

×ϑ3

(
−1

2
(n1y + n2y )π,X2

)

× exp

(
−n1x

2 − 4n1xn2x + n2x
2

2η1
2

− (n1y − n2y )2

2η2
2

− iφ

)
,

A3 = ϑ3(−n2xπ,X1)ϑ3(−n2yπ,X2)

exp
(− n1x

2+n2x
2

4η1
2 − (n1y−n2y )2

4η2
2 − iφ

2

) ,

and X1 = e− 1
2 π2η1

2
and X2 = e− 1

2 π2η2
2
. We then calculated the

energy functional using of the above normalized trial function,
which is given in Appendix.

The variational and numerical equilibrium profiles of the
isotropic waveguide array are shown in Fig. 4. The left
and right subfigures display the isotropic soliton molecule
profiles for in-phase, φ = 0, and out-of-phase, φ = π , cases,
respectively. Here, we fixed both solitons on the x axis n1y =
n2y = 0, fixed the first soliton at origin n1x = 0, and left the
position of the second soliton on the x axis, n2x , to vary. The
figures show that the variational and numerical profiles are in
excellent agreement with each other.
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FIG. 5. In-phase PN potential for the isotropic case (upper panel)
and the two cross sections of the PN potential (lower panel). The
parameters used are P = 2, γ = 4, n1x = n1y = 0, η1 = η10 and η2

= η20, dx = dy = 0.5 with φ = 0. Red dashed line corresponds to
n2y = 0 and n2x = 0 for the left and right subfigures, respectively.
Solid blue corresponds to n2y = 1 and n2x = 1, and dotted green
corresponds to n2y = 2 and n2x = 2.

A. Equilibrium width and energy

At this stage, the energy functional is a function of
the two soliton peak positions and widths, i.e., E =
E(n1x, n1y, n2x, n2y, η1, η2). To find the soliton equilibrium
widths, the energy needs to be minimized with respect to η1

and η2:

∂E

∂η1

∣∣∣∣
η1=η10

= 0,
∂E

∂η2

∣∣∣∣
η2=η20

= 0, (10)

where η10 and η20 are the equilibrium widths. We assume
η2 = η1 and then minimize the energy with respect η1. There
are two possible schemes to achieve this: either by considering
the trial function for a single soliton only or by fixing the first
soliton at origin n1x = n1y = 0 while the second soliton is
placed remotely: n2x = 0 and n2y = ∞. The equilibrium pro-
files for both schemes turns out to be the same, as it should be.

By substituting η10 and η20 in the ansatz function, we find
the equilibrium profiles, and while substituting them into the
energy functional we obtain the PN potential as a function of
n2x and n2y . The profiles of PN potential for in-phase and out-
of-phase solitons are displayed in Figs. 5 and 6, respectively.
To generate these plots, we set one soliton at origin (n1x = 0
and n1y = 0) and thus we obtain the PN potential in terms of
the coordinates of the second soliton, VPN = VPN (n2x, n2y ).

FIG. 6. Out-of-phase PN potential for the isotropic case (upper
panel) and its two cross sections (lower panel). Parameters used are
the same as in Fig. 5 but with φ = π . Red dashed line corresponds to
n2y = 0 and n2x = 0 for the left and right subfigures, respectively.
Solid blue corresponds to n2y = 1 and n2x = 1, and dotted green
corresponds to n2y = 2 and n2x = 2.

The numerical diagonalization scheme of the system given
by Eqs. (2)–(4) generates at once the whole spectrum of
eigenenergies and eigenfunctions, including the ground state
and excited states of the soliton molecule. This enables us to
compare numerical ground-state energy with the variational
one, as in Fig. 7. The variational calculation clearly captures
the ground state of the soliton molecule for many soliton

FIG. 7. The PN potential for separation of solitons calculated
variationally for two choices of phases: in-phase (blue solid line)
and out-of-phase (red dashed line). Numerically calculated points are
presented by black dots for the choice of parameters P = 2, γ = 4,
dx = dy = 0.5.
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FIG. 8. The PN potential vs the molecule’s position for different
soliton separations �n = n2x − n1x . The parameters used are P = 2,
γ = 4, n2x = n2y = 0, η1 = η10, η2 = η20, dx = dy = 0.5.

separations. One can clearly notice in this figure the modu-
lation brought by the interaction between solitons to the PN
potential. When the two solitons are widely separated, the PN
potential is periodic, as for single solitons. However, when
the solitons are close, the PN potential acquires an additional
potential well (barrier) for in-phase (out-of-phase) solitons.

B. Characteristics of PN potential

To study the role of binding on mobility, we investigate
the dependence of the PN potential on the location of the
molecule, its orientation with respect to the direction of mo-
tion, and bond length. We plot the PN potential for varying the
molecule’s center of mass with the soliton’s separation, �n =
1, 2, 3, 4, and 5, as shown in Fig. 8. This figure indicates that
the PN potential is lowest for the two solitons with the closest
separation. By increasing the separation between the two
solitons, the barrier of the potential increases. For separations
�n � 3, the PN potential remains the same. Consequently,
separations �n > 2 will not effect the PN potential, since the
interaction between the two solitons becomes negligible. This
figure suggests that, in principle, mobility should be enhanced
for the two solitons with closest separation. However, numeri-
cal investigations show that solitons are immobile for this case
due to the increase in the barrier height.

Now, we investigate the mobility in terms of the molecule’s
direction of movement. We considered two trajectories:
(i) parallel to the molecule’s axis and (ii) at 45◦ with respect to
the molecule’s axis. Figure 9 show that when the two solitons
are moved in the diagonal direction, the PN barrier becomes
higher and it is harder now to move the solitons.

C. Soliton-soliton interaction

The PN potential is the sum of the soliton-soliton interac-
tion potential and the interaction between the solitons and the
waveguide array

VPN = VSS + V ∞
PN, (11)

where VSS is the soliton-soliton interaction and V ∞
PN is the

limit of VPN when the two solitons are widely separated such
that their VSS vanishes. We may thus calculate VSS using, for

instance,

VSS (n2x ) = VPN |n1y=0
n2y=0
n1x=0

− VPN |n1y=0
n2y=0
n1x → ∞

. (12)

Figure 10 shows VSS in terms of separation between solitons,
namely, n2x , since we have fixed one soliton at origin. While
out-of-phase solitons repel, due to the potential barrier, the
in-phase solitons attract and experience a molecular-type in-
teraction potential.

In principle, the soliton-soliton interaction allows for the
formation of a soliton molecule. However, the magnitude
of the potential depth (bond strength) is in this case much
smaller than the PN potential barrier. Therefore, binding will
have no effect on the mobility or pinning of solitons. The
concept of a soliton molecule in this case is excluded. On
the other hand, we will show in the next section that when
the two solitons are located at different waveguides with high
anisotropy, the soliton-soliton interaction will be dominant
and a stable soliton molecule forms.

V. ANISOTROPIC WAVEGUIDE ARRAYS

We have shown in a recent work that 2D solitons become
mobile in anisotropic waveguides [19]. We have also shown in
the present paper that binding between solitons in an isotropic
waveguide has no effect on their mobility. Therefore, we con-
sider soliton molecules in anisotropic waveguides, expecting
the binding to enhance their mobility.

A. Equilibrium profiles and mobility

The PN potentials for an in-phase and out-of-phase com-
bination of two solitons with anisotropic waveguide array is
shown in Figs. 11 and 12, respectively. The figures show that
mobility should be high in the horizontal direction compared
to that in the vertical direction. By comparing the cross sec-
tions of Fig. 11 with Fig. 5, we can see that the PN potential is
not periodic as it was in the isotropic case. The variational and
numerical equilibrium profiles of the anisotropic waveguide
are shown in Fig. 13. Agreement between the variational and
numerical profiles is clear in this figure.

B. Formation of soliton molecule

We have already found that 2D soliton molecules are
completely immobile in isotropic waveguide arrays [19].
Hence, the anisotropy was invoked and therefore we consider
anisotropic waveguide array with coupling in the horizontal
(x) direction to be much weaker than in the vertical (y) direc-
tion. With high anisotropy, the PN potential in the horizontal
direction, VPNx , is shown to be almost a monotonic potential
well with a global minimum at zero separation between the
two solitons, while the PN potential in the vertical direction,
VPNy , is oscillatory, as shown in Fig. 11. The cross sections
of the PN potential shown in Fig. 11 indicate that if the two
solitons are located at the same waveguide, they will coalesce.

Locating the solitons at different waveguides prevents them
from coalescing due to the potential barrier existing between
them. Nonetheless, the two solitons can still interact through
the overlap of their tails across the waveguides. Therefore,
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FIG. 9. The PN potential for two orientations [θ = 0 (red dotted), θ = 45 (blue dashed)] for in-phase φ = 0 and [θ = 0 (green dot dashed),
θ = 45 (brown tiny-dashed)] for out-of-phase φ = π , respectively, with three different fixed separations �n = n2x − n1x = 1 (left), �n = 2
(middle), and �n = 3 (right). Parameters used are P = 2, γ = 4, and dx = dy = 0.5.

while the two solitons will be completely mobile in the
horizontal direction, they are restricted to move only along
their respective waveguides. This results in a special kind
of a soliton molecule where the stability is provided by
the PN potential and energy exchange is provided by the
soliton-soliton interaction. Comparing Figs. 11 and 12 shows
that molecule formation is possible only for the in-phase
solitons. Out-of-phase solitons are always expelled out of the
waveguide because their force of interaction is expulsive.

Inspired by the above prediction of the variational cal-
culation, we performed a numerical simulation of the two
in-phase solitons separated initially by two waveguides in the
y direction and by an arbitrary nonzero initial separation in
the x direction. The dynamics of the solitons is then obtained
by solving numerically the DNLSE, Eq. (1). The resulting
dynamics is shown in Fig. 14. The two solitons oscillate
around their center of mass, indicating the formation of a
soliton bound state. The trajectories of the two solitons are
shown in Fig. 15.

The potential of interaction between the two solitons can
be obtained from their trajectories. By calculating the soli-
ton separation �n(t ) = n2x (t ) − n1x (t ) and differentiating it
twice to obtain the force F = μd2/dt2�n(t ), where μ is the
reduced effective mass of the two solitons, we then calculate
the potential by integrating the force with respect to �n(t ):

V = −
∫ �nxmax

�nxmin

F (�n) d(�n), (13)

where �nmin and �nmax are the minimum and maximum
soliton separation.

FIG. 10. The soliton-soliton interaction given by Eq. (12) for the
choice of parameters P = 2, γ = 17, dx = dy = 0.1.

In Fig. 16, we show the potential calculated numerically
from Eq. (1). The potential is parabolic and the force of
interaction is linear. This indicates that the soliton molecule
can be modeled by a classical system of two masses attached
to a spring.

It will be constructive to compare the numerical potential
with the variational one. This is performed using both a
Gaussian ansatz, as given by Eq. (5), and an exponential
ansatz given by

�m,n = A
(
e
− |m−n1x |

η1
− |n−n1y |

η2 + e
− |m−n2x |

η1
− |n−n2y |

η2
+iφ)

. (14)

Both trial functions lead to excellent agreement between the
variational and numerical results, as Fig. 16 clearly shows.

FIG. 11. In-phase PN potential for the anisotropic case (upper
panel) and its two cross-section profiles (lower panel). The parame-
ters used are P = 2, γ = 4, n1x = n1y = 0, η1 = η10 = 3.86, and
η2 = η20 = 0.760, dx = 3, dy = 0.15 with φ = 0. Red dashed line
corresponds to n2y = 0 and n2x = 0 for the left and right subfigures,
respectively. Solid blue corresponds to n2y = 1 and n2x = 1, and
dotted green corresponds to n2y = 2 and n2x = 2.
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FIG. 12. Out-of-phase PN potential for the anisotropic case (up-
per panel) and its two cross-section profiles (lower panel). Parame-
ters used are the same as in Fig. 11 but with φ = π . Red dashed line
corresponds to n2y = 0 and n2x = 0 for the left and right subfigures,
respectively. Solid blue line corresponds to n2y = 1 and n2x = 1, and
dotted green line corresponds to n2y = 2 and n2x = 2.

It should be noted that an arbitrary constant of integration
resulting from the integration in Eq. (13) gave us the freedom
to shift the numerical potential vertically in order to match
the variational one. The curvature, on the other hand, fits
naturally.

The above-mentioned analogy with the classical two-
masses-spring system suggests the potential of interaction be-
tween the solitons to be parabolic in terms of their separation.
Indeed, an accurate simplified analytical expression for the
potential of interaction between the two solitons in terms of
their separation, �n, can be derived by expanding the energy
functional to the quadratic order, as given by

VPN = V0 + 1
2 k �n2, (15)

FIG. 13. In-phase and out-of-phase anisotropic soliton
molecules obtained by both numerical (red dots) and variational
method (blue solid line) for the choice of parameters L = 20, P = 2,

γ = 4, dx = 2, and dy = 0.2 with φ = 0 (left) and π (right).

FIG. 14. Soliton molecule in anisotropic PN potential (in-phase)
given in Fig. 11 along horizontal direction by means of numerical
simulation of Eq. (1) and using the parameters L = 30, P = 2, γ =
3, dx = 3, and dy = 0.15. The two solitons are located initially at
n1x = L/2 − 2, n2x = L/2 + 2, n1y = L/2, n2y = L/2 + 2.

where V0 and k are given in terms of the parameters
dx, dy, γ , and the soliton widths η1 and η2, as detailed in
Appendix A 3.

In a classical system of two masses attached to a spring, the
period of oscillation is given by τ = 2π

√
μ/k. The period

of the soliton molecule can thus be estimated for a specific
setup. For instance, for the parameters used to generate the
soliton molecule shown in Fig. 14, the spring constant k can
be calculated as given by Eq. (A12). The effective mass of a

FIG. 15. Trajectories of the two solitons corresponding to the
soliton molecule of Fig. 14.
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FIG. 16. The potential of interaction between two solitons in a
soliton molecule obtained by: (i) the numerical solution of Eq. (1)
and the trajectories of the two solitons in Fig. 15 (blue solid line), (ii)
variational calculation using a Gaussian ansatz, Eq. (5), (red dashed
line), and (iii) variational calculation using an exponential trial func-
tion, Eq. (14) (green dotted line). The dashed-dotted line corresponds
to the simplified analytical expression Eq. (15). Parameters used are
those of Fig. 14.

single soliton is given by the inverse of the second derivative
of the energy with respect to the momentum, which in our
case will be 2 P dx . The reduced mass of the two solitons is
thus μ = 1/2dx . For the parameters of Fig. 14, the estimate

FIG. 17. Splitting of the soliton molecule. Parameters used: P =
2, γ = 4, dx = 3, dy = 0.15, η1 = 3.86, and η2 = 0.76, φ = π , and
initial positions n2x = n1x = L/2, n1y = L/2, n2y = L/2 + 1.
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FIG. 18. Trajectories of the two solitons forming the soliton
molecule of Fig. 17.

leads to τ ≈ 39, which is less the 10% off the numerical value
of τ = 43.5. This indicates that the force between the two
solitons is indeed a Hooke-type of restoring force,

F = −k �n. (16)

It should be noted, however, that this applies for short soliton
separations. For larger separations, the potential becomes
constant and the force decays exponentially. This corresponds
to the constant plateaus in the x cross section of the VPN

potential for large soliton separation, as shown in Figs. 16
and 19.

C. Soliton fission

Here, we consider a soliton molecule of two out-of-phase
solitons placed at different waveguides. Basically, this is
similar to the soliton molecule considered in the previous
section but with out-of-phase solitons that are initially not
separated from each other. Interestingly, we found this to be a
metastable state with a long lifetime, after which it suddenly
splits into two solitons propagating away from each other.
We named this behavior soliton fission. Figure 17 shows the
splitting of the soliton molecule. We can see that the solitons
continue to coalesce up to t = 80, which is almost double
the period of the soliton molecule of the previous case. The
two solitons keep their coalescence as one soliton and exhibit
only a small vibration in the amplitude. The soliton molecule
then suddenly splits into two solitons propagating away from
each other. Figure 18 shows the trajectories of the two solitons
before and after splitting.

VI. CONCLUSIONS

We have used both numerical and variational calculations
to obtain the equilibrium profiles and ground state of discrete
two-soliton molecules in 2D waveguide arrays. Using a Gaus-
sian variational trial function, Eq. (5), with six variational
parameters corresponding to the coordinate peak positions
and widths of the two solitons, we calculated the PN potential
and the interaction potential between the solitons. We have
investigated the mobility of the soliton molecule and found
that binding does not enhance the mobility. Neither the bond
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FIG. 19. The PN potential, given by Eq. (A1), is shown by the
blue solid line, and the simplified form for the horizontal direction,
given by Eq. (A8), is plotted by the red dashed line for the choice of
parameters P = 2, γ = 4, dx = 3, dy = 0.15, η10 = 3.86, and η20 =
0.76 and n2y = 1.

length nor the direction of the molecule’s motion had a tangi-
ble effect on the mobility. We have shown the existence of sta-
ble discrete soliton molecules in two-dimensional waveguide
arrays. Analogy was made to the classical diatomic model
with linear restoring force. A simplified expression for the
force and potential of interaction were derived, Eqs. (15) and
(16). We have also found a unique behavior of a metastable
state of a soliton molecule made of two out-of-phase solitons
each place in a different waveguide. Such a molecule shows
a sudden splitting into two solitons propagating away from
each other. We believe our results will be valuable for all-
optical applications using solitons to perform optical data
processing.

FIG. 20. The full and approximate PN potential given by
Eqs. (A1) and (A9) are plotted using blue solid and red dashed
lines, respectively, for the same parameters used in Fig. 19 but with
n2x = 1.
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APPENDIX: ENERGY FUNCTIONAL

1. Variational energy functional

The energy functional calculated using the trial function
Eq. (5) in Eq. (7) is given by

E = 1
8A4πγη1η2E1 − A2

[−(dx + dy )πη1η2E2

+ 1
2dxπη1η2E3 + 1

2dyπη1η2E4
]
, (A1)

where

E1 = −(4e2iφ + e4iφ + 1)ϑ3

(
−1

2
(n1x + n2x )π, e− 1

4 π2η1
2

)
ϑ3

(
−1

2
(n1y + n2y )π, e− 1

4 π2η2
2

)

× exp

(
−n1x

2

η1
2

+ 2n1xn2x

η1
2

− 2iη2
2φ + n1y

2 − 2n1yn2y + n2y
2

η2
2

− n2x
2

η1
2
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− 2(1 + e2iφ )

×
(

ϑ3

(
−1

4
(3n1x + n2x )π, e− 1

4 π2η1
2

)
ϑ3

(
−1

4
(3n1y + n2y )π, e− 1

4 π2η2
2

)
+ ϑ3

(
−1

4
(n1x + 3n2x )π, e− 1

4 π2η1
2

)

×ϑ3

(
−1

4
(n1y + 3n2y )π, e− 1

4 π2η2
2

))
exp

(
− 1

4η1
2η2

2
η2

2
(
4iη1

2φ + 3n1x
2 − 6n1xn2x + 3n2x

2
) + 3η1

2n1y
2

− 6η1
2n1yn2y + 3η1

2n2y
2

)
−ϑ3

(−n1xπ, e− 1
4 π2η1

2)
ϑ3

(−n1yπ, e− 1
4 π2η2

2)−ϑ3
(−n2xπ, e− 1

4 π2η1
2)

ϑ3
(−n2yπ, e− 1

4 π2η2
2)

,

(A2)

E2 = (1 + e2iφ )ϑ3

(
−1

2
(n1x + n2x )π, e− 1

2 π2η1
2

)
ϑ3

(
−1

2
(n1y + n2y )π, e− 1

2 π2η2
2

)
exp

(
n1xn2x

η1
2

+ 1

2

(
−n1x

2

η1
2

− (n1y − n2y )2
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2

− n2x
2
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2

− 2iφ
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+ ϑ3

(−n1xπ, e− 1
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ϑ3
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2) + ϑ3
(−n2xπ, e− 1

2 π2η1
2)

ϑ3
(−n2yπ, e− 1

2 π2η2
2)

, (A3)
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E3 = e
− 1

2η1
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E4 = e
− 1
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(
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ϑ3

(
−1

2
(2n1y + 1)π, e− 1

2 π2η2
2

)
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. (A5)

2. Simplified PN potential

The above full form of potential, Eq. (A1), can be simplified by expanding in powers of the small quantities e−π2η2
1/4 and

e−π2η2
2/4 as follows:

VPNx = − 1
4πη1η2e

2n2y

η2
2
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4dx

(−2e
− n2x

2

2η1
2 − n2y (n2y+4)

2η2
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2η1
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2 − 2e
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2
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+ dy
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4e
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2 + 4e

− 3n2x
2

4η1
2 − n2y (3n2y+8)
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2
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η2
2 + 3e

− 1
4 π2η2

2− 2n2y

η2
2 cos(2πn2y )

]
(A6)

and

VPNy = −1

4
πη1η2e
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[
4dx
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e
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− n2y (3n2y+8)

4η2
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− 1
4 π2η2
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η2
2
) + 12e

1
4 (−π2η2

2− n2y (3n2y+8)

η2
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cos
(πn2y

2

)

+ 18e
− 1

4 π2η2
2− n2y (n2y+2)
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2 cos(πn2y ) + 12e

1
4 (−π2η22− n2y (3n2y+8)

η2
2 )

cos

(
3πn2y

2

)
+ 3e

− 1
4 π2η2

2− 2n2y

η2
2 cos(2πn2y )

]
, (A7)

where VPNx and VPNy are the VPN in the horizontal and vertical directions, respectively.
To further simplify this expression, we consider a highly anisotropic waveguide such as dx = 3, dy = 0.15. The equilibrium

widths η10,20 are then calculated by minimizing the potential with respect to the widths η1,2, which gives η10 = 3.86, η20 = 0.76.
This further simplifies the potential as follows:

VPNx = c1 − c2(e2c3n2x + 1)e−n2x (c3+c4n2x ) − c5e
c3n2x

2 + c8e
−c4n2x

2 − c6e
c7n2x

2
, (A8)

where

c1 = −6.810 08, c2 = 11.249 948, c3 = −0.067 11, c4 = 0.033 55, c5 = 1.905 72, c6 = 7.546 59,

c7 = −0.050 33, c8 = 23.048 72

063839-10



STABLE DISCRETE SOLITON MOLECULES IN TWO- … PHYSICAL REVIEW A 98, 063839 (2018)

and

VPNy = −c1 + en2y (c2−c3n2y )(c4 − c5 cos(πn2y )) + en2y (c2−c6n2y )

(
c7 − c8 cos

(
πn2y

2

)
− c8 cos

(
3πn2y

2

))
− c9 cos(2πn2y ),

c1 = −5.147 94, c2 = 8.881 78x10−16, c3 = 1.7313, c4 = −20.736 39, c5 = 9.972 85, c6 = 1.298 47,

c7 = −27.648 52, c8 = 6.648 56, c9 = 1.662 14. (A9)

In Figs. 19 and 20 we plot the approximate and full potential to see that they still agree very well.

3. VP N for soliton molecule

The variational energy functional Eq. (A1) can be simplified for the special case of a soliton molecule where one soliton
is restricted to move along the waveguide n1y = −1 and the other soliton moves along the waveguide n2y = 1, and thus the
separation between the two solitons is essentially determined by �n = n2x − n1x . The energy functional is therefore given in
terms of the soliton separation as

VPN = 1
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For highly anisotropic waveguides the soliton width in the x direction is at least more than several waveguides and the soliton
width in the y direction is less than or of the order of a one waveguide. Consequently, the quantity e−π2η2

1/4 is very small and
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hence

ϑ3
(
nπ, e−π2η2

1/4
) ≈ 1, (A10)

with arbitrary real n. On the other hand, the ϑ3(nπ, e−π2η2
2/4) function can be expanded in powers of e−π2η2

2/4 as

ϑ3
(
nπ, e−π2η2

2/4
) ≈

{
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2/4, integer n

1 − 2e−π2η2
2/4, half-integer n.

(A11)

Expanding in powers of �n and employing the above-mentioned approximations (A10) and (A11), the potential can be put in a
parabolic form (15), where the spring constant k is given by

k = 1
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and the constant energy background is given by

V0 = 1
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