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Photodetection plays a key role in basic science and technology, with exquisite performance having been
achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities
across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear
what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve
such performance. Here, we present a general modeling framework for photodetectors whereby the photon
field, the absorption process, and the amplification process are all treated as one coupled quantum system.
The formalism naturally handles field states with single or multiple photons as well as a variety of detector
configurations and includes a mathematical definition of ideal photodetector performance. The framework
reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance
metrics, providing guidance for optimization and design.

DOI: 10.1103/PhysRevA.98.063835

I. INTRODUCTION

Photodetectors are used extensively in a broad range of sci-
entific experiments and for numerous technology applications.
Pushing the limits of photodetection is important to allow new
phenomena to be explored and to improve the performance in
applications. In the realm of single-photon detection, records
are constantly being reported for detector performance [1–7],
and these detectors are being used to increase understand-
ing of the the fundamental properties of light [8–12]. Still,
photodetectors are complex, and determining the fundamental
limits of their performance and how to design their internal
structure is not straightforward because of several simultane-
ous performance requirements. In the case of single-photon
detectors, these performance metrics include efficiency, jitter,
dark count rate, number resolution, and bandwidth but also
include aspects such as operating temperature, size, and power
requirements. Determining the best possible photodetector
that can optimize all of these considerations is challenging
because many of these are interrelated.

Since the formulation of quantum mechanics, there have
been several theoretical models of photodetection. The pi-
oneering work of Glauber [13], Mandel et al. [14], and
Kelly and Kleiner [15] established the relationship between
the counting statistics of pointlike detectors and states of
the electromagnetic field, and this theory has provided the
foundation for much of the proceeding work. Refinements
of the theory by Scully and Lamb [16], Srinivas and Davies
[17], and Ueda et al. [18] accounted for the backaction of the
detection process on the field, which is important to capture
the statistics of continuous photocurrents in the limit of weak
fields. Further important refinements of photodetection theory
include the relaxation of approximations in the field-matter
interaction, e.g., the rotating-wave approximation [19,20], and
the incorporation of variations in detector architecture, e.g.,
multiplexed arrays [21].

While the theoretical models and methods resulting from
this large body of literature are useful for understanding

photodetection phenomena in many contexts, they generally
do not provide a framework to design photodetectors from the
ground up. Such an endeavor might have been experimentally
unfeasible in the past, but with recent progress in nanoscale
fabrication and engineering one can now ask the question
of how to design an optimal photodetector starting from the
atomic scale. To answer this question, one needs a theory
that models the dynamics of the electromagnetic field and
some general model of the detector’s internal degrees of
freedom, with as few assumptions as possible. Such a design-
oriented approach is essential to establish the ultimate limits
of photodetectors and to identify from general principles new
optimal designs or perhaps even radically new photodetector
designs. For example, recent progress in developing such
an approach to modeling photodetectors has shown that in
principle there exist no trade-offs between some detector
metrics [22,23], suggesting that improved photodetectors are
possible.

In this paper, we build on theories for light-matter inter-
action with weak fields, open quantum systems, and quantum
measurement to develop a holistic approach to modeling pho-
todetectors that allows one to directly relate general criteria
for performance to internal photodetector structure, and more-
over, optimize this internal structure to meet performance
metrics. Our formalism allows one to evaluate the state of the
matter system during and after interaction with the field as

ρ̂MATTER(t ) = TrLIGHT[P (t, t0)ρ̂TOT(t0)], (1)

where P is an operator determined by the internal structure
of the system and its coupling to both the incident field
and amplification processes, and ρ̂TOT(t0) = ρ̂LIGHT(t0) ⊗
ρ̂MATTER(t0) represents the initial density operator for the
combined matter and field quantum state. TrLIGHT represents
a partial trace over the field degrees of freedom. We show
how to explicitly calculate P in a wide variety of cases, and
additionally we show that in most cases of interest, this allows
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FIG. 1. Illustration of the general photodetection situation being
considered. (a) An arbitrary number of photons impinges on an
arbitrary number and configuration of elements. An element is an
object that creates a signal upon photon absorption. It can consist of
a few atoms or macroscopic collections of atoms. (b) A fully coupled
quantum detector considers the photon field, the optical absorption,
and the measurement as part of one quantum system. The result of
the measurement is fed to a classical readout.

us to represent measurement outcome probabilities �(t ) as

�(t ) = Tr[K(t, t0)ρ̂TOT(t0)], (2)

which can be used to determine average performance. This
abstraction enables us to both intuitively understand detection
as propagation of an input pulse to an outgoing signal and
analyze the effects of detector internal structure on average
photodetector performance. In particular, it naturally furnishes
a definition for ideal detection that places conditions on P
(or K)—and, consequently, the detector architecture—that
must be satisfied to achieve it, ultimately allowing us to
identify new photodetector designs with superior predicted
performance.

II. MODELING APPROACH

We seek to develop an approach that can describe a general
photodetection system as illustrated in Fig. 1. By a general
photodetection system, we mean one that is composed of
a number of elements, where the function of each element
is to generate a signal upon photon absorption. An element
could be composed of a few atoms or could be microscopic in
size. For example, a single molecule on a few-atom quantum
transport channel could be an element; a macroscopic semi-
conductor composed of interacting atoms could also be an
element. In both cases, one signal is generated. The general
photodetection system is composed of many such elements,
each interacting with the field and each generating its own
signal. The only limitation we impose on the photodetection
system is that it is smaller than the photon wavelength.

In Ref. [24], it was shown that the Ito Langevin equa-
tion for the interaction of a pointlike (i.e., within a photon
wavelength) matter system with a few-photon pulse can be
solved by rewriting it as a set of master equations constructed
according to the initial incoming field in the Fock basis. In
this paper, we consider a single-mode wave packet, which
is relevant to detectors in single-mode waveguides, but the
approach can be generalized to more complex fields. For a
single-field-mode wave packet with frequency ωE and light-
field temporal profile at the detector of E(t ), the overall

density matrix for the field is

ρ̂LIGHT(t ) =
∑
N,M

cN,M (t )|N〉〈M|,

where |N〉 is a Fock state of the mode with occupation N ; see
Appendix A. We note that in the case of specific numerals in
place of N and M separating commas will be omitted. For
a field initially in a state defined by a set of cN,M (t0), the
reduced density matrix characterizing the matter degrees of
freedom at any time t is

ρ̂MATTER(t ) =
∑
N,M

cN,M (t0)�̂N,M (t ),

where �̂N,M (t ) are a set of auxiliary density matrices obeying
the equations

˙̂�N,M (t ) = VSYS + VL−M + VAMP, (3)

with

VSYS = −i[Ĥ , �̂N,M (t )] +
BATHS∑

i

D[Ŷi]�̂
N,M (t ),

VL−M =
√

NE(t )e−iωt [Ŝ�̂N−1,M, L̂
†
i ]

+
√

ME∗(t )eiωt [L̂i, �̂
N,M−1Ŝ†] + D[L̂]�̂N,M

+
√

MN |E(t )|2(Ŝ�̂N−1,M−1Ŝ† − �̂N−1,M−1),

VAMP =
AMPS∑

i

D[(2ki )
1/2X̂i]�̂

N,M (t ), (4)

where “BATHS” and “AMPS” refer to sums over the number
of baths and amplification channels, respectively. It is straight-
forward, if cumbersome, to extend this formalism to multiple
field modes, including additional spontaneous emission chan-
nels.

Equation (3) has three parts: the internal dynamics of
the system, the light-matter interaction due to the incoming
field excitation, and the amplification of internal states of the
detector, modeled as a weak measurement of some internal
states. VSYS describes the internal evolution according to Ĥ ,
the noninteracting Hamiltonian, and the influence of external
baths Ŷi , described using the Lindblad superoperator

D[Ô]ρ̂ = Ôρ̂Ô† − 1
2 Ô†Ôρ̂ − 1

2 ρ̂Ô†Ô.

VL−M describes the light-matter interaction, including
spontaneous emission, and is mediated by the dipole coupling
L̂ and the quadratic coupling Ŝ. It is important to note that
these terms dictate that the evolution of a given auxiliary den-
sity matrix relies on the evolution of auxiliary density matrices
interacting with fields with reduced initial excitations. We em-
phasize that these field indices do not directly correspond to
the state of the field at a time t ; they correspond to the state of
an incoming field before interaction at time t0, and the density
matrices that contain the correct information about the system
are the ones that correspond to the actual incoming field state
given by cN,M (t0). So, for an initial field with Fock state in a
single mode containing two photons, the density matrix that
contains the true dynamics of the system is �̂22. The others
are auxiliary density matrices required to propagate �̂22 and
are in some sense fictitious. This is shown schematically in
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FIG. 2. The relationship between matrices �̂N,M (t ) evolved by
the system of equations in (3). Each matrix depends on the evolution
of matrices with lower superscript index; the real system density
matrix is given by the matrix with superscript indices corresponding
to the initial state of the incoming field.

Fig. 2. Each diagonal density matrix (N = M) is initialized
to the state of the system [�̂N,N (t0) = ρ̂MATTER(t0)], and the
off-diagonal ones (N �= M) are zero.

The amplification process VAMPS is mediated by operators
X̂i = ∑

j χij x̂ij , which we constrain to be Hermitian and
therefore expressible as sums of projectors onto internal states
x̂ij = |vj 〉〈vj |. These operators also influence the dynamics
through the Lindbladian. These operators can be interpreted as
a weak measurement process with amplification strengths χij

and rate ki [25]. However, Eq. (3) as written only describes the
averaged dynamics associated with amplification. It may be
unraveled [25] into individual measured trajectories by condi-
tioning the dynamics on the prior results of the measurement
imposed by the amplification. This is accomplished by adding
the term

AMPS∑
i

dWi,t

dt
(2ki )

1/2(X̂i �̂
N,M + �̂N,MX̂

†
i − 2〈X̂i〉�̂N,M ) (5)

to Eq. (3), where Wi are Wiener processes for each ampli-
fication channel that correspond to particular measurement
records, whose increments are explicitly

dIi (t ) = 〈X̂i〉(t )dt + 1

(8k)1/2
dWi,t . (6)

We assume the Wiener processes across measurement chan-
nels are uncorrelated, and for later use define the integrated
measurement records

Ii (t ) = 1

tm

∫ t

t−tm

dt ′
(

〈X̂i〉(t ′) + 1

(8k)1/2

dWi,t ′

dt ′

)
, (7)

where tm defines an integration time that sets the temporal
resolution of the detector. As an example, Ii (t ) could be the
time-dependent current measured with an external electronic
read-out. We note the appearance of the quantity 1

(8k)1/2
dWi,t

dt
,

which is noise arising from the continuous measurement
process.

The machinery introduced thus far allows for determina-
tion of the average and unraveled dynamics of the system, and
in principle, computation of measurement outcomes. How-
ever, it cannot be written in the form of the direct relations
that we desire as expressed by Eqs. (1) and (2). We will now

restructure and extend this machinery so that we may write the
system dynamics and performance in this form, considerably
enhancing its power and utility.

The system of equations in Eq. (3) is linear (and inho-
mogeneous), since it may be solved in sequence and the
time-dependent field modifies only the input arising from
previously solved systems of equations. However, solving
these differential equations in this form is inconvenient; they
are expressed in terms of rank 4 linear operators, instead
of the typical matrix operators. It is therefore preferable to
recast these equations by rewriting, e.g., each ρ̂ as a vector ρ̄,
the internal and amplification superoperators as matrices, and
the coupling to other density matrices as an input vector. A
common scheme for this conversion is to take �̄i·n+j = �̂j,i ; in
this case, superoperators may be converted using the relation

¯(Ôρ̂Q̂)= (Q̂T ⊗ Ô )ρ̄, where ⊗ is the Kronecker product.
However, this transformation is not necessarily optimal, and
we will employ others as is convenient. For evaluation of the
output records from Eq. (7), the amplification operators X̂i

become X̄i = ∑
j χij x̄ij , where x̄ij is the vectorized form of

x̂ij and 〈X̂i〉(t ) = X̄i · ρ̄MATTER(t ) = X̄i
†ρ̄MATTER(t ). For later

convenience, we also define x̂i = ∑
j x̂ij and its vectorized

form x̄i , which are projectors onto the monitored internal
states.

Thus, we have for the average dynamics

˙̄�N,M (t ) = Ā�̄N,M (t ) + β̄N,M (t )

with

β̄N,M (t ) = |E|2√MN S̄�̄N−1,M−1(t )

+ e−iωtE(t )
√

ML̄+�̄N−1,M (t )

+ eiωtE∗(t )
√

NL̄−�̄N,M−1(t ).

Here Ā contains the coefficients of the matrix elements as
written above, and the matrices S̄ and L̄± contain the field
couplings to density matrices with lower mode indices. The
use of + and − superscripts in L̄± is intended only to
distinguish the two objects rather than denote any operation.
Importantly, Ā contains the information on the internal struc-
ture of the photodetector. In the following, we will assume that
Ā is time independent for simplicity. Assuming the system
is in an initial state ρ̄(t0) before the wave packet arrives, the
solution is

�̄N,M (t ) = δN,MeĀ(t−t0 )�̄N,M (t0) +
∫ t

t0

dτeĀ(t−τ )β̄N,M (τ ).

(8)

Unless otherwise noted, we will assume that �̄(t0) is an eigen-
state of Ā (e.g., a ground state), so that eĀ(t−t0 )�̄N,M (t0) =
�̄N,M (t0), and take t0 = −∞ for convenience. Computing
�̄N,M (t ) iteratively from �̄00(t0), we can see that our final
expression is a set of nested integrals propagating the initial
system state through successive interactions with the field.
While this may appear similar to a perturbative expansion in
an interaction with a semiclassical field, we emphasize that
the physical meaning of the series is distinct. The computed
evolution is exact, having been derived from the complete
evolution of the combined, fully quantized light-matter sys-
tem. For each interaction, the field is implicitly modified
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to account for changes in the field occupation arising from
the interaction. Thus, the expansion terminates due the finite
occupation of the field, rather than as an approximation. We
note that the only approximation made thus far, beyond the
treatment of the detector as pointlike, is regarding a timescale
separation between the degrees of freedom of the detector
that interact with light and the ones that carry the amplified
information. This enables us to make the Markov approxima-
tion and describe the amplification as a weak measurement.
Crucially, no timescale separation is assumed between the
field dynamics and initial detector states, as is typical in
traditional photodetection theory [13].

Writing Ḡ(t − τ ) = eĀ(t−τ ), we note that Ḡ(t − τ ) propa-
gates the input from the field-system interaction at τ to t , and
thus defines a set of Green’s functions that are independent of
the field degrees of freedom. Therefore, they characterize the
internal modes and amplification of our detector. In particular,
the elements of Ḡ will take the form of sums of exponentials
with eigenvalues of Ā as factors of time in the arguments.
Thus, the eigenvalues of Ā play an important role in charac-
terizing the detector performance, as we will see below.

In many cases, Ā, and therefore Ḡ(t ), will be block diag-
onal, and L̄± will be block off-diagonal. This occurs when
elements coupled by the field interaction are not coupled by
internal processes. As a result, states within blocks will only
evolve under the action of Ḡ(t ) within their blocks, while L̄±
will map one block of states to another. This can simplify both
analysis and solution significantly.

We note that this Green’s function formalism can be related
to the conventional positive operator valued measure (POVM)
formulation of a quantum measurement on the incoming field;
see Appendix B.

III. PERFORMANCE

To obtain detector performance metrics, typically the
stochastic master equation consistent with Eqs. (8) (this is
explicitly given in Appendix C) and the measurement record
in Eq. (7) must be numerically integrated. These are stochastic
trajectories of the system, and thus one has to resort to Monte
Carlo averaging over these trajectories to obtain average
detector metrics, which can be expensive and cumbersome.
However, in many practical parameter regimes it is possible to
exploit the properties of Green’s functions to obtain estimates
of these metrics using only the average evolution equation,
Eq. (8).

In particular, we desire an expression for the probability
�i (N, t ) that at time t the ith channel has recorded a hit
for an incoming field with N photons. A hit is recorded
when the output Ii (t ) exceeds a threshold IHIT,i . In the strong
amplification regime, the stochastic trajectories become jump-
like [23], and the signal portion of the measurement current,
Eq. (7), dominates. In this case, �i (N, t ) can be estimated
as the cumulative probability that the monitored states are
populated by the internal dynamics and stay populated long
enough to register a hit.

In Appendix C, we present in detail how these probabilities
are determined from the average dynamics, which determine
the probability of a photoexcitation being transduced into the
monitored subsystem, and then the likelihood that the created

population will persist long enough to record a hit. We find
that the upper bound for a single detection channel is given by

�i (t ) = x̄i
†Ḡ(tMIN)x̄i

[
x̄i

†ρ̄(t − tMIN)

− (x̄†
i Āx̄i )

∫ t−tMIN

t0

dτ x̄i
†ρ̄(τ )

]
, (9)

where tMIN is the minimum time for a detection event to be
registered.

If the monitored subsystem is stable and population loss
from it can be neglected, x̄

†
i Ḡx̄i = 1 and x̄

†
i Āx̄i = 0. In this

case, the above reduces to

�i (t ) = x̄i
†ρ̄(t − tMIN). (10)

Thus, in this case, the performance can be directly approxi-
mated from the average population in the monitored subsys-
tem, consistent with previous results [23].

A. Efficiency

The total probability that N photons are detected given M

incoming photons is PN (M, t ) = pN [�i (M, t )], where pN

is a function that maps the outcomes of all output channels
into a detection probability. In the case of a single photon,
P1(1, t ) = ∑n

i=1 �i (1, t ), where n is the number of detector
elements. In that case, the mapping function p1 is a simple
summation, but for multiple photons it is more complex, as
discussed in Appendix C. In general, the total probability of
detecting exactly N photons in a field containing N photons
is then PN (N,∞); in this case, we will often simply write
PN (N ).

B. Dark counts

Dark counts for a detector element occur when a hit is
recorded in the absence of a field due to total noise exceeding
IHIT,i . This noise may include thermal fluctuations of the
system (i.e., the system has a finite probability of entering
the monitored state in the dark) and fundamental noise to
the amplification process, as well as noise arising after the
amplification due to additional (classical) signal processing
and transduction. Here, we consider only the former contri-
butions, both of which are captured in Eq. (7), and ignore
the dark counts due to the classical signal processing chain.
Since the amplification noise is Gaussian, the dark count rate
ri can be obtained straightforwardly from the amplification
and integration time tm using Eq. (7) as

ri = �i (0, tm + t0)

tm
+ 0.5

tm
erfc(2

√
ktm�IHIT,i )

where �i (0, tm + t0) is the probability of obtaining a hit in
time tm due to noise (when no photons are present in the
field) and �IHIT,i is the difference in signal between hit and
nonhit states of the detector. When amplification noise is the
dominating contributor to the dark counts, minimization of the
dark count rate requires stronger amplification and/or longer
integration times, which in some cases will limit performance.
The overall dark count rate for the photodetection system
is given by RN = pN (ri ), where pN is the same mapping
function as for the efficiency.
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C. Jitter and latency

The ultimate limits to jitter and latency in a detector are
imposed by the temporal spread of an electromagnetic pulse.
While these quantities can be simply defined in the case of
a single-photon pulse, more care is required when defining
them for multiphoton pulses. We shall define jitter and latency
with respect to a temporal distribution determined by the pulse
profile E(t ),

f (t ) = N |E(t )|2
[∫ t

t0

dτ |E(τ )|2
]N−1

,

which we show below to correspond to the behavior of an
ideal intensity detector and arrival time it would register for
the N th photon of a multiphoton pulse.

We compare this quantity to the distribution of detection
times for the N th photon in an M photon pulse. Since
PN (M, t ) gives the cumulative probability of having regis-
tered such a hit at time t , ṖN (M, t )�t represents the prob-
ability of a hit being obtained in a short interval �t centered
at t , which, when normalized to the total probability of a hit,
yields a distribution of detection times

g(t ) = ṖN (M, t )

PN (M,∞)
.

For example, in the case of a single detection element i = 1,
this can be expressed as

g(t ) = x̄i
†Ḡ(tMIN)x̄i x̄i

†[ ˙̄ρ(t − tMIN) − Āx̄i x̄
†
i ρ̄(t − tMIN)]

�1(M,∞)
.

The latency in the detection is then defined as the differ-
ence between the mean detection time from this distribution
and the mean time from f (t ), i.e.,

μ =
∫ ∞

t0

dt t[g(t ) − f (t )].

Similarly, the standard deviation of the detection time for the
N th photon gives the jitter, i.e.,

σ =
√∫ ∞

t0

dt t2g(t ) −
(∫ ∞

t0

dt tg(t )

)2

.

For convenience, we define σSYS as the jitter originating from
the detector so that

σ =
√

(σ0)2 + (σSYS)2

with

σ0 =
√∫ ∞

t0

dt t2f (t ) −
[∫ ∞

t0

dt tf (t )

]2

.

IV. IDEAL DETECTION

The above naturally leads to a definition of ideal detection:
a pulse arriving at time t is immediately and fully transduced
to a monitored state, such that g(t ) = f (t ), and thus

PN (N, t ) =
[∫ t

−t0

dτ |E(τ )|2
]N

. (11)

FIG. 3. The two- and three-state systems analyzed in Sec. V.
A single mode couples the ground state 0 and excited state 1 with
strength γ . (a) In the two-state system, the 1 state is directly amplified
with strength χ and rate k. (b) In the three-state system, there is an
incoherent decay from state 1 to a state C, which is amplified.

Since |E(τ )|2 is normalized to 1 (see Appendix A), we
have PN (N,∞) = 1 in this case, corresponding to 100%
efficiency. Additionally, since the distribution of the detection
times is equivalent to the temporal distribution of the pho-
ton(s) in the pulse, μ = 0 and σ = σ0. Furthermore, one can
choose an amplification rate, k 
 1/(χ2tm), to make RN ≈ 0,
and achieve dark count rates that are arbitrarily close to zero.

The above conditions on the metrics can be translated into
conditions on the Green’s functions governing the dynamics
and the underlying architecture. In general, Ḡ will have two
effects on the signal propagation: One, it may directly atten-
uate the signal, and two, it may act to alter the shape of the
signal that is passed on to the next integral, which will reduce
the efficiency. To obtain Eq. (11) from Eq. (10), Ḡ must act
as a δ function when acting on density vectors diagonal in the
field and must be a constant (i.e., only comprise modes with
zero eigenvalues) when acting on density vectors off-diagonal.
Additionally, the overall magnitude must be unity. This will be
shown concretely in the examples.

V. SINGLE-PHOTON, SINGLE-ELEMENT DETECTOR

To illustrate the Green’s functions formalism we have
developed, we first consider the simplest model for a detector,
a two-state system [see Fig. 3(a)]. A single mode couples
states 0 and 1 with strength γ , while state 1 is amplified with
strength χ and rate k. The matrices governing the dynamics
are

L̂ =
[

0 γ

0 0

]
, X̂ =

[
0 0

0 χ

]
, Ĥ =

[
0 0

0 ω1

]
.

Then, with

ρ̄ =

⎡
⎢⎢⎢⎣

ρ̂00

ρ̂11

ρ̂01

ρ̂10

⎤
⎥⎥⎥⎦,
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we have

Ā =

⎡
⎢⎢⎢⎢⎣

0 γ 2 0 0

0 −γ 2 0 0

0 0 − γ 2+2kχ2

2 + iω1 0

0 0 0 − γ 2+2kχ2

2 − iω1

⎤
⎥⎥⎥⎥⎦,

which can be exponentiated to obtain

Ḡ(t ) =

⎡
⎢⎢⎢⎢⎢⎣

1 1 − e−γ 2t 0 0

0 e−γ 2t 0 0

0 0 e

(
iω1− 2kχ2+γ 2

2

)
t

0

0 0 0 e

(
−iω1− 2kχ2+γ 2

2

)
t

⎤
⎥⎥⎥⎥⎥⎦.

The field coupling is described by

L̄+ = −L̄−† =

⎡
⎢⎢⎢⎣

0 0 0 −γ

0 0 0 γ

γ −γ 0 0

0 0 0 0

⎤
⎥⎥⎥⎦.

For an incident resonant single-photon field, the density
matrix is given by �̄11, and we have

�̄11(t ) =
∫ t

−∞
dτ Ḡ(t − τ )L̄+E(τ )e−iωτ

×
∫ τ

−∞
dτ ′Ḡ(τ − τ ′)L̄−E∗(τ ′)eiωτ ′

ρ̄(t0) + H.c.,

or explicitly in terms of the population of the excited state,

�̂11
11(t ) = 2γ 2

∫ t

−∞
dτe−γ 2(t−τ )E(τ )

×
∫ τ

−∞
dτ ′e− 2kχ2+γ 2

2 (τ−τ ′ )E∗(τ ′).

In order to obtain estimates for the detector metrics, we
apply the estimation scheme described by Eq. (9). Using the
above definitions for Ḡ(t ) and X̄,

P1(1, t ) = e−γ 2tMIN

∫ t−tMIN

−∞
dτ2γ 2E(τ )

×
∫ τ

−∞
dτ ′e− 2kχ2+γ 2

2 (τ−τ ′ )E∗(τ ′). (12)

With this, we can compare against the results obtained in
Ref. [23] via direct simulation. Using a Gaussian pulse with
σE = 1 ns and γ 2 = 1 ns−1, we compute P1(1,∞) using
the intervals tmin corresponding to thresholds that yield the
dark count rate in that work (i.e., a probability of 1% for
obtaining a dark count in a 15-ns interval) and plot it against
the efficiency obtained from direct simulation (Fig. 4). In this
case, the estimation scheme provides a good approximation of
the efficiency. The estimation deviates more for low (2k)1/2χ ,
which is expected: The approximation of the dynamics being
jumplike is less valid, the contribution of noise is increased,
and the longer integration times increase the likelihood that
a direct simulation signal will be split across two integration
windows and fail to produce a hit, an event that is not captured
by the estimation scheme as presented. We also plot the

FIG. 4. The estimated efficiency vs simulated efficiency (upper
panel) and the estimated jitter and latency (lower panel) for the sys-
tem in Fig. 3(a). The simulation results are taken from Ref. [23] and
the estimation is performed using the same parameters and Eq. (11).
The estimated quantity deviates from the calculated quantity in the
small (2k)1/2χ region because the approximations that go into the
estimated quantity (i.e., jumplike trajectories) are not valid in this
very weak measurement regime.

estimated jitter and latency, shown in the lower panel. These
are reduced for stronger amplification, consistent with the
trends observed in Ref. [23].

We next consider the system containing three states: 0, 1,
and C [Fig. 3(b)]. A single, resonant mode couples 0 and 1
with strength γ , while state 1 decays incoherently to state C

according to �, which is amplified according to χ and k. We
previously demonstrated that this configuration can lead to
ideal detection with 100% efficiency, negligible dark counts,
and minimal jitter, provided that certain conditions are met for
γ and � [23].

For this system, we have

L̂ =

⎡
⎢⎣

0 γ 0

0 0 0

0 0 0

⎤
⎥⎦, Ŷ =

⎡
⎢⎣

0 0 0

0 0 0

0 � 0

⎤
⎥⎦,

X̂ =

⎡
⎢⎣

0 0 0

0 0 0

0 0 χ

⎤
⎥⎦, Ĥ =

⎡
⎢⎣

0 0 0

0 ω1 0

0 0 ωC

⎤
⎥⎦.

We construct the vectorized density matrix as

ρ̄ =

⎡
⎢⎢⎢⎢⎢⎣

ρ̂00

ρ̂11

ρ̂CC

ρ̂01

ρ̂10

⎤
⎥⎥⎥⎥⎥⎦.

Coherences with the C state are omitted as they will always be
zero for the given interactions and initial state ρ̂(t0) = |0〉〈0|.
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Then,

Ā=

⎡
⎢⎢⎢⎢⎢⎣

0 γ 2 0 0 0

0 −(γ 2 + �2) 0 0 0
0 �2 0 0 0
0 0 0 − γ 2+�2

2 + iω1 0

0 0 0 0 − γ 2+�2

2 − iω1

⎤
⎥⎥⎥⎥⎥⎦

and

L̄+ = −L̄−† =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 −γ

0 0 0 0 γ

0 0 0 0 0

γ −γ 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦.

This leads to

Ḡ(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 γ 2 1−e−(�2+γ 2 )t

�2+γ 2 0 0 0

0 e−(�2+γ 2 )t 0 0 0

0 �2 1−e−(�2+γ 2 )t

�2+γ 2 1 0 0

0 0 0 e

(
iω1− �2+γ 2

2

)
t

0

0 0 0 0 e

(
−iω1− �2+γ 2

2

)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We note two features of the above matrices: First, the
top 3 × 3 diagonal block of Ā only has a single nonzero
eigenvalue, a decay mode, and second, none of these matrices
have a dependence on the overall amplification (2k)1/2χ . The
separation of the unmonitored and monitored subspaces by an
incoherent decay, and the fact that there are only incoherent
processes within the monitored subspace implies that the
amplification does not directly effect the dynamics.

For a single photon at the resonant field frequency and a
system initially in state 0, we find that the probability of a hit,
which is equal to the population in the C state in this case, is

P1(1, t ) = �̂11
CC (t ) = 2

�2γ 2

γ 2 + �2

×
∫ t

−∞
dτ (1 − e−(γ 2+�2 )(t−τ ) )E(τ )

×
∫ τ

−∞
dτ ′e−

(
γ 2+�2

2

)
(τ−τ ′ )

E∗(τ ′). (13)

When γ 2 + �2 
 1/σE , where σE is the width of a smooth
pulse described by E(t ), the exponential decay can be approx-
imated by a δ function. Then,

P1(1, t ) = 2
γ 2�2

γ 2 + �2

∫ t

−∞
dτ |E(τ )|2 2

γ 2 + �2
,

P1(1) = 4
γ 2�2

(γ 2 + �2)2
.

This expression satisfies Eq. (11) except for the prefactor. It is
evident by inspection that this prefactor is unity when γ = �.
Thus, Eq. (11) can be fully satisfied and perfect efficiency is
achieved when the two rates are equal; the large coupling limit
(γ 2 + �2 
 1/σE) ensures that the signal is not distorted as

it is processed by the system, while the coupling matching
condition (γ = �) ensures the photon is fully converted to
population in C. We emphasize that as long as the pulse is
sufficiently long, this result is obtained regardless of pulse
shape.

We also note that the fast incoherent process (large �) will
widen the detection bandwidth and decrease sensitivity to the
resonance condition. Repeating the above calculation for an
off-resonant pulse, we obtain

P1(1, t ) = 2
�2

γ 2 + �2

∫ t

−∞
dτE(τ )

∫ τ

−∞
dτ ′γ 2

× cos[�ω(τ − τ ′)]e−
(

γ 2+�2

2

)
(τ−τ ′ )

E∗(τ ′),

P1(1) = 4
γ 2�2

(γ 2 + �2)2 + 4�ω2
,

where �ω is the detuning from resonance. The bandwidth
of the detector is therefore determined by the rate γ 2 + �2.
The requirement that the pulse be temporally wide can also be
understood as requiring that the pulse frequency distribution
be narrow compared to this bandwidth, such that it is approx-
imately constant over the frequencies in the pulse.

It is also evident from this calculation that any additional
sources of decoherence, such as amplification or decays to
unmonitored states, will reduce the efficiency; they will ap-
pear in the denominator of the prefactor and the maximum
efficiency will no longer be unity. For example, suppose that
we have additional dephasing of the excited state, modeled by
the Lindblad operator Ŷ1 = κ|1〉〈1|. This will inhibit the for-
mation of optical coherence but will not affect the populations.
Adding this dynamics gives

P1(1, t ) = 2
�2

γ 2 + �2

∫ t

−∞
dτE(τ )

∫ τ

−∞
dτ ′γ 2

× e
−

(
γ 2+�2+κ2

2

)
(τ−τ ′ )

E∗(τ ′),

P1(1) = 4
γ 2�2

(γ 2 + �2)2

γ 2 + �2

γ 2 + �2 + κ2
.

These expressions indicate that the efficiency is the efficiency
obtained without the dephasing dynamics multiplied by an
additional factor dependent on κ . This factor—and the total
efficiency—will always be less than 1.

Our formalism also reveals the critical role of the zero
eigenvalue mode of Ā in the dynamics; the presence of a
zero eigenvalue indicates a component of the population that
is persistent; the state will be populated indefinitely. Decays
or oscillations would prohibit an expression in the form of
Eq. (11) from being achieved. For example, suppose that
population decays from the C state to the 0 state at a rate δ2,
so that the detector effectively resets after time ≈1/δ2. Then,
even with γ = �,

P1(1, t ) =
∫ t

−∞
dτe−δ2tMIN |E(τ − tMIN)|2,

P1(1) = e−δ2tMIN , (14)

so that the overall efficiency is limited by the possibility that
population in C decays before sufficient time to record a hit
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has passed. Maximizing efficiency requires both separation
of the amplification from the absorption and propagation of
the signal into such stationary system mode where it can be
amplified at leisure, i.e., shelving. However, this extends the
natural reset time, limiting count rate in the absence of an
active reset mechanism.

In practice, the time required for the system to record a
hit places additional constraints on the amplification (2k)1/2χ .
The maximum threshold that can produce a hit is �IHIT = χ .
For a desired dark count rate R1, then (2k)1/2χ � erfc−1(2tmR1 )√

2tm
.

This is especially relevant if relaxation from the C state
to the ground state is present. Maximizing the efficiency in
Eq. (14) requires increasing the amplification so that tm may
be reduced, or reducing the signal threshold and necessarily
permitting more dark counts.

VI. OTHER DETECTOR STRUCTURES

To demonstrate the broad applicability of the formalism,
we now apply it to several cases with other detection mecha-
nisms or detector configurations.

A. Two-state quadratic coupling detector

In some cases, the matter system couples to the field
quadratically; the interaction does not alter the photon num-
ber but the phase of the field. For example, in circuit-QED
architectures in the dispersive regime, the interaction between
matter and field takes the form HI = a†aσ̂z [26]. In this case,
the natural way to model the field-matter interaction within
our framework is to couple through Ŝ rather than L̂ in Eq. (4).
Instead of creating optical coherence, the field scatters off the
matter subsystem and causes a change. Consider a two-level
system such as that in Fig. 3(a), with the field scattering
causing a general unitary operation on the matter degrees of
freedom. Then, the system is described by the operators

Ŝ = e−i(ax σ̂x+ay σ̂y+azσ̂z)θ/2, Ĥ =
[

0 0

0 ω1

]
,

X̂ =
[

0 0

0 χ

]
,

where σ̂x, σ̂y, σ̂z are Pauli matrices and a2
x + a2

y + a2
z = 1.

This gives

Ḡ(t ) =

⎡
⎢⎢⎢⎣

1 0 0 0

0 e−iω1t 0 0

0 0 eiω1t 0

0 0 0 1

⎤
⎥⎥⎥⎦,

S̄ = sin2(θ/2)(α̂ ⊗ α̂T − I)

+ i sin(θ/2) cos(θ/2)(α̂ ⊗ I − I ⊗ α̂T),

where α̂ = (axσ̂x + ayσ̂y + azσ̂z). This yields

P1(1, t ) = �̂11
11 = sin2(θ/2)

∫ t−tMIN

−∞

(
1 − a2

z

)
dτ |E(τ )|2,

so ideal detection is achieved when az = 0 and θ = π . The
quadratic field coupling does not produce a field-driven de-
cay and can directly transfer population. As a consequence,

FIG. 5. System comprising two elements described by Fig. 3(b).
The elements collectively interact with the field and may exchange
population through the field. In systems with more elements, the field
couples each element with each other element.

there are no losses and the requirement for ideal detection is
straightforwardly satisfied without requiring a shelving state.
Even when ideal efficiency is not obtained, the quadratic cou-
pling ensures that Ṗ1(1, t ) = |E(t − tMIN)|2, meaning jitter is
minimized and latency is limited by the integration time of
amplification.

B. Single photon, multiple degenerate elements

We next consider n copies of the elements of Fig. 3(b) col-
lectively interacting with the incoming light pulse, illustrated
for two elements in Fig. 5. Each absorbing element is assumed
to be degenerate in the sense that all elements have the same
transition energy between states 0 and 1, and each absorbing
element has its own associated readout channel. The system
Hilbert space is the direct product of n three-state Hilbert
spaces. There is a single operator coupling the system with
the field and a bath coupled to each subsystem such that

L̂ =
∑

i

γ |0i〉〈1i |, Ŷi = �|Ci〉〈1i |,

where 1i and Ci denote the 1 and C states of the ith element.
As a result, the field introduces coupling between array ele-
ments whereas the baths Ŷi do not; following the procedure
introduced in Sec. II, we find that

P1(1, t ) =
n∑

i=1

�i (1, t ) =
∑

i

x̄i · �̄11(t )

= 2n
γ 2�2

nγ 2 + �2

∫ t

−∞
dτ (1 − e−(nγ 2+�2 )(t−τ ′ ) )

×E(τ )
∫ τ

−∞
dτ ′e−( nγ 2+�2

2 )(τ−τ ′ )E∗(τ ′).

This is the same expression as for the single-element detector
with γ → √

nγ , indicating that a multiple-copy detector can
be made equivalent to a single-copy detector with stronger
field coupling, and the ideal detector is now characterized by
� = √

nγ . The presence of multiple degenerate elements en-
hances the effective field coupling, a phenomenon recognized
as superradiance [27].

It is important to note that the need to monitor multiple
states may introduce practical constraints on detector per-
formance. In particular, there are three main amplification
schemes that are consistent with the above description: (i) a
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FIG. 6. Systems featuring excitation into a dispersive band. A
single mode couples the ground state 0 and all excited states with
strength γ . In panel (a), the states in the band are directly amplified
with strength χ and rate k, while in panel (b) the excited band states
incoherently decay to a state (or potentially multiple states) C, which
are amplified.

single amplification process sensitive to all the C states, corre-
sponding to a single X̂ = χ

∑n
i |Ci〉〈Ci |, (ii) an amplification

process monitoring each C state, so that there are n separate
X̂i = χ |Ci〉〈Ci |, all of which are processed to determine
hits individually, and (iii) amplification processes for each C

state, the combined signal of which is processed to determine
whether a hit has occurred. For a single photon, both (i) and
(ii) result in the same dark count rate for given amplifications
and times, since the hits are determined based on the noise
provided by a single amplification process. However, for (iii),
the noise is the total contributed by all amplification processes
and will be larger than the single-process noise by a factor of√

n, increasing the difficulty of discriminating hits and dark
counts.

C. Single-photon, dispersive band

In most cases, the detector will contain multiple absorb-
ing elements that are not degenerate, resulting in a band of
possible excitations from the ground state. This is the case
in ensembles of atoms or solid-state systems. It is therefore
essential to understand how the above results can be extended
to such systems.

We consider systems like those appearing in Fig. 6, which
have a single ground state that may be excited with strength γ

to n independent states with energies ω distributed according
to a normalized function D(ω). First, we consider the case
with no amplification dynamics in order to isolate the effect
of having a band of states that are coupled to the field.

In the limit n → ∞, we treat the distribution of excited
states as a continuous density, and in the case where the
distribution of these states is Lorentzian, we can analytically
compute this excited-state population. For a Lorentzian with
full-width-half-maximum ζ 2/2 and centered at the incoming
pulse frequency ωE , the state distribution is

D(ω) = 1

π

ζ 2/2

(ζ 2/2)2 + (ω − ωE )2
,

and the total population of the band is

u(t ) =
∑

i

�̄11
ii (t ) = 2nγ 2

nγ 2 + ζ 2

×
∫ t

dτ (nγ 2e−(nγ 2+ζ 2 )(t−τ ) + ζ 2)E(τ )

×
∫ τ

dτ ′e− nγ 2+ζ2

2 (τ−τ ′ )E∗(τ ′),

where i indexes the states in the band.
The form of this expression is that of Eq. (13) and the

Green’s functions have the required form for ideal detection.
The energy dispersion results in dephasing that suppresses
emission, allowing the excitation into the band to be long
lived. From the above expression, it is clear that the bandwidth
can be tuned to obtain full collection of the photon when
ζ 2 = nγ 2 
 σ0. However, this does not necessarily indicate
ideal performance; unlike the case of incoherent decay to
a shelving state, amplification will influence the absorption
process with consequences for performance. If the excited
states are directly amplified according to X̂ = χ

∑n
i |i〉〈i|

with rate k, then we can write

P1(1, t ) = u(t ) = 2nγ 2

nγ 2 + ζ 2

×
∫ t

dτ (nγ 2e−(nγ 2+ζ 2 )(t−τ ) + ζ 2)E(τ )

×
∫ τ

dτ ′e− nγ 2+ζ2+2kχ2

2 (τ−τ ′ )E∗(τ ′)

and in the limit ζ 2 = nγ 2 
 σ0

P1(1, t ) = 4nγ 2ζ 2

(nγ 2 + ζ 2)2
× nγ 2 + ζ 2

nγ 2 + ζ 2 + 2kχ2
.

The amplification introduces decoherence that suppresses
absorption and will limit efficiency, i.e., the Zeno effect; see
Ref. [23]. However, unlike the two-state system, the band
shelving-like effect allows for long measurement intervals
and correspondingly lower amplifications; this suggests that
higher efficiencies may be obtained at the expense of in-
creased latency.

We may circumvent such tradeoffs as before by introducing
incoherent decays from each state in the band to states that are
not optically coupled (dark states) that are then amplified. It
is straightforward to alter the above treatment to account for
the additional dynamics. For a decay rate �2 to a single state
C (or multiple C states), the band population becomes

u(t ) =
∫ t

dτe−�2(t−τ ) nγ 2e−(nγ 2+ζ 2 )(t−τ ) + ζ 2

nγ 2 + ζ 2

× 2nγE(τ )
∫ τ

dτ ′e− nγ 2+ζ2+�2

2 (τ−τ ′ )γE∗(τ ′)

and

P1(1, t ) = �̄CC (t ) = �2
∫ t

dτu(τ )

=
∫ t

dτ
�2

nγ 2 + ζ 2

[
nγ 2(1 − e−(nγ 2+ζ 2+�2 )(t−τ ) )

nγ 2 + ζ 2 + �2
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+ ζ 2(1 − e−�2(t−τ ) )

�2

]

× 2nγE(τ )
∫ τ

dτ ′e− nγ 2+ζ2+�2

2 (τ−τ ′ )γE∗(τ ′).

When �2 + ζ 2 + nγ 2 
 σ0, after the pulse passes

P1(1) = 4
nγ 2(�2 + ζ 2)

(nγ 2 + ζ 2 + �2)2
,

which is unity when �2 + ζ 2 = nγ 2. Thus, in the presence
of a band, the optimal tuning of the decay rate �2 has con-
tributions from the bandwidth as well as the optical coupling.
However, the jitter and latency both may still be impacted. For
the above parameters,

P1(1, t ) =
∫ t

dτ

[
1 − e−�2(t−τ )

2 + �2/ζ 2

]
|E(τ )|2.

If � is small, the second term in brackets is only zero at long
times, which delays and stretches the distribution of arrival
times. This adds latency

μ = 1

�2(2 + �2/ζ 2)

and increases the jitter by

σSYS = μ
√

3 + 2�2/ζ 2.

D. Multiple photons, multielement detector

We can now ask how an ideal single-photon detector per-
forms in resolving photon number. For the array of degenerate
elements, we note that in the limit where nγ 2 + �2 
 1/σ0,
the populations of the 1 states and coherences between them
are close to 0. Thus, for two photons, we have

�̄22
n:CiCiCj Cj

(t ) ≈ yn−1(t )�̄11
n:CiCi

,

where

yn(t ) = 4γ 2�2

(nγ 2 + �2)2

∫ t

−∞
dτ |E(τ )|2.

Here �̄22
n:CiCiCj Cj

and �̄11
n:CiCi

represent the total system density
matrix in a compact notation; see Appendix D for details. We
can express �̄11(t ) as

�̄11
n (t ) = �̄00

n−1(t ) ⊗

⎡
⎢⎢⎢⎢⎢⎣

1 − nyn(t )

0

yn(t )

0

0

⎤
⎥⎥⎥⎥⎥⎦

= ρ̄n−1(t0) ⊗

⎡
⎢⎢⎢⎢⎢⎣

1 − nyn(t )

0

yn(t )

0

0

⎤
⎥⎥⎥⎥⎥⎦,

and thus for a system illuminated by a two-photon pulse

�̄22
n = ρ̄n(t0) +

[∫ t

−∞
dτeĀ(t−τ )

√
2E(τ )e−iωτ L̄+

∫ τ

−∞
dτ ′eĀ(τ−τ ′ )

√
2E∗(τ ′)eiωτ ′L̄−�̄11

n (τ ′) + H.c.

]
.

We note that in order to determine photon number it is necessary for the amplification scheme to distinguish the states with
different numbers of C states occupied. At present, we take each Ci state to be amplified by an operator X̂i = χ |Ci〉〈Ci |, so that,
as discussed in Appendix C,

P2(2, t ) =
n∑

i>j

(x̄i × x̄j ) · �̄22
n (t ) = 8(n − 1)γ 2�2

[(n − 1)γ 2 + �2]2

4nγ 2�2

(nγ 2 + �2)2

[ ∫ t

−∞ dτ |E(τ )|2]2

2
, (15)

where × represents element-by-element multiplication.
Repeating this procedure, we may find the population of

the state corresponding to collection of all N photons at
any time t . Accounting for the degeneracy of this state via
a binomial coefficient, we obtain the following expression
for the probability of complete absorption of all incoming
photons:

PN (N ) =
(

n

N

) N−1∏
k=0

4n(k + 1)

(2n − k)2
. (16)

It is evident that this detector is only a perfect single-photon
detector; multiple photons are detected increasingly ineffi-
ciently as the number of photons increases. This may be

understood by thinking about the absorption of photons as a
successive process. Absorption of the first photon proceeds
with maximal efficiency, filling state C. However, the occupa-
tion of this state blocks further collection by that state: If an
element of the array absorbs a photon, it is no longer available
to absorb further photons. This is seen in Eq. (15) in the
appearance of n − 1 instead of n multiplying γ 2. Thus, the
detector interacting with successive photons is increasingly
detuned from the optimal ratio, as the effective field coupling
is reduced but � is not. This suggests that high-efficiency
photon resolution requires an array of many more elements
than potential photons detected. In Fig. 7, the number of
detector elements required to detect all photons in a pulse
with efficiencies of 80%, 95%, and 99% is plotted against
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FIG. 7. Number of elements in a detector array required to detect
a number of photons with a certain efficiency. The detector elements
have the configuration in Fig. 5.

the number of photons in the pulse. As shown, the minimum
number of detector elements increases dramatically as more
stringent requirements for efficiency are imposed.

This reveals an important design consideration for high-
performance number-resolving detectors: The effective pa-
rameters of the detector will be altered by interaction with
the photon packet, and an ideal detector architecture is one
that continues to be optimally tuned for interaction with the
remainder of the wave packet. For example, to avoid the
need for excessive numbers of elements, the array struc-
ture analyzed above must be reconfigured so that either the
absorption properties are unchanged as the system absorbs
photons or the decay process is also modified so that the
effective decay and effective optical coupling remain matched
following absorption.

VII. CONCLUSION

We developed a general framework, valid for any pointlike
detector system under weak light coupling, for simulating,
analyzing, and engineering one- and few-photon detection.
Based on theoretical treatments of light-matter interactions
and open quantum systems, we constructed a unified approach
to modeling photodection, deriving an expression that yields
an output signal generated through the propagation of the in-
coming photon occupation by a Green’s function representing
the matter system. This expression provides a means of both
explicitly calculating detection trajectories for determination
of performance metrics as well as efficiently estimating these
metrics from averaged solutions. It naturally furnishes a defi-
nition of ideal detection that places constraints on the system
Green’s function and ultimately the detector structure. Using
this, we analytically analyze detector schemes and show that
they conform to this definition with appropriate parameters.
We also generalize the description of an ideal detector to
systems with multiple excited levels, with and without energy
dispersion, as well as multiple-photon resolution.

We emphasize that this framework describes detection ab-
stractly and may encompass detectors utilizing very different
physical systems, allowing comparative analysis of different
detector architectures in a unified way. While we find, in
principle, that ideal detector performance is possible, the
structure of energy levels and couplings between them or the

physically allowed parameters may prohibit the realization of
this limit. By representing a detector implementation within
the framework, it may be evaluated against the ideal limit,
clarifying the constraints and tradeoffs imposed by the system
physics. This can guide engineering of the system architecture
and parameters to improve the detector performance as well as
facilitate the design of entirely novel detectors.
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APPENDIX A: LIGHT FIELD CONSTRUCTION

We use fields constructed using the quantum noise for-
malism where the field annihilation and creation operators
b̂(t ) and b̂

†
(t ) satisfy the commutation relation [b̂

†
(t ), b̂(t ′)] =

δ(t − t ′). From this, one may define the objects

dBt =
∫ t+dt

t

dτ b̂(τ ),

d�t =
∫ t+dt

t

dτ b̂†(τ )b̂(τ ),

|N〉 = 1√
N !

[∫
dτE(τ )b̂(τ )†

]N

|0〉,

dBt |N〉 = dt
√

NE(t )|N − 1〉, (A1)

where N is the number of photons in the ith mode
with temporal field profile E(t ) defined so that∫ ∞
−∞ dt |E(t )|2 = 1. Then the light field is in general

ρ̂LIGHT(t ) = ∑
N,M cN,M (t )|N〉〈M|.

In this paper, we consider only a single mode; however,
the consideration of multiple arbitrary modes is straight-
forward, if cumbersome. In this case, each mode will be
associated with an index i denoting the mode temporal pro-
file Ei (t ) and occupation Ni . The component field states
are written as |N〉 = ∏

i |Ni〉, where N is a vector con-
taining the Ni , so that the overall field density matrix is
ρ̂LIGHT(t ) = ∑

N,M cN,M(t )|N〉〈M|. As a result, the matter
state is ρ̂MATTER(t ) = cN,M(t0)�̂N,M(t ) and the �̂NM(t ) are
dependent on all �̂N−1i ,M(t ), �̂N,M−1i (t ), and �̂N−1i ,M−1i (t )
where N − 1i is the overall occupation N less one photon in
the ith mode.

APPENDIX B: CONNECTION TO POVM

Any quantum measurement can be mathematically repre-
sented as a positive operator-valued measure (POVM) [28,29],
which is a set of operators defined on the Hilbert space of
the system being measured. Each of these operators is labeled
by a measurement outcome, and in our context where one is
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measuring a continuous current, these POVM elements are
labeled by a continuous measurement record.

In this section, we show how the Green’s functions we have
defined are related to a POVM on the field degrees of freedom.
We consider a single mode of the field for simplicity, but the
results can be generalized to more complex fields.

Using Eq. (A1), we obtain a recursive operator

P (t ) = 1 +
∫ t

−∞
Ḡ(t − τ )(S̄d�τ + L̄+dBτ + L̄−dB†

τ )P (τ )

such that our final system state ρ̄(t ) can be expressed as

ρ̄MATTER(t ) = TrLIGHT[P (t )ρ̄MATTER(t0) ⊗ ρ̂LIGHT(t0)],

where ρ̂LIGHT(t0) is our initial field state constructed as indi-
cated above. We can now write operator expectation values as
a function of the input state

〈X̂i〉(ρ̂LIGHT(t0), t )

= TrLIGHT[X̄i · P (t )ρ̄MATTER(t0) ⊗ ρ̂LIGHT(t0)].

For a complete set of appropriately normalized amplifi-
cation operators X̄i obtained from vectorization of POVM
elements X̂i on the system, when an initial state is assumed,
X̄i · P (t )ρ̄MATTER(t0) forms a coarse-grained POVM on the
field.

APPENDIX C: ESTIMATION OF EFFICIENCY
FROM AVERAGE DYNAMICS

The stochastic term given by Eq. (5) unfortunately con-
tributes both explicit time dependence and nonlinearity due to
the normalizing third term of the superoperator H, meaning
that it cannot be described efficiently using the machinery
presented in the main text. Furthermore, since detection events
are defined as the output exceeding some threshold, which
is a nonlinear condition on the current, one usually has to
resort to stochastic trajectory simulations in order to estimate
efficiencies [23].

However, as mentioned in the main text, under commonly
prevailing conditions, measurement metrics can be estimated
from the averaged dynamics. Under sufficiently strong am-
plification, the trajectories become jumplike, with the system
being in either a monitored or unmonitored state. We may
thus write the probability of the system being in the monitored
subsystem at time t as

PMON(t ) = PMON|MON(t, t ′)PMON(t ′)

+PMON|UNMON(t, t ′)PUNMON(t ′), (C1)

where Px|y (t, t ′) is the probability of the system being in
subsystem x at t given that it was in subsystem y at t ′.
Here, the subsystems are labeled MON and UNMON, which
correspond to the monitored and unmonitored states. Recall
that x̂ projects onto the subspace of states being monitored
through X̂. Therefore, PMON(t ) = Tr[x̂ρ̂(t )] = x̄†ρ̄(t ), and
hence rewriting the above gives

PMON(t ) = PMON|MON(t, t ′)x̄†ρ̄(t ′)

+PMON|UNMON(t, t ′)(I − x̄)†ρ̄(t ′). (C2)

Now, we formulate a probability quantity that will serve
as an approximation of detection efficiency. Consider a single

detection channel for simplicity. Our proxy for efficiency is
based on the time-dependent probability that a detection event
is registered in the channel of interest, which we denote by
�(t ). This is the probability of registering a detection event
in the interval (t0, t] given a photon in the field at time t0. We
write this explicitly as

�(t ) =
∫ t

t0+tMIN

dt ′sMON|UNMON(t ′ − tMIN)

×PMON|MON(t ′, t ′ − tMIN), (C3)

where sMON|UNMON(t ) is the probability of transitioning from
the unmonitored subspace to the monitored subspace at time t .
The integrand in this expression represents the joint probabil-
ity of population transferring from the unmonitored subspace
(which includes the field degrees of freedom) to the monitored
subspace at time t ′ and that this population stays in the moni-
tored subspace for time tMIN, which we take as the minimum
time that the monitored subspace has to be populated before
a detection is registered. (A more experimentally motivated
condition for registering a detection is that the measured
current exceed some threshold value IHIT; however, since it
is difficult to develop an expression based on this condition,
we proceed with the temporal condition. The approximate
relationship between the two is that tMIN ≈ IHITtm/χ ) where
tm is chosen to yield a certain dark count rate.

In order to proceed, we require an expression for
sMON|UNMON(t ). To obtain this, we return to Eq. (C1) and
consider the incremental quantity

�PMON(t ) ≡ PMON(t ) − PMON(t − �t )

= [PMON|MON(t, t − �t ) − 1]PMON(t − �t )

+PMON|UNMON(t, t − �t )PUNMON(t − �t ).

Now, the first quantity in this expression corresponds to the
rate at which population is staying in the monitored sub-
space while the second quantity corresponds to the rate at
which population is entering the monitored subspace from
the unmonitored subspace at time t . This is precisely the
quantity sMON|UNMON(t )�t , and given this expression for it,
we can compute it explicitly in terms of the density matrix
and dynamics:

sMON|UNMON(t )

= d

dt
(PMON|UNMON(t, t ′)PUNMON(t − dt ))|t ′=t

= d

dt
(PMON|UNMON(t, t ′)(I − x̄)†ρ̄(t ′))|t ′=t

= d

dt
(x̄†ρ̄(t ) − PMON|MON(t, t ′)x̄†ρ̄(t ′))|t ′=t

= x̄†
(

dρ̄(t )

dt
− dPMON|MON(t, t ′)

dt
|t ′=t ρ̄(t )

)
,

where in the third line we have used the identity in Eq. (C2).
PMON|MON(t, t ′) is typically a function of the internal dynam-
ics and can then be readily determined from the system Ḡ.
When Ā is time independent, it can further be written as a
function of τ = t − t ′ as

PMON|MON(t, t ′) = x̄†Ḡ(τ )x̄.
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Hence,

dPMON|MON(t, t ′)
dt

|t=t ′ = x̄† dḠ(t )

dt
|t=0x̄ = x̄†Āx̄.

Finally, using this expression for sMON|UNMON(t ) in Eq. (C3)
results in

�(t ) =
∫ t

t0+tMIN

dt ′sMON|UNMON(t ′ − tMIN)

×PMON|MON(t ′, t ′ − tMIN)

=
∫ t−tMIN

t0

dτsMON|UNMON(τ )

×PMON|MON(τ + tMIN, τ )

=
∫ t−tMIN

t0

dτPMON|MON(tMIN)

×̄x †
[
dρ̄(τ )

dτ
− x̄†Āx̄ρ̄(τ )

]

= x̄†Ḡ(tMIN)x̄

[
x̄†ρ̄(t − tMIN)

− (x̄†Āx̄)x̄†
∫ t−tMON

t0

dτ ρ̄(τ )

]
,

where we have assumed that x̄†ρ̄(t0) = 0.

If the monitored subsystem is stable and population loss
from it can be neglected, PMON|MON(t, t ′) = 1, and therefore
x̄†Ḡx̄ = 1 and x̄†Ax̄ = 0. In this case, the above reduces to

�(t ) = x̄†ρ̄(t − tMIN). (C4)

These expressions are the probability that a detection event is
registered in the measurement channel. In general, there may
be multiple measurement channels, each associated with an
operator X̂i , projection subspace x̂i , and �i (t ). The probabil-
ity that a given number of photons N are detected will depend
in some fashion on the combined behavior of all the channels,
so that PN is some function pN of all �i .

As an example, we refer to the system discussed in Sec. VI.
Since each element has an associated measurement channel,
we must consider �i , i ∈ 1..n. Since the absorption of a
photon corresponds to one measurement channel registering
a hit, we take the registering of a hit on N channels to
correspond to detection of an N photon wave packet. Thus, for
a single photon, p1(�i ) = ∑

i �i , and for, e.g., three photons,
p3(�i ) = ∑

i>j>k �i |�j |�k , where �i |�j is the probability
of a detection event on the ith channel given one on the j th
channel. Since this system satisfies the conditions of Eq. (C4),
this can be expressed as

�i |�j |�k... = (x̄i × x̄j × x̄k...)
†ρ̄(t − tMIN),

where × represents an element-wise product.

APPENDIX D: DEGENERATE MULTIELEMENT

For a system of n elements, we can represent the total system density matrix using the notation

ρ̂n:milimj lj mklk ... = ρ̂i
mi li

⊗ ρ̂
j

mj lj
⊗ ρ̂k

mklk
⊗ · · · ,

where mi and li are one of 0i , 1i , Ci , corresponding to the states of subsystem i. For example, ρ̂3:010112020313 represents a system
with three subsystems and coherences between the 0 and 1 states in subsystems 2 and 3. Since the subsystems are all degenerate,
for brevity only the subsystems not in the ground state will be noted in the subscript and we use, for example, ρ̂n:1001 to represent
all of the n(n − 1)/2 configurations with this description. The operators on the vectorized density matrix are then

ρ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂00

ρ̂n:11

ρ̂n:1001

ρ̂n:CC

...

ρ̂n:10

ρ̂n:01

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

063835-13



YOUNG, SAROVAR, AND LÉONARD PHYSICAL REVIEW A 98, 063835 (2018)

so that

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 nγ 2 0 n(n − 1)γ 2 0 0

0 −(γ 2 + �2) 0 −(n − 1)γ 2 0 0

0 �2 0 0 . . . 0 0 . . .

0 −γ 2 0 −(n − 1)γ 2 0 0
...

. . .

0 0 0 0 iω − nγ 2+�2

2 0

0 0 0 0 0 −iω − nγ 2+�2

2

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L̄+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −nγ 0

0 0 0 0 γ 0

0 0 0 0 . . . (n − 1)γ 0 . . .

0 0 0 0 0 0
...

. . .

0 0 0 0 0 0

γ −γ −(n − 1)γ 0 0 0
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

APPENDIX E: DISPERSIVE BAND

Much of the machinery developed in other contexts for manipulating Green’s functions may be brought to bear as well. In
some cases, it is convenient to separate Ā into an Ā0 and Ā1, where the former can be easily exponentiated (e.g., it is diagonal)
so that

Ḡ(t ) = eĀt = e(Ā0t+Ā1t ) = lim
dt→0

[eĀ
0dt + Ā1dt]t/dt

= ĝ(t ) +
∫ t

0
dτ ĝ(t − τ )Ā1ĝ(τ ) +

∫ t

−∞
dτ ĝ(t − τ )Ā1

∫ τ

0
dτ ′ĝ(τ − τ ′)Ā1ĝ(τ ′) + · · ·

= ĝ(t ) +
∫ t

0
dτ ĝ(t − τ )Ā1Ḡ(τ ). (E1)

An example of this is provided by a system comprising a ground state labeled 0 and a dispersive band of n excited states
labeled with the indices 1..n. All excitations are characterized by the same light-matter coupling γ . For clarity, we represent
elements of ρ̄ with the notation ρ̄(ij ) = ρ̂ij and the element of a matrix Ō coupling density matrix elements ρ̂ij and ρ̂rs with the
notation Ō(ij )(rs).

Then Ā0 and Ā1 are, giving only nonzero elements,

Ā0
(ij )(ij ) = i(ωi − ωj ), i, j ∈ 0 . . . n,

Ā1
(00)(ij ) = γ 2,

Ā1
(0i)(0j ) = Ā1

(i0)(j0) = −γ 2/2, i, j, r, s ∈ 1 . . . n,

Ā1
(ij )(rs) = − γ 2

2 (δir + δjs )

The total population of the band is given by

u(t ) =
∑

i

�̄11
(ii)(t ) =

∑
ijrs

2
∫ t

dτγ Ḡ(ii)(rj )(t − τ )E(τ )
∫ τ

dτ ′γ Ḡ(r0)(s0)(τ − τ ′)E∗(τ ′).
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Expanding
∑

s Ḡ(r0)(s0) according to Eq. (E1) gives

∑
s

Ḡ(r0)(s0)(t ) = e−iωr t −
∑

r

γ 2

2

∫ t

0
dτe−iωr (t−τ )e−iωsτ +

∑
qs

γ 4

4

∫ t

0
dτe−iωr (t−τ ) ×

∫ τ

0
dτ ′e−iωq (τ−τ ′ )e−iωsτ

′ + · · · .

If we take the continuum limit n → ∞ and assume a Lorentzian distribution of states D(ω) = n
π

ζ 2/2
(ζ 2/2)2+(ω−ωE )2 around a center

frequency ωE , then
∑

r eiωr t = ∫
σ (ωr )dωre

iωr t = ne−(ζ 2/2)t and the series can be evaluated analytically as

∑
s

Ḡ(r0)(s0)(t ) = e−iωr t −
∑

s

γ 2

2

∫ t

0
dτe−iωr (t−τ )ne−(ζ 2/2)τ +

∑
qs

γ 4

4

∫ t

0
dτe−iωr (t−τ )

∫ τ

0
dτ ′ne−(ζ 2/2)τ ′ + · · ·

= e−iωr t − nγ 2

2

∫ t

0
dτe−iωr (t−τ ) × e−ζ 2/2τ

(
1 − nγ 2

2
+ n2γ 4

4
...

)
= e−iωr t − nγ 2

2

∫ t

0
dτe−iωr (t−τ )e− ζ2+nγ 2

2 τ .

Following a similar procedure for
∑

r Ḡ(pq )(r0)(t ), we can ultimately write

u(t ) = 2nγ 2

nγ 2 + ζ 2

∫ t

dτ (nγ 2e−(nγ 2+ζ 2 )(t−τ ) + ζ 2)E(τ )
∫ τ

dτ ′e− nγ 2+ζ2

2 (τ−τ ′ )E∗(τ ′).
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