
PHYSICAL REVIEW A 98, 063821 (2018)

Standard quantum limit of sensitivity of an optical gyroscope
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We find that the measurement sensitivity of an optical integrating gyroscope is fundamentally limited due
to ponderomotive action of the light leading to the standard quantum limit of the rotation angle detection. The
uncorrelated quantum fluctuations of power of clockwise and counterclockwise electromagnetic waves result
in optical power-dependent uncertainty of the angular gyroscope position. We also show that, on the other
hand, a quantum backaction evading measurement of the angular momentum of a gyroscope becomes feasible
if the proper measurement strategy is selected. The angle is perturbed in this case. This observation hints at the
fundamental inequivalence of integrating and rate gyroscopes.
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I. INTRODUCTION

There are two types of optical gyroscopes with respect
to measurement observables: rate and integrating ones. Rate
gyroscopes, for instance, passive fiber optic gyroscopes, mea-
sure rotation speed �. Integrating gyroscopes, for instance,
laser gyroscopes, allow a direct observation of the rotation
phase φ. Both devices are based on the optical Sagnac effect
and seem to be identical from a classical physics perspective.
From a quantum physics perspective, these measurements are
not equivalent because angular momentum and rotation phase
operators do not commute. In this paper we study fundamental
quantum limitations of rotation measurement accuracy using
a passive resonant optical resonant gyroscope as a model. We
also study quantum limitations of the torque measurement
using the system.

Passive resonant optical gyroscopes utilize the rotation-
dependent change of the distance traveled by light in the
clockwise and counterclockwise directions with respect to
the rotation axis to measure the rotation rate and rotation
angle. The nonreciprocity of the rotating system results in the
removal of the frequency degeneracy between clockwise and
counterclockwise modes of the ring cavity. The frequencies of
the modes can be measured in various ways, for instance, by
observation of the phase shift of the clockwise and counter-
clockwise light interacting with them. The resonant nature of
the device is important since the signal is proportional to the
finesse of the cavity.

Usual quantum analysis of a gyroscope involves study of
the optical quantum noise of the device [1,2]. The noise results
in sensitivity limitation that can be lifted with an increase of
the optical pump power. It was noticed that the sensitivity of a
gyroscope can also be limited due to the ponderomotive effect
[3]. It was envisioned that, in case the device has movable
parts, such as mirrors, the optical power fluctuations at the
mirrors introduce an additional noise term, called quantum
backaction [4], that eventually limits the overall sensitivity
of the gyroscope for any optical power, similarly to the

limitation of sensitivity of any interferometric measurement
of this kind. Miniaturization of a gyroscope made out of a
nonlinear material also results in the backaction [5].

Our analysis complements the studies performed in the
realm of modern optomechanics [6,7]. Optomechanical struc-
tures utilize light to manipulate mechanical systems. For
instance, radiation pressure induced by light modifies the
dynamics of harmonically bound micromirrors and introduces
additional mechanical rigidity and attenuation. The attenua-
tion can be replaced with amplification if the optical detuning
between the pump light frequency and the optical mode
frequency is properly selected in resonant optomechanical
structures. The attenuation can be used to cool the mechanical
degree of freedom. At the quantum limit, the optomechanical
interaction results in limitation of the continuous position
detection of the mechanical system leading to the standard
quantum limit (SQL) of the coordinate measurement. We
expand the observations of the optomechanics to the rotational
degrees of freedom and apply the developed technique to
find sensitivity limitations of the rotation measurements. In
our case the angular momentum and rotation phase replace
the momentum and coordinate of a standard optomechanical
system. We also expect that the study reported here will lead
to a wealth of efforts directed towards application of the
optomechanical techniques to rotating mechanical systems.

In this paper we study the fundamental limitations of the
sensitivity of a macroscopic gyroscope occurring due to the
uncertainty principle for the angular momentum and phase of
the gyroscope. In Sec. II we show that one can obtain the SQL
for the rotation measurements using this uncertainty principle.
In Sec. III we analyze the dynamics of a quantum gyroscope
using the Hamiltonian approach, derive the SQL within the
framework of this approach, and discuss the possibility of a
backaction-evading measurement and the SQL surpassing a
variational readout. In Sec. IV we discuss an analogy between
a quantum gyroscope and a quantum translational speed me-
ter. Section V summarizes the paper.
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II. STANDARD QUANTUM LIMIT OF ROTATION ANGLE

Let us consider rotation of a rigid thin circular thread
around an axis Z. The motion can be described by an-
gular momentum and rotation phase operators in analogy
with the momentum and coordinate of a pointlike particle.
The measurement of the rotation speed corresponds to the
measurement of angular momentum pφ = mr2�, where m

is the mass and r is the radius of the circle. The quantum
operators corresponding to angular momentum and the phase,
p̂φ = −ih̄∂/∂φ̂ and φ̂, respectively, do not commute,

[p̂φ, φ̂] = −ih̄, (2.1)

which means that both observables cannot be measured ac-
curately at the same time and hence the rate and integrat-
ing gyroscopes are not equivalent. Heisenberg’s uncertainty
principle leads to the requirement �p�φ � h̄/2, which also
can be rewritten in the form ���φ � h̄/2mr2. Here �p, ��,
and �φ are uncertainties of the momentum, frequency, and
phase, respectively. The expressions can be generalized for
a three-dimensional object, however we omit this exercise
herein for the sake of simplicity.

It is this inequality that results in the appearance of the
effect of quantum backaction in the rotation measurements.
We have two instantaneous measurements of the angle φ

separated by time tm in order to control variation of the angle
�φ. Then backaction from the first measurement leads to the
appearance of the SQL written as

�φSQL =
√

h̄tm

mr2
, (2.2)

��SQL =
√

h̄

mr2tm
. (2.3)

The SQL for the rotation angle is completely analogous to the
corresponding SQL of the coordinate and momentum of a free
mass [4,8–11].

The SQL value is small in practical devices, but can
become measurable for a micro- or nanodevice. For instance,
�φSQL = 1.8 × 10−5 deg for m = 10−5 g, r = 10−2 cm, and
tm = 105 s. The bias drift of a good gyroscope is two orders
of magnitude larger for the same time of observation. On the
other hand, assuming that the trend of technology develop-
ment of smart nanostructures continues, we can see that there
is a certain limit of miniaturization when the fundamental
quantum limitations become important.

Equations (2.2) and (2.3) also show that the measurements
of the rotation phase and frequency are fundamentally in-
equivalent. It also means that a true integrating gyroscope
and a rate gyroscope are also fundamentally different. The
difference can be visible only on a quantum level, which is
too low for the vast majority of practical applications.

III. STANDARD QUANTUM LIMIT OF ROTATION ANGLE
FOR AN OPTICAL GYROSCOPE

A. Model of the gyroscope

Let us explain the origin of the SQL of the rotation angle
using an example of a resonant optical gyroscope. An resonant
optical gyroscope measures either angular speed or rotation

angle, depending on the configuration. The measurements are
based on the Sagnac effect, which results in the frequency
shift of a ring cavity mode as a function of the rotation
frequency. In the case of clockwise rotation of the cavity,
the clockwise and counterclockwise frequencies of the cavity
modes (ω+ and ω−, respectively) shift as

�ω± = ∓ r�

cn0
, (3.1)

where c is the speed of light in the vacuum and n0 is the
refractive index of the material. A gyroscope can detect
the Sagnac-effect-mediated phase shift of the light passing
through the rotating cavity, the frequency shift of light gen-
erated in the resonator filled with a lasing medium, or a
fringe shift resulting from the interference of clockwise and
counterclockwise light emitted by the gyroscope cavity. In the
first two cases the gyroscope measures rotation speed. In the
third case it measures the rotation angle.

To derive Eq. (3.1) we use standard formalism describing
modes of a rotating optical cavity [12,13]. At this point we
neglect the mechanical degree of freedom and consider only
the optical part of the system. We assume that the phase
velocity of light in the motionless cavity is Vph = c/n0. For
the rotating cavity the optical path increases in the clockwise
direction (denoted by the subscript +) and decreases in the
counterclockwise direction (denoted by the subscript −) in
accordance with kinematic formulas

L± = 2πr ± r�t±, (3.2)

V± = Vph ± r�

1 ± Vphr�/c2
, (3.3)

where t± is the cavity round-trip travel time and V± is the
phase velocity of the clockwise and counterclockwise waves
in the laboratory frame of reference. Using the definition of
t±, we find an expression for the optical path length L± for
the clockwise and counterclockwise waves in the laboratory
reference frame using a special relativity formalism

t± = L±
V±

, (3.4)

which implies that

L± = 2πr ± r�
L±(1 ± Vphr�/c2)

Vph ± r�
, (3.5)

L± = 2πr
Vph ± r�

Vph(1 − [r�/c]2)
. (3.6)

We can see from this expression that the optical length
increases in the clockwise direction and decreases in the
counterclockwise direction when the resonator rotates in the
clockwise direction.

Let us consider a motionless cavity made out of mate-
rial with dielectric permittivity ε and magnetic permeability
μ = 1. The refractive index of the cavity material is related
to the dielectric permittivity n0 = √

ε. Our goal is to find
equations describing generalized canonical amplitudes q±(t )
for clockwise and counterclockwise modes of the cavity.

We assume that the radius of the cavity and the effective
cross section of the modes are large enough: r � S1/2 � λ

(λ is the mean optical wavelength in the vacuum). In this
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case electric (E±) and magnetic (H±) field amplitudes of the
modes can be expressed as (see [14])

E±(t ) = ∓
√

2π

nS±L±
f±e±ik±rφ∂tq±(t ), (3.7a)

H±(t ) =
√

2πn

S±L±
f±e±ik±rφω±q±(t ), (3.7b)

f± = f±(�r⊥), S± =
∫

|f±|2 �dr⊥, (3.7c)

k± = ω±
Vph

= nω±
c

, Vph = c

n
, (3.7d)

where φ is azimuthal angle and rφ is the coordinate along the
rim of the ring cavity.

The translation condition E±(t ) = E±(t + t±) defines nor-
mal frequencies of the ring cavity. For the case of the cavity at
rest (� = 0)

k±L± = 2π�, L± = 2πr, (3.8)
which implies that

ω± = �
Vph

r
≡ ω0, (3.9)

where � is an integer. Normal frequencies of the clockwise
and counterclockwise modes are degenerate ω+ = ω− and are
equal to ω0.

Kinetic (T±) and potential (U±) energies for the optical
fields and associated Lagrangians L± can be expressed in
terms of the canonical amplitudes as

T± =
∫

L±ε〈|E±|〉2

8π
dr⊥ = ∂tq

2
±

2
, (3.10)

U± =
∫

L±〈|H±|〉2

8π
dr⊥ = ω2

±q2
±

2
, (3.11)

L± = T± − U± = ∂tq
2
±

2
− ω2

±q2
±

2
. (3.12)

We can find generalized momenta p± for the light confined in
the modes and write down the corresponding Hamiltonians
H± for the optical fields propagating in the clockwise and
counterclockwise directions

p± = ∂L±
∂q̇±

= ∂tq±, (3.13)

H± = p±∂tq± − L± = p2
±

2
+ ω2

±q2
±

2
. (3.14)

For a gyroscope rotating with frequency φ̇ = �, the formu-
las (3.7) are valid. Using the translation conditions, we obtain

k±L± = 2π� [Eq. (3.6)], (3.15)
which implies that

ω± = 2π�
V±
L±

, (3.16)

where ω0 is defined in (3.8). Linearizing the expression with
respect to rφ̇/Vph, we derive

ω± 
 ω0

(
1 ∓ rφ̇

n0c

)
, (3.17)

which results in Eq. (3.1).

B. Hamilton formalism for the optomechanical system

We have characterized the field amplitudes of the optical
modes of the ring cavity used in an optical gyroscope in a
classical canonical way. To describe the measurement of the
rotation using the gyroscope in the quantum picture we need
to describe the interaction of light and the mechanical degree
of freedom in a classical canonical way and then quantize it.
This can be done in two ways. We can either use Eq. (3.1)
and derive the complete Hamiltonian of the optomechani-
cal system through the Lagrangian formalism or utilize the
Lagrangian of the electromagnetic modes given by Eq. (3.12)
directly, along with the Lagrangian of the mechanical system.
The first method is similar to the standard optomechanical
approach stating that the mechanical motion modifies the
frequency of light and does not change the photon number.
The second method is more general as it does not require
photon-number conservation in the modes but rather shows
that the number is conserved. Both methods result in the
same final expression of the optomechanical Hamiltonian of
a rotating system, and we present both derivations in what
follows.

1. Derivation of the Hamiltonian using Eq. (3.1)

Let us consider a thin planar lossless fiber loop cavity of
mass m that can rotate. The loop confines monochromatic
light in one of its clockwise-counterclockwise mode pairs.
The kinetic and potential energies of the loop are

T = 1
2mr2φ̇2, (3.18)

V = E+

[
1 − rφ̇

cn0

]
+ E−

[
1 + rφ̇

cn0

]
, (3.19)

E± = p2
±

2
+ ω2

0q
2
±

2
. (3.20)

where we expressed optical energy stored in the clockwise and
counterclockwise modes as E± = T± + U± when the cavity is
at rest. The canonical angular momentum of the system is

pφ = ∂L
∂φ̇

= mr2φ̇ + r

cn0
(E+ − E−), (3.21)

where L = T − V is the Lagrangian. The Hamiltonian of the
optomechanical system is defined as

H = pφφ̇ − L

= 1

2I

(
pφ − r

cn0
(E+ − E−)

)2

+ E+ + E−, (3.22)

where I = mr2 is the moment of inertia.

2. Derivation of the Hamiltonian using Eq. (3.12)

Usage of Eq. (3.12) allows for a more generalized deriva-
tion of the Hamiltonian. We add a Lagrangian for a mechan-
ical degree of freedom to the Lagrangian of light confined
in the resonator modes to find a Lagrangian of the rotating
optomechanical system

L = Lm + L+ + L− + Lint, (3.23)
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Lm = I φ̇2

2
, L± = ∂tq

2
±

2
− ω2

0q
2
±

2
, (3.24)

Lint = ω2
0

rφ̇

n0c
(q2

+ − q2
−). (3.25)

To derive the expression for Lint ≡ (rφ̇/n0c)(E+ − E−) we
took into account that, for the cavity at rest, p2

± = ω2
0q

2
±.

The canonical angular momentum pφ and the canonical
optical momenta p+ and p− of the system can be found from

pφ ≡ ∂L
∂φ̇

= I φ̇ + ω2
0

r

n0c
(q2

+ − q2
−), (3.26)

p± ≡ ∂L
∂q̇±

= q̇±, (3.27)

φ̇ = 1

I

(
pφ − ω2

0
r

n0c
(q2

+ − q2
−)

)
. (3.28)

The Hamiltonian of the system is defined as

H = pφφ̇ + q̇+p+ + q̇−p− − L (3.29a)

= H+ + H− + Hm, (3.29b)

H± = p2
±

2
+ ω2

0q
2
±

2
, (3.29c)

Hm = 1

2I

(
pφ − ω2

0
r

n0c
(q2

+ − q2
−)

)2

. (3.29d)

3. Equations of motion

Now using (3.22) or (3.29), one can write down equations
of motion

∂tq± = p±, (3.30a)

∂tp± = −ω2
0q± ±

± 1

I

(
pφ − ω2

0
r

n0c
(q2

+ − q2
−)

)
2ω2

0
R

nc
q±, (3.30b)

∂tpφ = 0, (3.30c)

∂tφ = 1

I

(
pφ − ω2

0
r

n0c
(q2

+ − q2
−)

)
. (3.30d)

These equations can be reduced to

∂2
t q+ + ω2

0

(
1 − 2

r

n0c
∂tφ

)
q+ = 0, (3.31a)

∂2
t q− + ω2

0

(
1 + 2

r

n0c
∂tφ

)
q− = 0, (3.31b)

I∂2
t φ + ω2

0
r

n0c
∂t (q

2
+ − q2

−) = 0. (3.31c)

C. Quantization

At this point we are ready to quantize the rotating op-
tomechanical system. Introducing annihilation and creation
operators for the optical modes (â± and â

†
±, respectively),

we obtain

q̂± =
√

h̄

2ω0
(â± + â

†
±), p̂± =

√
h̄ω0

2

(
â± + â

†
±

i

)
,

p̂φ = mr2φ̇ + h̄ω0r

cn0
(â†

+â+ − â
†
−â−); (3.32)

Ĥ = Ĥm + Ĥ+ + Ĥ−, Ĥ± = h̄ω0
(
â
†
±â± + 1

2

)
,

Ĥm = 1

2I

(
p̂φ − h̄ω0

r

n0c
(â†

+â+ − â
†
−â−)

)2

. (3.33)

Here we used the rotating-wave approximation and dropped
fast oscillating terms ∼â2

± and (â†
±)2. To complete the pic-

ture we need to take into account the commutator given by
Eq. (2.1).

Equation (3.33) immediately shows that the canonical an-
gular momentum p̂φ is not perturbed by the interaction since
[Ĥ , p̂φ] = 0. Therefore, p̂φ is conserved in the measurement,
and similarly for the photon numbers. On the other hand, the
rotation phase as well as optical phase is perturbed due to
quantum backaction. To find an expression for the quantum
backaction we write the Hamiltonian equations

˙̂pφ = ∂φH = 0, ∂t (â
†
±â±) = 0, (3.34a)

˙̂φ = p̂φ

I
− h̄ω0r

Icn0
(â†

+â+ − â
†
−â−), (3.34b)

˙̂a± = −iω0

(
1 ∓ r ˙̂φ

cn0

)
â±, (3.34c)

which can be solved exactly, taking into account that â
†
±â±

and p̂φ are conserved,

φ̂ = φ̂0 +
(

p̂φ

I
− h̄ω0r

Icn0
(â†

+â+ − â
†
−â−)

)
t, (3.35)

â± = e−iω0t exp

[
± i

r

cn0

(
p̂φ

I
− h̄ω0r

Icn0

× (â†
+â+ − â

†
−â−)

)
t

]
â±(0). (3.36)

D. Origin of the SQL and possibility of backaction evading
measurement in the rotating system

There are several possible problems that can be considered
with respect to the system to explain the SQL introduced in
Eqs. (2.2) and (2.3). In what follows we will consider two of
them. One is related to the measurement of the initial angular
velocity of the rotating gyroscope, while the other is related
to the measurement of the velocity change occurring during
the measurement procedure. In what follows we argue that in
the first case the accuracy of the measurement can be infinite,
in accordance with Eq. (2.3), while in the second case it
is limited by the standard quantum limit of phase detection
[Eq. (2.2)]. Interestingly, by selecting a proper measurement
procedure one can remove the quantum backaction in the
second case.

Let us consider an empty open cavity rotating with angular
velocity �. The cavity is adiabatically interrogated with two,
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clockwise and counterclockwise, optical pulses. Since the
operator p̂φ is conserved during the interaction, the angular
momentum (and angular velocity) will be the same at the end
of the measurement as the angular velocity at the beginning of
the measurement. In other words, p̂φ is an integral of motion,
hence it fulfills the condition of being a quantum nondemo-
lition (QND) variable [9]. The accuracy of our measurement
procedure is limited by the SQL (2.3) though.

The information about the initial angular momentum
p̂φ (t = 0) is contained in the phases ϕ± of the pulses exiting
the cavity (3.34c):

ϕ± = ∓ r�ω0τ

cn0
. (3.37)

Here τ is the time duration of each pulse. The phase shift
(ϕ− − ϕ+)/2 can be measured with certain accuracy. For the
simplest case when optical pulses are in the coherent state
with phase uncertainties �ϕ± 
 1/2

√
n± and equal mean

photon numbers n± = n, we estimate the measurement error
to be

��meas = cn0

2ω0rτ

√
�ϕ2+ + �ϕ2− 
 cn0

2ω0rτ
√

2n
. (3.38)

On the other hand, during the measurement we get infor-
mation on the perturbed angular velocity, as it follows from
(3.34b),

��ba = h̄ω0r

Icn0
(�n+ + �n−) 
 h̄ω0r

Icn0
2
√

n. (3.39)

Here we again assume that optical pulses are in the coherent
state with uncertainties of phonon numbers �n± 
 √

n.
The minimal error of the measurement can be derived from

(3.38) and (3.39) by minimizing ��meas + ��ba by selecting
the optimal value of the photon number n,

��min =
√

2h̄

I τ
, �pφ =

√
2h̄

τ
. (3.40)

This differs from the SQL (2.3) by a numeric multiplier only.
Obviously, even within the SQL boundaries we can im-

prove the accuracy of the measurement by increasing the
measurement time τ or by utilizing the consequence of re-
peating measuring pulses. The latter technique simply allows
involving multiple optical pulses to increase the measurement
accuracy. Let us assume that during the procedure the mea-
surement accuracy of the angular momentum is �p. The mea-
surement can be repeated N times. Since each measurement
does not disturb the initial angular momentum and the errors
of the measurements are not correlated, the accuracy of the set
of measurements becomes �p/

√
N . The overall accuracy of

the set of measurements increases with an increase in N .
While the backaction in operator p̂φ is removed after

the measurement, the perturbation of the phase cannot be
removed. This perturbation occurs in accordance with (3.35)
[compare with (3.39)] and leads to

�φba 
 h̄ω0rτ

Icn0

√
�n2+ + �n2− 
 h̄ω0rτ

√
2n

Icn0
. (3.41)

It is possible to derive the standard uncertainty relationship
for the measurements using (3.38) and (3.41),

I��meas�φba 
 h̄

2
. (3.42)

If we use the phase of the output light waves to detect a change
of the angular velocity that happens due to the action of an
external torque, the measurement sensitivity will be limited
by the SQL related to the phase, not the angular velocity. We
consider this case in the next section.

Depending on the measurement procedure, the SQL can
be lifted. The SQL appears in the QND measurement of the
angular velocity because the backaction (3.39) is erased after
the measurement took place and the initial p̂φ is not disturbed
(it is a QND variable) at the end. However, during the mea-
surement it restricts the accuracy. In order to realize a QND
measurement along with a backaction-evading measurement
we have to use not the semiclassical coherent state, but a
specifically prepared quantum state, the preparation of which
is not discussed herein. We also can surpass the SQL by
applying the procedure of variational measurement [15–17]
[see also the discussion and formula (3.61) in what follows].

E. Continuous measurement of torque

In the preceding section we briefly mentioned a continuous
measurement of a change of angular velocity of the system
performed by detection of the phase of the light interacting
with the rotating cavity. Let us consider this problem in more
detail and study the accuracy of detection of classical torque
acting on the ring cavity in the optomechanical system and
consider an open lossless optical configuration by introducing
the coupling rate γ and the associated Langevin terms into
the optic subsystem-related equations. We consider the con-
tinuous measurement of the torque acting on the cavity and
assume that (i) the probe’s clockwise light and counterclock-
wise light are resonantly tuned and (ii) the mechanical system
stays without dissipation. The equations of motion describing
the behavior of the open system become

˙̂φ = p̂φ

I
− h̄ω0r

Icn0
(â†

+â+ − â
†
−â−)+

∫
Ts

I
dt,

(3.43a)

˙̂a± + (iω0 + γ )â± = ±i
r ˙̂φ

cn0
â± +

√
2γ

τ
b̂±, (3.43b)

d̂± = −b̂± +
√

2γ τ â±. (3.43c)

Here Ts is a time-dependent signal torque, b̂± are the ampli-
tudes of the clockwise and counterclockwise pump fields in-
cluding fluctuation (Langevin) terms, τ = 2πr/c is the round-
trip time for the ring cavity, and d̂± are output amplitudes of
the clockwise and counterclockwise waves to be analyzed.

We remove the fast oscillating terms and present the optical
field operators as sums of classical and quantum terms

â±eiω0t = A± + a±, (3.44)

b̂±eiω0t = B± + b±, (3.45)
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d̂±eiω0t = D± + d±, (3.46)

where A± are the field amplitudes inside the cavity and B±
and D± are the input and output field mean amplitudes. For
the sake of simplicity, we assume that the mean amplitudes
are real numbers and write

A± =
√

2

γ τ
B±, (3.47)

D± = B± −
√

2γ τA± = −B±. (3.48)

We derive a set of equations in the linear approximation for
fluctuation amplitudes

ȧ+ + γ a+ = iω0
rφ̇

n0c
A+ +

√
2γ

τ
b+, (3.49a)

ȧ− + γ a− = −iω0
rφ̇

n0c
A− +

√
2γ

τ
b−, (3.49b)

I φ̈ +
√

2h̄ω0r

n0c
∂t (A+aa+ − A−aa−) = Ts, (3.49c)

d± = b± −
√

2γ τa±. (3.49d)

The amplitude noise components aa+ and aa− are defined in
Eq. (3.53a).

The equations for the fluctuations can be solved in the
frequency domain using the Fourier transform if we neglect
the initial conditions of the optomechanical system:

a±(t ) =
∫ ∞

−ω0

α±(ω)e−iωtdω, (3.50a)

b±(t ) =
∫ ∞

−ω0

β±(ω)e−iωtdω, (3.50b)

d±(t ) =
∫ ∞

−ω0

δ±(ω)e−iωtdω, (3.50c)

�(t ) =
∫ ∞

−∞
�(ω)e−iωtdω. (3.50d)

While omitting the initial conditions for the optical modes
is substantiated for the optical amplitudes in the case of a
continuous measurement, it is not straightforward for the case
of the mechanical degree of freedom. We use the motion of
the initial conditions which can be removed at the stage of
the processing when the classical signal is taken during the
measurements [18].

For the operators and their Fourier amplitudes the usual
commutation relations are valid, for example,

[a±(t ), a†
±(t ′)] = δ(t − t ′), (3.51)

[α(ω), α†(ω′)] = 2πδ(ω − ω′). (3.52)

Similar relationships are valid for the other operators.
It is convenient to introduce amplitude and phase quadra-

tures for the fields

aa±(t ) ≡ a±(t ) + a
†
±(t )√

2
, (3.53a)

aph± ≡ a±(t ) − a
†
±(t )

i
√

2
, (3.53b)

αa±(ω) ≡ α±(ω) + α
†
±(−ω)√

2
, (3.53c)

αph± ≡ α±(ω) − α
†
±(−ω)

i
√

2
(3.53d)

and rewrite Eqs. (3.49) for the quadratures in the frequency
domain

αa± =
√

2γ

τ

βa±
γ − iω

, (3.54a)

αph± = ±
√

2ω0r�

n0c

A±
γ − iω

+
√

2γ

τ

βph±
γ − iω

, (3.54b)

−iω

(
I� +

√
2h̄ω0r

n0c
(A+αa+ − A−αa−)

)
= Ts.

(3.54c)

For the output waves we obtain

δa± = −ββa±, β ≡ γ + iω

γ − iω
, (3.55a)

δph± = ∓2
√

γ τω0r�

n0c

A±
γ − iω

− ββph±, (3.55b)

� = iTs

ωI
−

√
2h̄ω0r

In0c
(A+αa+ − A−αa−). (3.55c)

After substitution of (3.55c) into (3.55b) we obtain

δph± = ±2
√

2γ τ h̄(ω0r )2

(n0c)2I

A±(A+αa+ − A−αa−)

γ − iω

∓ 2
√

γ τω0rA±
n0c(γ − iω)

iTs

ωI
− ββph±. (3.56)

These equations can be rewritten with respect to the input
fields

δa± = −ββa±, (3.57a)

δph± = ±8h̄(ω0r )2

(n0c)2Iτ

B±(B+βa+ − B−βa−)

(γ − iω)2

∓ 2
√

2ω0rB±
n0c(γ − iω)

iTs

ωI
− ββph±. (3.57b)

As expected, we see that the phase quadrature is contaminated
with the optical power-dependent fluctuation term that comes
along with the signal.

Let us consider the measurement procedure of Ts in which
the sums and differences of outputs are detected:

d̃+ = d+ + d−√
2

, d̃− = d+ − d−√
2

, (3.58a)

b̃+ = b+ + b−√
2

, b̃− = b+ − b−√
2

. (3.58b)
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For the sake of simplicity we also assume that the mea-
surement is completely balanced B± = B. In the frequency
domain we obtain

δ̃a± = −ββ̃a±, δ̃ph+ = −ββ̃ph+, (3.59a)

δ̃ph− = β

(
16h̄(ω0r )2B2

I (n0c)2τ (γ 2 + ω2)
β̃a− − β̃ph−

)

− 4ω0rB

n0c(γ − iω)

iTs

ωI

= β(Kβ̃a− − β̃ph−) − i
√

2βK Ts

TSQL
, (3.59b)

K ≡ 16h̄(ω0r )2B2

I (n0c)2τ (γ 2 + ω2)
, (3.59c)

TSQL(ω) ≡
√

2h̄Iω2. (3.59d)

Here the quadrature β̃ph− is responsible for measurement error
while the quadrature β̃a− is responsible for backaction in the
measurements. In accordance with Eq. (3.59b), the torque can
be measured if

Ts

TSQL(ω)
>

√
K
2

+ 1

2K . (3.60)

The minimum detectable torque is Ts = TSQL when K = 1
if one detects the quadrature δ̃ph−. We see that this straight-
forward measurement of the torque has limited maximum
sensitivity even though an optimal strategy for the angular
velocity measurement has unlimited sensitivity.

In order to surpass the SQL we can apply the procedure
of a variational measurement [15–17] of quadrature ξ =
δ̃a− cos θ + δ̃ph− sin θ defined as

ξ = β([K sin θ + cos θ ]β̃a− − sin θβ̃ph−)

− i sin θ
√

2βK Ts

TSQL
, (3.61)

where the homodyne angle θ is selected so that cot θ =
−1/K. Such a selection allows for compensation of the
backaction. Due to the frequency dependence of K, this
compensation is possible in a limited frequency band only. A
similar method is used in a conventional quantum speed meter
to overcome the SQL restriction [19,20].

IV. DISCUSSION

In this paper we analyze fundamental restrictions of the
quantum sensitivity of a gyroscope and show that the gy-
roscope should be extremely small in size to allow these
quantum effects to emerge. Microring optical cavities can
have high finesse and can be monolithically integrated. This
gives us grounds to expect that the quantum effects can be
observed with this type of device. On the other hand, the
demonstrated measurement sensitivity of the existing micr-
ogyroscopes [21–29] is not very high. It was shown that an
on-chip gyroscope having resolution on the order of 10◦/h
is feasible if an InP-based ring cavity with a Q factor of ap-
proximately 6 × 105 and footprint of 10 mm2 is utilized [30].
An active on-chip gyroscope having similar resolution has
also been demonstrated [31]. A resonant gyroscope [32,33]

vAR1 coating

c/n0c c

L

x

ε = n2
0

AR2

AεA B

FIG. 1. Toy model of the speed meter. The velocity v of a
dielectric (the refractive index is n0) probe mass with antireflecting
coatings (AR1 and AR2) is measured by light traveling through it via
detection of the phase shift of the light proportional to velocity v.

utilizing ultrahigh-Q crystalline whispering gallery mode res-
onators and having 2◦/h resolution was also demonstrated.
The sensitivity should be improved significantly to allow the
quantum effects described in this paper to become visible.

The formalism developed in this paper also can be useful
for measurements performed with straight moving bodies.
The measurement of the angular velocity is similar to the
measurement of velocity of a body. The analogy becomes
obvious if one considers, for instance, a rotating gyroscope
as a pointer mass that can move on a round string. We show
here the analogy by introducing a toy semiclassical model of
the speed meter shown in Fig. 1.

The light passes through a dielectric test mass without
reflections (its surfaces are covered by antireflecting coatings)
and its phase ϕ shift depends on the velocity v of the test mass
(see the notation in Fig. 1)

φ = ω0

c
vτ0(n0 − 1), τ0 = n0L

c
. (4.1)

Here ω0 is the optical frequency and n0 is the refractive index
of the material. Let us assume that the light is in the coherent
state. The error of the velocity measurement is

δφ 
 1

2
√

n
, �vmeas 
 1

2
√

n

c

ω0τ (n0 − 1)
. (4.2)

Here n is number of “used” (passed through) light quanta and
τ is the duration of the measurement.

The momenta of the optical quanta outside and inside the
test mass are equal to

pout = h̄ω0

c
, pin = n0h̄ω0

c
, (4.3)

respectively. Hence, while the photon is traveling inside, the
probe mass receives additional momentum pout − pin, which
transforms into a position shift of the probe mass

x = pout − pin

m
τ. (4.4)

The uncertainty of the quantum number
√

n produces the
backaction noise of the velocity of the probe mass m during
the measurement

�vba 

√

nh̄ω0(n0 − 1)

cm
. (4.5)
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This perturbation is erased after the measurement because of
the photon-number- and energy-conservation laws.

Combining (4.2) and (4.5), one obtains a minimal error of
the measurement

�vmin =
√

h̄

mτ
, (4.6)

which coincides with the SQL for the velocity. We can surpass
the SQL by applying the procedure of variational measure-
ment [15–17].

The uncertainty of the quantum number
√

n produces the
uncertainty of position (backaction)

�xba 

√

Nh̄ω0(n0 − 1)

cm
τ, (4.7)

leading to the uncertainty relation

m�vmeas�xba 
 h̄

2
. (4.8)

The formulas (4.2), (4.7), and (4.8) here directly relate to
the formulas (3.38), (3.41), and (3.42), respectively, for the
quantum gyroscope.

The backaction-evading QND measurement strategy intro-
duced at the end of Sec. III D is also valid for the speed
meter. Let us consider a light pulse passing through the test
mass and then reflecting from a perfect mirror and passing
the test mass in the opposite direction. During the second
propagation the light-induced ponderomotive force is in the
opposite direction and is completely erased. The accuracy of

the test mass velocity is defined only by (4.2) and can be
decreased just by an increase of the photon number n of the
optical pulse.

V. CONCLUSION

We have shown that the sensitivity of a generalized gyro-
scope is restricted by the standard quantum limit in a way
similar to the free mass coordinate measurement sensitivity
limitations. Quantum theory indicates that the detection of
the rotation rate and of the rotation phase are fundamentally
different because the rotation phase and the canonical angular
momentum operators do not commute. As the result, the
observables cannot be measured simultaneously with high
accuracy. Using an example of a resonant optical gyroscope,
we have found the ultimate limit of the sensitivity of the
device and discussed requirements for achievement of the sen-
sitivity in an experiment. A backaction-evading measurement
technique allowing surpassing the standard quantum limit
was proposed. We also analyzed quantum restrictions of the
sensitivity of measurements of the classical torque applied to
the gyroscope.
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