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Rephasing efficiency of sequences of phased pulses in spin-echo and light-storage experiments
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We investigate the rephasing efficiency of sequences of phased pulses for spin echoes and light storage
by electromagnetically induced transparency (EIT). We derive a simple theoretical model and show that the
rephasing efficiency is very sensitive to the phases of the imperfect rephasing pulses. The obtained efficiency
differs substantially for spin echoes and EIT light storage, which is due to the spatially retarded coherence
phases after EIT light storage. Similar behavior is also expected for other light-storage protocols with spatial
retardation or for rephasing of collective quantum states with an unknown or undefined phase, e.g., as relevant
in single-photon storage. We confirm the predictions of our theoretical model by experiments in a Pr3+:Y2SiO5

crystal.
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I. INTRODUCTION

Sensing, processing, and communication of quantum in-
formation in realistic media usually suffer from dephasing
processes due to unwanted interactions with the environment.
Therefore, rephasing techniques are inherent part of many
experimental protocols, e.g., for light storage [1–9], quantum
sensing [10], and quantum information [11,12].

Pulse imperfections are often a major limitation to high-
fidelity rephasing [13], leading to the development and im-
plementation of robust rephasing schemes [13–20]. Further-
more, the rephasing efficiency often depends on the initial
quantum state of the system, e.g., with the widely used Carr-
Purcell-Meiboom-Gill (CPMG) sequence [21]. Pulse error
compensation, e.g., with composite pulses, can sometimes
work better for some initial states, but not for others [22].
Thus, the performance of rephasing sequences might differ
in experiments where the initial state is usually known, e.g.,
spin echo, and when this is not the case, e.g., for quantum
memories. Proper characterization of rephasing efficiency in
the two cases is thus important.

The performance of rephasing sequences is usually an-
alyzed theoretically by their single qubit fidelity [13]. The
characterization is typically performed for rectangular pulses,
for specific errors (e.g., amplitude variation), and with the
assumption that the qubits’ phases are well defined with
respect to the rephasing pulses, e.g., in spin-echo experiments
[13]. Related theoretical investigations on the rephasing effi-
ciency of collective atomic states with a single excitation were
proposed recently [23]. To the best our knowledge, however,
there are no investigations on the rephasing efficiency in the
case of EIT light storage, where the initial phase can vary
along the atomic ensemble or is unknown or undefined. This
is especially important, e.g., for EIT quantum memories in
atomic ensembles, where rephasing is applied to prolong
storage time [1,4]. There is also no explicit comparison with
the rephasing efficiency in spin-echo experiments.

In our work, we theoretically analyze the rephasing effi-
ciency for spin echoes or EIT light storage. We confirm the

theoretical findings by experiments in a doped solid. First,
we develop a simplified theoretical model for the rephasing
efficiency of a sequence of imperfect rephasing pulses for
(a) spin echoes or (b) EIT light storage. We then use it to
derive explicit formulas for the rephasing efficiency of several
example sequences. The model specifies the performance in
terms of the population transfer efficiency and is, in principle,
applicable to pulses of arbitrary shape. It shows a substantial
difference between the two cases, which can be explained by
variation of the initial phases of atomic coherences after EIT
light storage, e.g., due to spatial retardation. Such variation is
also expected in other light-storage protocols, as well as in the
absence of retardation effects when the phases of qubits vary
or are undefined, e.g., as in single-photon storage. Second, we
performed an experimental investigation of rephasing efficien-
cies for spin echoes and EIT light storage in a Pr3+:Y2SiO5

crystal (termed Pr:YSO hereafter). We used several variants
of phased detection sequences to demonstrate the differences
between the two cases. The experiments confirm the theoreti-
cal predictions; i.e., the rephasing efficiency is very sensitive
to the phases of the imperfect rephasing pulses and differs
significantly for spin echoes and EIT light storage.

Finally, we discuss an example of rephasing by CPMG,
applied in EIT light storage. We show explicitly that CPMG
with pulse errors cannot efficiently preserve an arbitrary initial
quantum state and hence is not appropriate to rephase quan-
tum memories.

II. THEORY

A. The system

We consider an ensemble of noninteracting three-state
systems, e.g., in a �-type atomic medium (see Fig. 1). The
quantum states |1〉 and |2〉 are assumed to be long-lived and
thus suitable for optical data storage. The individual atoms
in the ensemble exhibit slightly different transition frequen-
cies ω12 = ω12 + �, e.g., due to inhomogeneous broadening,
where ω12 is the center frequency of the ensemble and � is

2469-9926/2018/98(6)/063836(13) 063836-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.063836&domain=pdf&date_stamp=2018-12-26
https://doi.org/10.1103/PhysRevA.98.063836


GENKO T. GENOV, DANIEL SCHRAFT, AND THOMAS HALFMANN PHYSICAL REVIEW A 98, 063836 (2018)

FIG. 1. Level schemes and schematic description of the rephasing experiments for (a) spin echoes and (b) EIT light storage. The system
is initially prepared in state |1〉. Then we apply a “write” process, which creates atomic coherences by (a) a π/2 pulse on the |1〉 ↔ |2〉 spin
transition and (b) light storage of a weak probe field by electromagnetically induced transparency (EIT). During the storage time Tst the atomic
coherences dephase due to inhomogeneous broadening of the spin transition. We perform rephasing by ideally resonant π pulses to preserve
the coherence for much longer than the dephasing time Tdeph. We then measure (read) the experimental efficiency of the rephasing process
by (a) a Raman heterodyne (RH) signal driven with a weak detection field or (b) a signal pulse driven by the control “read” pulse in EIT
configuration.

the frequency detuning of an individual atom. All atoms are
initially prepared in state |1〉 by an appropriate preparation,
e.g., optical pumping. Then, a “write” process is applied, and
the atom states can be characterized by the density matrix
ρ(z, t = 0), where z is the position of the atom and t = 0 is
the time immediately after the write process. The parameters
ρ11(z, t ) and ρ22(z, t ) show the populations in states |1〉 and
|2〉, respectively, while ρ12(z, t ) ≡ |ρ12(z, t )| exp [iξ (z, t )] is
the slowly varying coherence of an atom in a frame rotating
at an angular frequency ω12, which has a phase ξ (z, t ). For
example, if the system is initially in state |1〉 and we apply
a write process by a resonant π/2 pulse with a phase φ0, see
Fig. 1(a), the coherence phase afterward is ξ (z, t = 0) = φ0 +
π/2. In a typical storage experiment, we are interested in the
expectation value of the dipole moment, i.e., μ21〈ρ12(z, t )〉 +
c.c. with

〈ρ12(z, t )〉 =
∫ +∞

−∞
ρ12(z, t )g(�)d�, (1)

where μ21 = 〈2|μ|1〉 is the dipole moment on the |1〉 ↔ |2〉
spin transition and g(�) describes the spectral distribution of
the detunings in the inhomogeneous manifold of frequency
ensembles, with

∫ +∞
−∞ g(�)d� = 1. We assume that g(�) has

no spatial dependence and does not change with time. Then,
if the system evolves freely after the write process, we obtain

〈ρ12(z, t )〉 = ρ12(z, 0)〈ei�t 〉, (2)

with 〈ei�t 〉 = ∫ +∞
−∞ ei�t g(�)d�. It is obvious that the lat-

ter expression approaches 0 for times much greater than a

characteristic dephasing time Tdeph (depending on the spectral
distribution g(�)) unless rephasing pulses are applied.

B. Rephasing efficiency model

In order to counter the effect of dephasing, we apply
rephasing pulse(s) that enable preservation of 〈ρ12(z, t )〉 for
a storage time Tst � Tdeph (see Fig. 1, right). Ideally, we
use resonant pulse(s) on the |1〉 ↔ |2〉 spin transition for
rephasing. In the following, the notation A(φ) denotes a pulse
with a target pulse area of A and a relative phase φ. If (each
of) the pulse(s) is resonant and has a pulse area of π , the
effect of dephasing is reversed for every atom. However,
perfect resonant π pulses are not possible in systems with
large inhomogeneous broadening due to the different detuning
� for the individual atoms. The efficiency can be further
reduced by spatial inhomogeneity of the applied field. Hence,
the driving pulse is no more a π pulse for all atoms. In
order to investigate the rephasing efficiency for sequences
of time-separated phased pulses, we derive now a simplified
theoretical model.

The density matrix after a rephasing process is

ρ(z, Tst ) = Ureph(z, Tst )ρ(z, 0)U†
reph(z, Tst ), (3)

where Ureph is a propagator that depends on the applied
rephasing sequence and can vary for each atom due to vari-
ation in the individual detuning � and/or the inhomogeneity
of the field (see the Appendix, Sec. A 1).
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If we apply a single rephasing pulse with a relative phase
φ1, i.e., a Hahn echo [24,25], the coherence at the end of the
process is given by Eq. (3) and takes the form

ρHahn
12 (z, Tst ) = a0 + a1 exp (iδ) + a2 exp (2iδ), (4a)

a0 = −(1 − ε)e2i(β+φ1 )ρ∗
12(z, 0), (4b)

a1 =
√

ε(1 − ε)ei(β+φ1 )[ρ22(z, 0) − ρ11(z, 0)], (4c)

a2 = ερ12(z, 0), (4d)

where δ ≡ α + �τ/2 is an accumulated phase for the partic-
ular atom during the pulse and the free evolution times τ/2
before and after the pulse. The parameter ε ≡ 1 − p is the
error in the transition probability of the pulse for a particular
atom with p the probability that the atom is in state |2〉 after
applying the pulse if it was initially in state |1〉. Finally, α,
β are phases that depend on the pulse characteristics (see the
Appendix, Sec. A 1). We are interested in〈
ρHahn

12 (z, Tst )
〉 ≈ 〈a0〉 + 〈a1〉〈exp (iδ)〉 + 〈a2〉〈exp (2iδ)〉 (5a)

≈ 〈a0〉 = −eiφ1〈(1 − ε)e2iβ〉ρ∗
12(z, 0), (5b)

where we used the approximation 〈a1 exp (iδ)〉 ≈
〈a1〉〈exp (iδ)〉; i.e., exp (iδ) varies much faster than a1

and a2 when we perform the integration, defined in Eq. (1).
This is feasible, e.g., if the time τ > Tdeph, which we
use in the last step to make 〈exp (iδ)〉 → 0. We note
that the latter assumption might not hold when the time
between the rephasing pulses is short, but even then the
contribution of the higher order terms will be small when
ε → 0. We also assumed for simplicity that the coherence
〈ρ12(z, 0)〉 ≈ ρ12(z, 0). We note the latter might not always
be fulfilled, e.g., as the write pulse for spin echo is typically
also imperfect. Nevertheless, we neglect this effect as it is
usually small for the ratio 〈ρ12(z, t )/ρ12(z, 0)〉, which we
use in our analysis. Furthermore, we are interested in the
efficiency of the rephasing pulses only. Finally, we assumed
that the phase φ1 is the same for all atoms, which is usually
feasible.

We derive expressions for the coherences after rephasing
for sequences of n time-separated rephasing pulses in a similar
way,

〈ρ12(z, Tst )〉 = 〈a0〉 +
2n∑

m=1

〈am exp (imδ)〉 ≈ 〈a0〉, (6)

neglecting all higher order terms of the expansion
〈am exp (imδ)〉 → 0 due to the fast variation in mδ for
the different atoms at position z in the medium in comparison
to am. This is our main assumption that allows significant
simplification. It is usually feasible for time separation
τ > Tdeph or ε → 0.

In the next subsections, we use our theoretical approach
to investigate the rephasing efficiency in two different cases:
(a) for atomic coherences with phases well defined with
respect to the subsequent imperfect rephasing π pulses, e.g.,
as in spin-echo experiments [see Figs. 1(a)], and 1(b) light
storage, e.g., by electromagnetically induced transparency
(EIT), where the relative phase of the created coherence is
usually varying or unknown with respect to the phases of the
rephasing pulses [see Fig. 1(b)].

C. Rephasing efficiency for spin-echo experiments

We assume now that the coherence phase ξ (z, 0) after
a write process is the same for all atoms in the storage
medium and it is well defined with respect to the phases of
subsequent rephasing pulses. For example, if the system is
initially in state |1〉 and we apply a π/2(φ0) pulse on the
|1〉 ↔ |2〉 transition, with a pulse duration much shorter then
the dephasing time and pulse wavelength much longer than
the medium length, we have ξ (z, 0) ≈ φ0 + π/2 all across the
medium. We determine the rephasing efficiency by the ratio

η̃r =
∣∣∣∣ 〈ρ12(z, Tst )〉

ρ12(z, 0)

∣∣∣∣. (7)

This definition is an appropriate choice also for our experi-
mental implementation, which uses Raman-heterodyne (RH)
detection. The magnitude of the detected RH amplitude is
proportional to the magnitude of the coherence at the end of
the storage time [26].

The efficiency of rephasing with a single pulse (usually
termed Hahn echo) is obtained from (5) and takes the form

η̃Hahn
r = |〈(1 − ε)e2iβ〉|, (8)

where the brackets imply averaging of the respective pa-
rameter for the different atoms in the ensemble, e.g., 〈ε〉 =∫

εg(�)d� is the averaged error in the transition probability
because of variation in the detuning �, e.g., due to inhomo-
geneous broadening. We note that averaging over variations
of the Rabi frequency or other experimental parameters can
also be taken into account in a similar way. Then, a rephasing
pulse that performs perfect population transfer ε = 0 for all
atoms would yield η̃Hahn

r = 1, assuming small variation in
β. This is the case for rectangular rephasing pulses, i.e.,
β = −π/2 (see the Appendix, Sec. A 1), which we assume
further on for simplicity. We note for completeness that the
assumption of small variation of β is not always feasible, e.g.,
when we apply a chirped rephasing pulse. Then, β can vary
significantly because of the dynamic phase due to the chirped
pulse (see the Appendix, Sec. A 1). Thus, the efficiency of
Hahn echo suffers, which has also been confirmed in previous
experiments [27–29].

We apply the same approach to calculate the rephasing
efficiency for the widely used CPMG sequence [21]. It usually
consists of two time-separated resonant pulses, each ideally
with a pulse area of π , which we denote [π (φ1) − π (φ2)].
We note that rephasing with CPMG can also be applied with
adiabatic chirped pulses, where each performs population
inversion [16]. Then, the pulse area is usually much greater
than π to satisfy the adiabatic condition [16,28,30]. We also
note that throughout this work we refer to spin echo as an ex-
periment where there is a well-defined phase relation between
the first coherence creation π/2 pulse and the subsequent
sequence of rephasing π pulses. The spin-echo signal can
be obtained with different rephasing π -pulse sequences, e.g.,
CPMG with two π pulses (shown in Fig. 2) and does not refer
solely to the Hahn sequence where we use a single rephasing
π pulse. We choose φ1 = 0 without loss of generality and
obtain

η̃CPMG
r = |〈(1 − ε)[1 + ε − 2ε(1 + e−i(2φ0+φ2 ) )]〉|. (9)

063836-3



GENKO T. GENOV, DANIEL SCHRAFT, AND THOMAS HALFMANN PHYSICAL REVIEW A 98, 063836 (2018)

FIG. 2. (Left) Bloch sphere representation of coherent evolution of the quantum state of an atom during a CPMG rephasing sequence of
two time-separated pulses after a write step with a perfect π/2(φ0) pulse. The green (red) vector shows the Bloch (normalized torque) vector
during the rephasing pulses. Rectangular pulses with a detuning � = 0.2�, � = 0.8�, Tpulse = π/�, and τ ≈ 1.9Tpulse were assumed with
(left, top) φ0 = 0, 180◦ and (left, bottom) φ0 = ±90◦. The error is smaller (and the efficiency higher) for φ0 = ±90◦ when the error due to the
first pulse is partially compensated by the second pulse. (Right) Experimentally measured rephasing efficiency vs the phase φ0 of the π/2 write
pulse (black dots) and simulation (black line) for spin echoes in an atomic ensemble. The simulated rephasing efficiency is based on Eq. (9),
ε = 0.1, normalized to the minimal and maximal values of the experimental data.

Again, a rephasing pulse that performs perfect population
transfer (ε = 0) yields η̃CPMG

r = 1. Unlike Hahn echo, this
condition is also sufficient for chirped pulses where the dy-
namic phase from the first pulse is canceled by the second
pulse [27–29].

There is also another difference compared to the Hahn
echo: The rephasing efficiency with imperfect pulses now
depends on the relation between the write pulse phase φ0

and the phase φ2 of the second rephasing π pulse. When
2φ0 + φ2 = 0, the efficiency is lowest and given by

η̃CPMG
r = |〈(1 − ε)(1 − 3ε)〉|. (10)

The original Carr-Purcell [21] sequence π/2(0) − π (0) −
π (0) is an example for this case. We note that a phase φk = 0
of a pulse ideally implies rotation around the the X axis
of a Bloch sphere [see Fig. 2 (left)]. Thus, if the system
was initially in state |1〉 and we apply a π/2(φ0 = 0) write
pulse, the Bloch vector will then point along the Y axis of
the Bloch sphere and the “bad” initial coherence phase will
be ξ (z, 0) ≈ φ0 + π/2 = π/2. Figure 2 (left, top) provides
intuition for the underlying reason for the worse performance
for the Carr-Purcell sequence. Then, the pulse error of the
second rephasing π (0) pulse adds up to the error of the first
π (0) pulse.

When the 2φ0 + φ2 = π , the efficiency is improved and
given by

η̃CPMG
r = 〈1 − ε2〉. (11)

The improved CPMG sequence, originally proposed by Mei-
boom and Gill [21], π/2(π/2) − π (0) − π (0), is an example
of this case. After a π/2(φ0 = ±π/2) write pulse, the Bloch
vector will point along the X axis of the Bloch sphere and
the “good” initial coherence phase will be ξ (z, 0) ≈ φ0 +
π/2 = 0 or π . Figure 2 (left, bottom) provides intuition for
the improved performance. The quantum state after the write
π/2 pulse is closely aligned with the torque vector of the
rephasing pulses, so the second rephasing π (0) pulse partially

compensates the error of the first π (0) pulse for the particular
initial state along the X axis.

Our analysis so far showed that CPMG efficiency depends
on the value of 2φ0 + φ2. This result implies that choosing
a different phase of the second rephasing π pulse cannot
improve performance for an arbitrary initial coherence phase.
A different choice of φ2 only shifts the “good” value of
φ0 and thus of ξ (z, 0). For example, one can naively think
that the CPMG-2 sequence π (0) − π (φ2 = π ), also termed
X − (−X), would perform better than CPMG as the second
π pulse of CPMG-2 has ideally an opposite rotation axis
to the first π pulse. Indeed, CPMG-2 can compensate pulse
area errors for arbitrary states but only for resonant pulses
and negligible dephasing between the pulses. However, its
error-compensating mechanism fails in the case of significant
dephasing during or between the imperfect pulses, e.g., due
to inhomogeneous broadening. In the latter case, which we
analyze, the sequence π/2(0) − π (0) − π (π ) has improved
efficiency as 2φ0 + φ2 = π and the second rephasing π (π )
pulse partially compensates the error of the first π (0) pulse.
In other words, CPMG-2 has improved performance when the
initial Bloch vector after the write pulse points along the Y

axis of the Bloch sphere, so the good initial coherence phase is
ξ (z, 0) = ±π/2. However, the sequence π/2(π/2) − π (0) −
π (π ) now has a worse efficiency as 2φ0 + φ2 = 0 (mod 2π ).
Thus, we achive a worse performance with CPMG-2 when
the initial Bloch vector points along the X axis of the Bloch
sphere, so the bad initial coherence phase is now ξ (z, 0) =
0 or π . As the good and bad initial coherence phases are
only shifted in comparison to standard CPMG, rephasing by
CPMG-2 will have the same efficiency when averaged over
different φ0 or equivalently over ξ (z, 0).

In summary, our analysis showed that π (0) − π (φ2)
has improved performance when 2φ0 + φ2 = π (mod 2π ),
i.e., the “good” initial coherence phase is ξ (z, 0) = φ2/2 +
πk, k ∈ Z. However, its performance suffers when 2φ0 +
φ2 = 0 (mod 2π ); i.e., for the “bad” initial coherence phase
ξ (z, 0) = (π + φ2)/2 + πk, k ∈ Z.
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The performance of CPMG for φ0 = 0 and different φ2 is
demonstrated further below in the experimental section and
confirms our theoretical predictions. We can derive analytical
formulas also for three and more pulses but will not discuss
the rather complicated features here. The simulated rephasing
patterns for a sequence of four pulses is also shown further
below in the experimental section.

Finally, we analyze the case for repeated application of
CPMG, e.g., for dynamical decoupling. We denote the CPMG
sequence, repeated N times, as [π (0) − π (0)]N . The repeti-
tion of CPMG with imperfect pulses will lead to even more
pronounced differences in the rephasing efficiencies versus
phase of the initial coherence, as shown in Eqs.(10) and (11).
Assuming a small variation in ε (ε = 0) for the different atoms
and N → ∞, it is possible to show that

η̃r → 0, ξ (z, 0) = π/2 + πk, (12a)

η̃r ≈ 1 − 〈ε〉/
√

2, ξ (z, 0) = πk, (12b)

where in the last approximation we neglected the effect of
the higher moments of ε, which is usually valid, e.g., when
〈εk〉 � 〈ε〉, k = 2, 3, . . . and ε � 0.5. Thus, rephasing of
the good phase does not suffer from repeated application of
the CPMG sequence, also with pulse errors. Every second
pulse approximately cancels the error of the previous pulse
for the specific initial state, determined by the rotation axis
of the CPMG pulses [see Fig. 2(left, bottom)] [10,13,25].
Thus, applying many CPMG sequences with pulse errors in an
ensemble effectively projects (spin locks) the quantum state of
the atoms onto this quantum state, i.e., onto the state with the
good phase.

D. Rephasing efficiency for EIT light storage

Control over the phase of the initial coherences after the
write process cannot be achieved with light storage where
the phase ξ (z, 0) is unknown with respect to the applied
rephasing pulses and/or is spatially retarded. This is typical for
many light-storage protocols, e.g., atomic-frequency combs
(AFC) or electromagnetically induced transparency (EIT).
Our analysis focusses on EIT light storage, i.e., when the
coherence phase ξ (z, 0) varies due to spatial retardation. We
will discuss other possible scenarios in Sec. IV.

Light storage by EIT is implemented in a �-type atomic
medium [see Fig. 1(b)], where the atoms are initially prepared
with all population in the ground state |1〉 [2,3,31]. EIT uses
a strong control pulse, tuned to the transition between the
ground state |2〉 and an excited state |e〉. The probe and
control pulse are assumed phase coherent; e.g., they can be
derived from the same laser source. The coherent interaction
with the control pulse makes the medium transparent for a
probe pulse on the |1〉 ↔ |e〉 transition and reduces its group
velocity. Thus, the probe pulse is compressed in the storage
medium. By reducing the control pulse intensity adiabatically,
the “slow light” probe pulse is “stopped” and converted into an
atomic coherence of the quantum states |1〉 and |2〉 along the
probe propagation path z in the atomic medium. This estab-
lishes a spin wave of spatially distributed atomic coherences
ρ12(z, 0) in the medium, which contains all information of the
incoming probe pulse. This is usually termed the write process

FIG. 3. Theoretical simulations for the coherence magnitude
(light green) and phase (red) vs the phase mismatch in EIT light
storage: (top) after the write step, (middle) after rephasing with a
single Hahn echo pulse, and (bottom) after rephasing with a CPMG
sequence of two pulses. The coherence phase ξ (z, 0) = −�kz is
assumed to vary significantly along the propagation axis of the probe
field with �kL = 10π , where L is the length of the storage medium.
The shading in light green at different z is added to guide the eye. The
theoretical simulations are performed for ε = 0.3, based on Eq. (5).
We note the inverted phase for a Hahn echo, and the grating pattern
in the coherence magnitude for CPMG of two pulses π (0) − π (0),
as its rephasing efficiency changes due to the variation of the initial
coherence phase.

of EIT light storage and in the perfect case it maps [2]

Eprobe(z, 0) →
√

N/V ρ12(z, 0)ei�kz, (13)

where Eprobe(z, t ) is the electric field envelope of the probe
pulse, N/V is the number density of atoms, ρ12(z, t ) is
the coherence at position z in the ensemble, and �k =
(kprobe − kc,write )z is the phase mismatch between probe and
control write beams along the z propagation axis of the probe
beam, e.g., due to the geometry of the experiment [see also
Figs. 4(b) and 4(c)]. We assume without loss of generality
that Eprobe(z, 0) is real. The coherence phase ξ (z, 0) = −�kz

is spatially retarded and vary along z (see also Fig. 3, top).
During a storage time Tst, we rephase our coherences by

applying a sequence of time-separated pulses analogously to
the previous section. The spin wave is then read out by ap-
plying a control read pulse to beat with the atomic coherences

063836-5



GENKO T. GENOV, DANIEL SCHRAFT, AND THOMAS HALFMANN PHYSICAL REVIEW A 98, 063836 (2018)

and generate a signal pulse on the |1〉 ↔ |e〉 transition:

−
√

N/V 〈ρ12(z, Tst )〉ei�kz → Esignal(z, Tst ). (14)

The light-storage efficiency is typically determined by the
ratio of the energy of retrieved photons after storage versus
the energy of the photons of the input probe pulse [2,31]:

ηls =
∫ ∞
Tst

|Esignal(z = L, t )|2dt∫ 0
−∞ |Eprobe(z = 0, t )|2dt

, (15)

where z = 0 and z = L are the beginning and end of the
storage medium. If the mapping of the probe field to atomic
coherences during the write and read steps is perfect, the over-
all light-storage efficiency would correspond to the rephasing
efficiency and we obtain for the latter (see the Appendix,
Sec. A 2):

ηls =
∣∣ ∫ L

0 〈ρ12(z, Tst )〉ei�kzdz
∣∣2∣∣ ∫ L

0 ρ12(z, 0)ei�kzdz
∣∣2 . (16)

We note that in case of imperfect pulses the overall light-
storage efficiency would be lower than the rephasing effi-
ciency, e.g., due to reabsorption of the probe pulse as the
system will not be perfectly aligned with the dark state,
required for EIT, during readout.

We can further simplify Eq. (16) by change of variables
�kz → −ξ (z, 0) and by assuming that the phases of the co-
herence after the write process ξ (z, 0) are equally distributed
between 0 and 2π . The latter is a valid assumption in the limit
of large spatial retardation �kL � 2π (see Fig. 3), which is
often feasible, e.g., due to the geometry of the experimental
setup when there is an angle between the probe and control
fields. We also assume for simplicity that |ρ12(z, 0)| does
not vary much along the usually small distance where �kz

changes from 0 to 2π . Thus, the rephasing efficiency in the
approximation of equal coherence phase distribution becomes
(see the Appendix, Sec. A 2)

ηls =
∣∣∣∣ 1

2π

∫ 2π

0

〈ρ12(z, Tst )〉
ρ12(z, 0)

dξ (z, 0)

∣∣∣∣2

. (17)

Next, we use the above analytical formulas to estimate the
efficiency for several imperfect rephasing sequences applied
for EIT light storage.

First, we analyze the rephasing efficiency of a single
rephasing pulse, i.e., the well-known Hahn echo [24] for
EIT light storage. Figure 3 shows a simulation for the
spatial variation of the magnitude of the coherence ratio
〈ρ12(z, Tst )〉/ρ12(z, 0) and the phase 〈ξ (z, Tst )〉 along the
propagation axis of the probe pulse after Hahn-echo rephas-
ing. As noted in the previous section, the magnitude of the
final coherence after Hahn echo does not depend on the initial
phase. However, the final phase is inverted, i.e., 〈ξ (z, Tst )〉 =
−ξ (z, 0). Then, phase matching implies that the individual
atomic dipoles along the axis of probe field propagation will
not be properly phased during standard forward readout and
thus their emission cannot add up coherently in the propaga-
tion direction of the signal field. We then use Eqs. (5) and (16)

to estimate the rephasing efficiency

ηHahn
ls =

∣∣∣∣ 1

L

∫ L

0
〈(1 − ε)〉e2i�kzdz

∣∣∣∣2

≈ 〈(1 − ε)〉2

∣∣∣∣e2i�kL − 1

2�kL

∣∣∣∣2

, (18)

where again ε ≡ 1 − p is the error in the transition probability
of the rephasing pulse for a single atom and we assumed that
ε varies much more slowly that �kz in the last calculation
step. We also assumed that β = −π/2 for any z. This is the
case when we apply a short rectangular-shaped pulse in time,
and the frequency of the |1〉 ↔ |2〉 transition is in the radio
frequency (rf) regime, i.e., the wavelength is much longer than
the medium. In the limit of large spatial retardation �kL �
2π , the rephasing efficiency becomes

ηHahn
ls → 0. (19)

We note that rephasing by a Hahn echo is also expected to
work inefficiently for light storage because of reabsorption of
the signal field during retrieval, as the populations of states |1〉
and |2〉 are interchanged and the system will not be in the dark
state, required for EIT.

Next, we estimate the rephasing efficiency for the CPMG
sequence [π (0) − π (φ2)]. Figure 3 shows an example for the
spatial variation of coherences along the propagation axis
of the probe pulse after CPMG with pulse errors (φ2 = 0),
simulated from Eq. (5). The rephasing efficiency varies along
z as the performance of CPMG is then highly dependent
on the initial coherence phase. As a result, the final coher-
ence magnitude exhibits a distinct grating-like pattern, with
the highest magnitude corresponding to the “good” phases
〈ξ (z, Tst )〉 → 0 or π . Additionally, the phases of the final
coherences also tend to these “good” phases. Thus, applying
a CPMG sequence (φ2 = 0) with pulse errors effectively
partially projects the quantum states of the individual atoms
onto the quantum state, determined by the rotation axis of the
CPMG pulses, making 〈ξ (z, Tst )〉 → 0 or π . We use Eqs. (5)
and (17) to obtain the overall rephasing efficiency for light
storage

[π (0) − π (φ2)] : ηCPMG
ls = 〈(1 − ε)2〉2. (20)

It is notable that the light-storage rephasing efficiency does
not depend on the phase φ2 of the second rephasing pulse, in
contrast to the spin-echo case [see Eqs. (10) and (11)]. For
example, the performances of CPMG (φ2 = 0) and CPMG-2
(φ2 = π ) rephasing sequences applied to light storage are
equal while they worked differently for spin echoes. The
reason is that the rephasing efficiency for EIT light storage
is averaged over all possible coherence phases in the medium,
e.g., due to the spatial retardation.

Similarly, we can estimate the rephasing efficiencies for
sequences of three and more time-separated pulses. We apply
the same assumptions as for CPMG and obtain

[π (0) − π (φ2) − π (0)] : ηls = 〈4ε(1 − ε)2 cos (φ2)〉2, (21)

[π (0) − π (φ2)]2 :

ηls = |〈(1 − ε)2[e4iφ2 (1 − ε)2 + 6ε2 + 4e2iφ2ε(2ε − 1)]〉|2,
(22)
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where the index in [π (0) − π (φ2)]2 denotes twice application
of the CPMG sequence. The rephasing efficiency of sequences
of more pulses and with other phases can be calculated in an
analogous way. Explicit analytical formulas for several robust
sequences are included in Table II in the Appendix A 3.

Finally, we consider the rephasing efficiency of CPMG,
repeated many times, e.g., for dynamical decoupling. The
repeated sequence CPMG [π (0) − π (0)]N leads to more pro-
nounced differences in the rephasing efficiency versus initial
coherence phase, as shown in Eqs. (10) and (11). Assuming
a small variation in ε for the different atoms, we deduce
the rephasing efficiency for [π (0) − π (0)]N , applied to light
storage, for very large N as

[π (0) − π (0)]N : ηls ≈
〈

1 − ε/
√

2

2

〉2

. (23)

In the above approximation, we neglected the effect of higher
moments of ε, similar to the spin-echo case. Thus, for large N ,
the number of repetitions of the CPMG sequence with pulse
errors does not matter. The often-repeated CPMG sequence
effectively projects (spin locks) the quantum states of the
atoms onto the quantum state, determined by the rotation axis
of the CPMG pulses, i.e., onto a state with the “good” phase
[see Eqs. (12)].

In summary, we derived a simplified theoretical model for
the rephasing efficiency of sequences of pulses in atomic en-
sembles in two cases: (a) when the individual atoms’ quantum
states exhibit the same, well-defined phase with respect to
the rephasing pulses, e.g., in a spin-echo experiment, and
(b) when the phases of the individual coherences vary, e.g.,
due to spatial retardation, for light storage by electromagneti-
cally induced transparency (EIT). We find, that the rephasing
efficiency is very sensitive to the phases of the imperfect
rephasing pulses. The behavior of the rephasing efficiency
differs significantly for spin echoes or EIT light storage. In the
following, we verify the theoretical predictions by rephasing
experiments for spin echo and EIT light storage in a doped
solid.

III. EXPERIMENTAL DEMONSTRATION

The experiments are performed in a Pr:YSO crystal with
a length of 3.2 mm and a dopant concentration of 0.05 at.%
praseodymium. The crystal is mounted in a liquid-helium
cryostat and held at temperatures of about 4 K to reduce
phononic excitations. Figure 4(a) shows the relevant part of
the level scheme of a Pr3+ ion. The optical transition between
the electronic ground state 3H4 and the excited state 1D2 is
at a wavelength of 605.98 nm. The population lifetime of
the ground state 3H4 is of the order of T1 ≈ 100 s [4,32].
Local variations in the crystal field for the different Pr3+

ions lead to inhomogeneous broadening of both the optical
(�opt ≈ 7 GHz) and spin transitions. The latter is of the
order of kHz and leads to a dephasing time of the spin
coherence on the hyperfine transitions of the order of Tdeph ≡
T ∗

2 ≈ 10 μs. Additionally, stochastic magnetic interactions
between the dopant ions and the host matrix lead to a de-
coherence time of T2 ≈ 500 μs [8,16]. Figure 4(b) shows a
simplified setup of the optical beam path and rf coils next

FIG. 4. (a) Level scheme of Pr3+ ions, as relevant for our ex-
perimental implementation in a Pr:YSO crystal. A spin coherence
is prepared on the |1〉 ↔ |2〉 transition by a π/2 rf pulse or EIT
light storage. (b) Simplified geometry of the optical beam paths and
rf coils around the Pr:YSO crystal in the experiment. The angle
between the probe and control beams is approximately 1◦, which
ensures sufficient overlap in the crystal. However, the magnitude of

the wave vector
−→
�k is large as the two beams propagate in opposite

directions. (c) Respective phase-matching condition for EIT light
storage and retrieval.

to the crystal in the experiment. For more details on the
experimental setup, including the generation of optical and rf
pulses, as well as the optical preparation of the medium, see
Refs. [16,33].

Each experimental cycle starts with an optical pump se-
quence to prepare the system in the initial state |1〉. Afterward,
we perform three steps: write, rephase, and read (see Fig. 1).
The write and read processes are different for (a) spin echo
and (b) EIT light storage, while the rephasing processes are
the same for both storage protocols.

In the spin-echo rephasing experiments, we apply a radio
frequency (rf) π/2 pulse with a phase φ0 during the write step
to generate a maximum coherent superposition between states
|1〉 and |2〉 [see Fig. 1(a)]. Unless explicitly otherwise noted,
we store the atomic coherences for a storage time of Tstorage =
600 μs, which is much longer than the dephasing time of
Tdeph ≈ 10 μs. In order to reverse the effect of dephasing
during the storage time, in the rephasing step we apply ideally
resonant rf pulses, each with a pulse area of π . The relative
phases between the pulses serve as control parameters to
drive and compare different types of rephasing sequences,
as discussed in the theory section above. Since we wrote
the atomic coherence by a rf pulse with full experimental
control of the waveform, we have a precisely defined relative
phase between the atomic coherences after the write step and
the rf rephasing pulses [4,16]. We note that such precisely
defined relative phases between storage and rephasing pulses
are, in principle, also possible in appropriate setups with
optical pulses [34]. Unless otherwise noted, the rephasing
pulses in all measurements have a rectangular shape in time,
a target pulse area of π , and pulse duration of T = 3.2μs,
corresponding to a Rabi frequency of � ≈ 2π × 156 kHz,
optimized for the highest light-storage efficiency with CPMG.
The time separation between the pulses is variable, depending
on the specific sequence, while the latter always fit in the
fixed storage time Tst. In the read step for spin echoes, we
use an optical detection field to detect and measure the spin
coherence on the |1〉 ↔ |2〉 by RH detection [26,32]. The
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FIG. 5. Experimentally measured rephasing efficiency (dots) and theoretical simulations (lines) versus the phase φ of every second
rephasing pulse for (a) spin echo after a π/2(φ0 = 0) write pulse and (b) EIT light storage. We apply different rephasing sequences (indicated
by different colors in the graphs). The simulations use ε = 0.1 and are normalized to the extrema of the experimental data for each rephasing
sequence. The experimental data are calibrated to the extrema of the [π (0) − π (φ)]2 rephasing sequence.

detection field scatters at the spin coherence to generate a
Stokes field on the |1〉 and |e〉 transition. Stokes and detection
field interfere with each other to provide a beating pattern,
which we observe on a photo diode and demodulate by a
lock-in amplifier. The magnitude of the signal is proportional
to the magnitude of the coherence on the |1〉 ↔ |2〉 transition
at the end of the storage time [26]. We note that the rephasing
efficiencies are reduced due to inhomogeneous broadening of
the spin transition and the spatial inhomogeneity of the rf field
along the crystal.

For EIT light storage, we write atomic coherences on the
|1〉 ↔ |2〉 transition by Raman-type two-photon interaction of
a weak classical probe pulse and a strong classical control
pulse in the �-type level scheme [see Fig. 1(b)]. Figure 4(c)
shows the phase matching condition for EIT light storage
and retrieval. The geometry of the experiment leads to a
large �k = (kprobe − kc,write )z, i.e., phase mismatch between
to probe and control write beams along the z-propagation
axis of the probe beam. The coherence phase ξ (z, 0) after
EIT light storage then varies in the storage medium due to
spatial retardation along the propagation axis of the probe
pulse. The effect is quite large in our specific experiment due
to the counterpropagating probe and control beams, i.e., �k ≈
2kprobe, so �kL ≈ 107, where L ≈ 3.2 mm is the crystal
length [see Figs. 4(b) and 4(c)]. The rephasing sequences for
EIT light storage are the same as in the case of spin echoes. In
order to read the optical memory, we again apply the strong
optical control read pulse in the same direction as in the write
step (forward readout). Despite the large �k, if the readout
phase matching condition ksignal = �k + kc,write is satisfied,
the control read pulse beats with the atomic coherences and
generates a signal pulse in the same direction as the probe
field [see also Fig. 4(c)] [9,35].

We present now measurements of the rephasing efficiency
for different rephasing sequences and compare them with the
theoretical results, in both cases of spin echoes and EIT light

storage. In the first experiment we investigate spin echoes,
applying a rf π/2 write pulse of a pulse duration 1.6 μs to
drive maximal atomic coherences. We varied the phase φ0 of
the rf write pulse, while keeping the phases of all subsequent
rephasing pulse(s) constant (we take φk = 0, k = 0 without
loss of generality). The experimentally obtained rephasing
efficiency versus phase of the initial coherence is shown in
Fig. 2, along with the theoretically expected dependence. As
expected, the rephasing efficiency of CPMG varies signif-
icantly with φ0. It reaches a maximum for 2φ0 + φ2 = π ,
i.e., φ0 = ±π/2 and a minimum for 2φ0 + φ2 = 2πk, i.e.,
φ0 = πk, k ∈ Z. The experimental data fit very well the sim-
ulation based on Eq. (9) with 〈ε〉 = ε = 0.1 (for simplicity
we assumed 〈εk〉 ≈ 〈ε〉k). We note that our simulations are
normalized to the extrema of the experimental data to ex-
clude perturbing effects beyond dephasing, e.g., stochastic
phase fluctuations. In Pr:YSO, the latter is caused by random
changes in the transition frequencies due to spin flips in the
host lattice [1,4].

In a modified version of the spin-echo experiment, we
again applied a rf π/2 write pulse, but kept its phase
φ0 = φ2k+1 = 0, k ∈ N. Instead, we varied now the phases
φ2k ≡ φ of all even π pulses in the rephasing sequences.
Figure 5(a) shows the experimental results for single and
double application of a GPMG sequence [π (0) − π (φ2)], i.e.,
with two or four pulses. Like the previous experiment, the
rephasing efficiency of CPMG varies clearly with phase φ2.
For the single two-pulse CPMG sequence, we observe a max-
imum for 2φ0 + φ2 = π , i.e., φ2 = ±π , and a minimum for
2φ0 + φ2 = 2πk, i.e., φ2 = 2πk, k ∈ Z [see black data points
in Fig. 5(a)]. The dependence of the rephasing efficiency ver-
sus phase becomes more complicated for a double four-pulse
CPMG sequence, showing several very pronounced extrema
[see green data points in Fig. 5(a)]. As expected, repeated
application of CPMG sequences yields a much stronger varia-
tion of the performance with phase. Also here, the simulations
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confirm the experimental findings. We note that the rephasing
efficiency for a double CPMG sequence is higher compared to
a single CPMG sequence, although pulse errors are expected
to add up for the longer sequence. However, the improvement
is due to the shorter time separation between the pulses for
the longer sequence in order to keep the total duration of
any sequence in the fixed storage time. The shorter pulse
separation reduces the effect of stochastic phase fluctuations
between the pulses in a sequence [20].

We shift our attention now to rephasing in EIT light-
storage experiments. Similarly to the spin-echo measurement
discussed before, we varied the phases φ2k ≡ φ of all even
pulses in CPMG [π (0) − π (φ2)] rephasing sequences, while
keeping φ2k+1 = 0 fixed. Figure 5(b) shows the results of
these measurements. We first consider application of the
single two-pulse CPMG sequence [see black data points in
Fig. 5(b)]. The dependence upon the phase is flat, i.e., very dif-
ferent to spin echoes. As already discussed in theory section,
this difference is due to averaging over all possible coherence
phases in the medium generated by EIT light storage involving
spatial retardation. However, the flat dependence changes for
the double, i.e., four-pulse, CPMG sequence [see green data
points in Fig. 5(b)]. It exhibits a strong variation of the
rephasing efficiency with phase, though still different from
spin echoes. Also a triple, i.e., six-pulse, CPMG sequence
[see red data points in Fig. 5(b)] reveals similar oscillation
of the rephasing efficiency. The data fit well to the numerical
simulations of all sequences, i.e., confirming our theoretical
model.

In a concluding measurement, we varied the number of
rephasing pulses with zero phases for a total storage time
of Tst = 300 μs. According to theory, sequences with an odd
number of perfect π pulses (e.g., a single pulse as in a Hahn
echo) yield no light-storage signal at all. This is due to phase
mismatch and inversion of the ground-state populations, as
already discussed in the theory section. Hence, only sequences
with an even number of pulses are applicable for quantum
memory in our experiment.

Figure 6 confirms our theoretical predictions that we in-
deed obtain no signal with a single rephasing pulse. How-
ever, we obtain a small signal for sequences with a higher
number of odd pulses, e.g., three and five, which is due to
pulse errors. We also found that the light-storage efficiency
for repeated CPMG sequences, i.e., of more than 10 single
pulses, does not depend significantly on whether we use an
odd or an even number of them. This confirms the pre-
diction that CPMG is significantly affected by pulse errors.
After several repetitions, the quantum state of each atom is
projected (spin locked). This is confirmed by a numerical
simulation (see the inset of Fig. 6), which shows the average
Bloch vector of an atomic ensemble (green dot) for different
initial states. As noted in the theory section, the overall
light-storage efficiency is expected lower than the maximal
rephasing efficiency in Eq. (21), due to reabsorption of the
retrieved signal, which is not taken into account in our model.
After the projection, the rephasing efficiency of CPMG at
the specific storage time does not depend on the number of
pulses. We note that a similar spin lock effect exists with the
CPMG-2 but the projection is on the Y axis of the Bloch
sphere.
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FIG. 6. Experimentally measured signal pulse energy versus
number of rephasing pulses for a total storage time of Tst = 300 μs.
The data are calibrated with respect to the signal with CPMG with
two rephasing pulses. The rephasing pulses exhibit rectangular time
profile with a duration of T = 3.3 μs and a Rabi frequency of � ≈
2π 156 kHz. All pulses have the same relative phase, assumed to
be zero without loss of generality. Inset: Simulation of rephasing
on the Bloch sphere for an ensemble of atoms, initially in the same
state, for different initial states, depicted by green dots (see Bloch
sphere on the left). When we apply a CPMG sequence five times,
i.e., with a total of 10 pulses, the averaged Bloch vector for the
ensemble is projected along the red arrow, which depicts the average
(for the ensemble), normalized torque vector during a pulse (see
Bloch sphere on the right). The simulation assumes pulses with
the same properties as in the experiment (see above), and a cycle
time of T + τ = 30 μs, so that we fit the 10 pulses within the
storage time of Tst = 300 μs. Detuning variation with a bandwidth
of ≈ ±2π 40 kHz is assumed.

IV. DISCUSSION

In our analysis, we assumed that the phase of the atomic
coherence ξ (z, 0) varies substantially in the medium, due to
spatial retardation along the propagation axis of the probe
pulse. The latter effect is quite large in our specific ex-
periment, due to the counterpropagating probe and control
beams. In the case of copropagating beams, the angle between
the two beams can realistically be of the order of at least
θ ≈ 1◦ [see Fig. 4(b)], which implies �kL ≈ 5 > π , where
�k ≈ kpr(1 − cos θ ), L = 3.2 mm. Hence, in this case spatial
retardation will be smaller but still significant. The above
findings are also relevant to other light-storage protocols
involving retardation effects, e.g., atomic frequency combs
[7], by taking into account the specific characteristics of the
protocol, e.g., phase-matching conditions.

Moreover, our approach is applicable also beyond the
specific effect of spatial retardation. As an example, we note
the estimation of rephasing efficiencies by integration over all
possible initial coherence phases ξ (z, 0), similar to Eq. (17),
is also applicable when the initial coherence phase is not
defined. This is relevant for rephasing of collective quantum
states with a well-defined number of excitations [36], e.g.,
for highly symmetric Dicke states after single- or few-photon
storage. Specifically, it is well known that an incoherent
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average over the phase ξ (z, 0) of a collective Bloch state
can be used to represent a mixture of symmetric Dicke states
[37,38]. The statistical distribution of the latter can be sharply
peaked when the number of atoms is large and the number
of collective excitations is small. Thus, it is justified to ap-
proximate the rephasing efficiency for a collective entangled
state after single-photon storage with the rephasing efficiency
of a phase-averaged Bloch state, as shown in Ref. [23]. Our
theoretical approach is applicable also in these cases.

V. CONCLUSION

In conclusion, we investigated the efficiency of imperfect
rephasing pulse sequences in atomic ensembles for (a) spin
echoes and (b) light storage by electromagnetically induced
transparency (EIT) in a doped solid crystal. We developed
a simplified theoretical model for the rephasing efficiency
in both cases. We found that the rephasing efficiency varies
considerably with the relative phase between the atomic co-
herences and the applied rephasing pulses. Moreover, the
behavior of the rephasing efficiency versus phase differs
significantly for coherences generated by spin echoes or EIT
light storage. While spin echoes provide well-defined phases
with respect to the rephasing pulses, in EIT light-storage
spatial retardation of the phases of individual coherences
plays a crucial role. We confirmed the theoretical predictions
by experimental implementations of rephasing for spin echoes
and EIT light storage in a Pr:YSO crystal. The data clearly
prove the differences between rephasing for spin echoes and
EIT light storage. We compared the behavior of sequences
of CPMG pulse pairs, either with pulses of equal phases or
phase shifts in between, as well as longer pulse sequences with
a variable number of pulse pairs. Finally, we demonstrated
the spin-locking effect of dynamical decoupling with CPMG
pulse pairs in EIT light storage. CPMG dynamical decou-
pling with pulse errors permits long storage times of selected
coherences but is not appropriate to rephase states with an
arbitrary phase, as relevant, e.g., in quantum memories. The
experimental data fit well with numerical simulations based
on our theoretical model. The findings are of relevance also for
other light-storage protocols, whenever the initial phase of the
quantum state varies along the storage medium, or whenever
the initial phase is not precisely defined.
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APPENDIX

1. Derivation of the propagator for a rephasing sequence

We depict rephasing with a single pulse, i.e., the well-
known Hahn echo [24], by the schematic representation
[τ/2 − A(φ) − τ/2], where the label A(φ) indicates a pulse
with area A and phase φ, and τ/2 is the duration of free
evolution before and after the pulse. We depict longer se-
quences, e.g., a CPMG sequence with two time-separated

TABLE I. Elements of the pulse propagator in Eq. (A1) for
resonant, rectangular, and adiabatic chirped pulses [30,39,40].

Resonant pulse, �(t ): any shape, t ∈ [0, T ], �(t ) = 0

p = 1 − ε = sin2 (A/2), A ≡ ∫ T

0 �(t )dt

α = 0, β = −π/2

Rectangular pulse, �(t ) = �, t ∈ [0, T ], �(t ) = �

p = 1 − ε = �2

�2 + �2
sin2 (Aeff/2), Aeff ≡ T

√
�2 + �2

α = tan−1 (
�√

�2 + �2
tan (Aeff/2)), α ∈ [−π/2, π/2]

β = −π/2

Adiabatic chirped pulse [39,40]

�(t ) = �0 sech(t/T ), �(t ) = �0 + B0 tanh(t/T ),

t ∈ [−tf, tf], tf → ∞:

U11 = exp (2iD̃tf/T )
�(ν )�(ν − λ − μ)

�(ν − λ)�(ν − μ)
,

U12 = −iÃ22iB̃

1 − ν
exp (2iB̃tf/T )

�(2 − ν )�(ν − λ − μ)

�(1 − λ)�(1 − μ)
,

p = 1 − ε = |U12|2, α = arg (U11), β = arg (U12),

Ã ≡ �0T/2, B̃ ≡ B0T/2, D̃ ≡ �0T/2,

λ ≡
√

Ã2 − B̃2 − iB̃, μ ≡ −
√

Ã2 − B̃2 − iB̃,

ν ≡ 1

2
+ i(D̃ − B̃ )

pulses [21], by [τ/2 − A(φ1) − τ/2] − [τ/2 − A(φ2) − τ/2].
In the following, we compress this notation to [A(φ1) −
A(φ2)]. Finally, the notation [A(φ1) − A(φ2)]N implies the
sequence [A(φ1) − A(φ2)] is repeated N times.

The evolution due to the pulse A(φ = 0) is described
by a propagator Upulse(0), which connects the atom density
matrix at the initial and final times ρ(tf ) = U(0)ρ(ti )U†(0)
(without loss of generality, we take φ = 0 as a global
phase without physical relevance). The propagator Upulse(0)
can be conveniently parameterized with three real variables
p (0 � p � 1), α and β as

Upulse(0) =
[√

1 − p eiα √
p eiβ

−√
p e−iβ √

1 − p e−iα

]
, (A1)

where the phases α and β depend on the pulse properties
and p is the transition probability induced by the pulse, i.e.,
the probability that the system is in state |2〉 after the pulse,
when it was initially in state |1〉. We define the error in
the transition probability ε ≡ 1 − p. Table I shows examples
for these variables for several conventional rephasing pulses,
i.e., a resonant pulse, a detuned rectangular pulse, and an
adiabatic chirped pulse (assuming coherent evolution, dipole,
and rotating-wave approximations [30,39,40]).

Free evolution of an atom with a transition angular fre-
quency ω12 + �, where ω12 is the center frequency of an
ensemble of atoms and � is the frequency detuning of the in-
dividual atom is described in the rotating frame at a frequency
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ω12 by the propagator

F(�) =
[
ei�τ/4 0,

0 e−i�τ/4

]
, (A2)

where τ/2 is the duration of the free evolution, e.g., before or
after the rephasing pulse.

The propagator of the rephasing cycle [τ/2 − A(φ) − τ/2]
by a single time-separated, phase-shifted pulse for a particular
atom then takes the form

U(φ) = F(�)Upulse(φ)F(�)

=
[ √

1 − p eiδ √
p ei(β+φ)

−√
p e−i(β+φ) √

1 − p e−iδ

]
, (A3)

where δ ≡ α + �τ/2 is an accumulated phase for the par-
ticular atom during the pulse and the free evolution times
τ/2 before and after the pulse. We note that the parameters
p, α, and β are affected, e.g., by detuning �, field inhomo-
geneities, etc. We also note that the propagator U(φ), which
takes free evolution into account, has the same transition
probability as the propagator of the rephasing pulse Upulse(φ),
and differs only by the transformation α → δ. The propagator
of a rephasing sequence of n pulses with relative phases
φ1, φ2, . . . , φn is

Ureph = U(φn)U(φn−1) . . . U(φ1), (A4)

where we assumed that each rephasing cycle, including the
pulse errors, can be repeated and we have control over the
relative phase shifts between the pulses.

The density matrix of an atom after a storage time Tst,
during which we apply a rephasing sequence of pulses, takes
the form

ρ(z, Tst ) = Ureph(z, Tst )ρ(z, 0)U†
reph(z, Tst ), (A5)

where Ureph(z, Tst ) is a propagator that depends on the applied
rephasing sequence and can vary for each atom due to varia-
tion in the individual detuning � and/or the inhomogeneity of
the field, e.g., along z.

Then, the density matrix for an ensemble of atoms at
position z after a rephasing sequence of pulses is

〈ρ(z, Tst )〉 =
∫ +∞

−∞
ρ(z, Tst )g(�)d�, (A6)

where g(�) is the already defined spectral distribution of the
detunings of the individual atoms.

A single pulse, which performs perfect population inver-
sion (ε = 0) for every atom, e.g., a perfect resonant pulse
π (φ1), has a propagator

Uε=0(φ) =
[

0 ei(β+φ1 )

−e−i(β+φ1 ) 0

]
. (A7)

Then, the density matrix after a Hahn echo is

ρ(z, Tst ) =
[

ρ22(z, 0) −e2i(β+φ1 )ρ21(z, 0)

e−2i(β+φ1 )ρ12(z, 0) ρ11(z, 0)

]
,

(A8)

i.e., the populations are inverted due to the single rephasing
pulse, and the coherence ρ12(z, Tst ) = −e2i(β+φ1 )ρ12(z, 0)∗.

Thus, the magnitude of the coherence at position z is pre-
served, but its phase is inverted and shifted, i.e., 〈ξ (z, Tst )〉 =
〈−ξ (z, 0) + 2φ1 + 2β + π〉 (see also Fig. 3). We note that
β = −π/2 for a resonant or rectangular pulse, which allows
for spin-echo rephasing with a single pulse. However, β can
vary significantly for chirped pulses because of their dynamic
phase (see Table I). Thus, the efficiency of Hahn echo suf-
fers, which has also been confirmed in previous experiments
[27–29].

This problem does not occur for CPMG with two time-
separated rephasing pulses with relative phases φ1 and φ2,
respectively, which perform perfect population inverstion
(ε = 0). Then, the density matrix after rephasing is

ρ(z, Tst ) =
[

ρ11(z, 0) e−2i(φ1−φ2 )ρ12(z, 0)
e2i(φ1−φ2 )ρ12(z, 0) ρ22(z, 0)

]
;

(A9)

i.e., it is identical to the initial matrix, except for a constant
phase shift −2(φ1 − φ2) of the coherence, which is the same
for every atom. We note that the density matrix does not
depend on β, so rephasing with chirped pulses becomes
possible, as shown in experiments [27–29].

However, perfect rephasing pulses, e.g., resonant π pulses,
are not possible in systems with large inhomogeneous broad-
ening due to the different detuning � for the individual
atoms. The efficiency may further decrease due to spatial
inhomogeneity of the applied field. In these cases, the driving
pulse is no longer a π pulse for all atoms. The rephasing
efficiency depends then on the initial state of the atoms, e.g.,
on the coherence phase.

2. Detailed derivation of the rephasing
efficiency in EIT light storage

Control over the phase of the initial coherences after the
write process cannot be achieved in EIT light storage. In this
case, the phase ξ (z, 0) is unknown with respect to the phase
of the applied rephasing pulses and/or is spatially retarded.
For example, light storage by EIT is usually implemented in
a �-type atomic medium (see Fig. 1, right for an idealized
scheme), where the atoms are initially prepared with all
population in the ground state |1〉 [2,31]. Then, a write process
is applied, which maps the envelope of a probe pulse onto a
spin wave of spatially distributed atomic coherences ρ12(z, 0)
in the medium, which contains all information about the probe
pulse [31]

Eprobe(z, 0) →
√

N/V ρ12(z, 0)ei�kz, (A10)

where Eprobe(z, t ) is the electric field envelope of the probe
pulse, N/V is the number density of atoms, ρ12(z, t ) is the
coherence at position z in the ensemble, �k is the phase
mismatch between to probe and control beams, e.g., due to
the geometry of the experiment (see Fig. 4). Thus, the phase
of ξ12(z, t ) can be spatially retarded and vary along z after the
write process.

During a storage time Tst, we rephase the coherences by
applying a sequence of time-separated pulses to counter the
effect of dephasing. The density matrix at a time Tst along z is
ρ(z, Tst ), given by Eq. (3).
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The spin wave is then read out by applying a control read
pulse to beat with the atomic coherences and generate a signal
pulse on the |1〉 ↔ |e〉 transition. This is usually termed the
read process, which in the perfect case for forward readout
maps back the spin wave onto an electromagnetic field on the
probe pulse transition [2]

−
√

N/V 〈ρ12(z, Tst )〉ei�kz → Esignal(z, Tst ). (A11)

If 〈ρ12(z, Tst )〉 = ρ12(z, 0), e.g., with perfect rephasing pulses,
and the control read pulse is in the same direction as the
control write pulse, the retrieved pulse will be a perfect
time-inverted copy of the stored pulse, propagating in the
same direction due to the phase-matching condition [31,35].
However, the rephasing pulses are usually not perfect. In the
following, we derive a simplified expression for the rephasing
efficiency for EIT light storage, which we then use to analyze
the effect of pulse imperfections in the main text.

First, we assume without loss of generality that the probe
pulse envelope Eprobe(z, t ) is real, so the coherence phase after
the write process is ξ (z, 0) = −�kz. Perfect phase matching
for forward readout requires

〈ρ12(z, Tst )〉ei�kz = |〈ρ12(z, Tst )〉|, (A12)

that ξ (z, Tst ) = −�kz = ξ (z, 0). Microscopically, phase
matching implies that the individual atomic dipoles along the
axis of propagation are properly phased, so that their emission
adds up coherently in the propagation direction of the signal
field [35]. If we assume perfect EIT conditions after readout to
avoid reabsorption, e.g., two-photon resonance and negligible
population in states |e〉 and |2〉, it is known that the signal
pulse envelope at distance L (end of our storage medium)
yields [41]

Esignal(L, Tst ) ∼
∫ L

0
〈ρ12(z, Tst )〉ei�kzdz. (A13)

The light-storage efficiency is defined by the ratio of the
energy of retrieved photons after storage versus the energy of
the photons of the input probe pulse [2,31]

ηls =
∫ ∞
Tst

|Esignal(z = L, t )|2dt∫ 0
−∞ |Eprobe(z = 0, t )|2dt

, (A14)

where z = 0 and z = L are the beginning and end of the stor-
age medium. We assume assume that EIT light-storage write
and read procedures are perfect, and there is no change in the

duration of the probe field after the storage. Then, the storage
efficiency can be approximated by the ratio of magnitudes of
the time-averaged Poynting vectors of the probe field after and
before the storage [41]. We also assume that the magnitude of
the Poynting vector is proportional to |Esignal(L, t )|2, which
should be feasible, e.g., for a constant probe pulse envelope.
Then, we use Eq. (A13) to obtain

ηls =
∣∣ ∫ L

0 〈ρ12(z, Tst )〉ei�kzdz
∣∣2∣∣ ∫ L

0 ρ12(z, 0)ei�kzdz
∣∣2 . (A15)

We note that this expression does not take into account reab-
sorption of the signal field, e.g., in case of imperfect EIT be-
cause of significant population in state |2〉 after the rephasing
sequence. Nevertheless, it provides a good qualitative estimate
for the relative change in the storage efficiency for sequences
of pulses when we change the phases of the latter. Next, we
assume for simplicity that |ρ12(z, 0)| is constant along z (or
does not vary much along z for a length for �kz changes
from 0 to 2π ), which allows us to simplify Eq. (A15) to
obtain

ηls ≈
∣∣∣∣ 1

L

∫ L

0

〈ρ12(z, Tst )〉
|ρ12(z, 0)| ei�kzdz

∣∣∣∣2

. (A16)

It is obvious that 〈ρ12(z, Tst )〉 = ρ12(z, 0) =
|ρ12(z, 0)| exp (−i�kz) implies that ηls = 1.

Alternatively, we can further simplify the calculation of
the integrals in Eq. (A15) by change of variables �kz →
−ξ (z, 0) if we assume that the phases of the coherence
after the write process ξ (z, 0) = −�kz are equally distributed
between 0 and 2π , so

ηls =
∣∣ ∫ 2π

0 〈ρ12(z, Tst )〉e−iξ (z,0)dξ (z, 0)
∣∣2∣∣ ∫ 2π

0 ρ12(z, 0)e−iξ (z,0)dξ (z, 0)
∣∣2 (A17a)

≈
∣∣ ∫ 2π

0 〈ρ12(z, Tst )〉e−iξ (z,0)dξ (z, 0)
∣∣2∣∣2πρ12(z, 0)

∣∣2 (A17b)

=
∣∣∣∣ 1

2π

∫ 2π

0

〈ρ12(z, Tst )〉
ρ12(z, 0)

dξ (z, 0)

∣∣∣∣2

, (A17c)

where we used that |ρ12(z, 0)| = ρ12(z, 0)e−iξ (z,0) is approxi-
mately constant for the small distance along z where the initial

TABLE II. EIT light-storage rephasing efficiency ηls for rephasing sequences with equal pulse separation [13,19,20].

Pulses Sequence Phases Rephasing efficiency ηls

2 CPMG (0, φ2) 〈1 − 2ε + ε2〉2

4 XY4 (0, 1, 0, 1)π/2 〈1 − 4ε2 + 4ε3 − ε4〉2

4 UR4 (0, 1, 1, 0)π 〈1 − 4ε2 + 4ε3 − ε4〉2

6 UR6 (0, 2, 0, 0, 2, 0)π/3 〈1 − 2ε3 − 4ε4 + 8ε5 − 3ε6〉2

8 XY8 (0, 1, 0, 1, 1, 0, 1, 0)π/2 〈1 − 8ε3 + 4ε4 + 48ε6 − 80ε7 + 35ε8〉2

8 UR8 (0, 1, 3, 2, 2, 3, 1, 0)π/2 〈1 − 4ε4 + 8ε5 − 16ε6 + 16ε7 − 5ε8〉2

10 [U5a]2 (0, 5, 2, 5, 0, 0, 5, 2, 5, 0)π/6 〈1 − 2(11 − 6
√

3)ε3 + 4(11 − 6
√

3)ε4 − 12(2 − √
3)ε5 + O(ε6)〉2

10 [KDD]2 (1, 0, 3, 0, 1, 1, 0, 3, 0, 1)π/6 〈1 − 2(11 + 6
√

3)ε3 + 4(11 + 6
√

3)ε4 − 12(2 + √
3)ε5 + O(ε6)〉2

10 UR10 (0, 4, 2, 4, 0, 0, 4, 2, 4, 0)π/5 〈1 − 2ε5 − 2(3 − √
5)ε6 + 8(2 − √

5)ε7 − 2(11 − 5
√

5)ε8 + 4(5 − √
5)ε9 − 7ε10〉2
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coherence phase ξ (z, 0) = −�kz changes from 0 to 2π . We
note that the above expression for the rephasing efficiency is
also valid whenever averaging over a phase distribution of
initial coherences is required, i.e., also beyond the specific
case of spatial retardation.

3. Rephasing efficiency in EIT light storage
for some robust sequences

We use the theoretical approach from Sec. II D and provide
explicit analytical formulas for the rephasing efficiency of
several robust rephasing sequences in Table II.
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