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The permutational invariance of identical two-level systems allows for an exponential reduction in the
computational resources required to study the Lindblad dynamics of coupled spin-boson ensembles evolving
under the effect of both local and collective noise. Here we take advantage of this speedup to study several
important physical phenomena in the presence of local incoherent processes, in which each degree of freedom
couples to its own reservoir. Assessing the robustness of collective effects against local dissipation is paramount
to predict their presence in different physical implementations. We have developed an open-source library in
PYTHON, the Permutational-Invariant Quantum Solver (PIQS), which we use to study a variety of phenomena
in driven-dissipative open quantum systems. We consider both local and collective incoherent processes in the
weak-, strong-, and ultrastrong-coupling regimes. Using PIQS, we reproduce a series of known physical results
concerning collective quantum effects and extend their study to the local driven-dissipative scenario. Our work
addresses the robustness of various collective phenomena, e.g., spin squeezing, superradiance, and quantum
phase transitions, against local dissipation processes.
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I. INTRODUCTION

The simplest quantum model of an atom interacting with
light is that of a two-level system (TLS) interacting with
a single- or multimode electromagnetic environment. The
intrinsic nonlinearity of a TLS allows this model to capture
a wide breadth of quantum optics phenomena, from the emis-
sion of antibunched light under strong driving to ultrastrong
coupling with artificial atoms. Nowadays the quantum prop-
erties of single TLSs can be investigated on many different
physical platforms beyond atoms, including trapped ions and
NV centers, quantum dots, and superconducting circuits [1,2].

The steady improvement of experimental quantum tech-
nologies allows one to engineer the dynamics of many TLSs.
From a fundamental point of view, collective ensembles of
TLSs can display nontrivial quantum correlations [3] and be
used to simulate more complex systems. Since a TLS is the
physical embodiment of a qubit, its coherent control is sought
after for quantum computing and information applications [4].

A major challenge in preserving the coherence of many-
body quantum systems is that the system is perturbed by
uncontrolled interactions with the environment, which can
disrupt such fragile quantum coherence. Local impurities, de-
fects, as well as phononic and photonic environments prompt
single TLSs to excite or deexcite incoherently or undergo
dephasing; see Fig. 1. This breaks the time reversibility of the
unitary dynamics that distinguishes isolated quantum systems.
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FIG. 1. Open quantum system dynamics. An ensemble of iden-
tical two-level systems is collectively coupled to a bosonic cavity
through a coherent dynamics. The action of dissipative processes
on the two-level system dynamics is quantified by different rates
for homogeneous local (dashed box) and collective processes (dot-
dashed box), given by Lloc[ρ] and Lcol[ρ], respectively: local and
collective emission, set by γ↓ and γ⇓, local and collective dephasing,
set by γφ and γ�, and local and collective pumping, set by γ↑ and γ⇑,
respectively.
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From a theoretical point of view, one can treat this problem
of an open quantum system with a range of powerful tools
developed over the last few decades [5–9].

The interplay of collective and local dissipative interac-
tions in TLSs has been the subject of increased interest, as
it has been shown to lead to the emergence of robust quantum
effects. The prototypical example of collective behaviors in
closed systems is the

√
N enhancement of light-matter cou-

pling. In the open setting, where only collective dissipation
is considered, the cooperative enhancement in the collective
decay leads to superradiant light emission [3].

Recently it has been shown that by incoherently pumping
an ensemble of TLSs that can radiate superradiantly in the
bad-cavity limit, one obtains an interesting coexistence of
local and collective effects which lead to robust steady-state
superradiance [10,11] and quantum synchronization [12–15].
Steady-state superradiance results in the line-narrowing of
emitted light, a feature proposed to improve the precision
of atomic clocks by orders of magnitude [16–20]. Recent
theoretical studies even propose to embrace the unavoidable
nature of dissipative interactions and turn it into a resource,
for example engineering a reservoir to steer the evolution of
the open quantum system [21–29].

However, when local and collective processes coexist in
a driven-dissipative ensemble of TLSs, the complexity of
the system makes the direct solution of the dynamics in-
tractable analytically. This is an obstacle for reliable theo-
retical predictions that could guide experimental work. So
far, different alternative strategies have been developed to
tackle this problem: if the dissipative environment is fixed,
one can design the unitary contribution to steer the dynamics
to stable states [30,31]; the spectrum of the Lindbladian
can be analyzed to find decoherence-free subspaces and the
existence of multiple steady states [32–37]; the corner-space
renormalization method can be used to factorize a large lattice
into sublattices [38]; the Keldysh path-integral formalism can
be used to map the problem in terms of Majorana fermions;
and other condensed-matter methods allow the treatment of
both periodic driving and dissipation [39–43].

Besides special cases in which the dynamics can be
solved analytically [44,45], one generally resorts to a bosonic
approximation, e.g., with a Holstein-Primakoff transforma-
tion [43,46–54], which is valid only in the dilute-excitation
regime. Alternatively, a semiclassical approximation in which
higher moments of TLS operators are factorized can be per-
formed, truncating the hierarchy of equations and closing
the system [7,11,55–57]. The cumulant expansion method is
indeed an effective mean-field theory that improves for large
N but it gives access to limited information about the system’s
state (only up to second moments) [43,57].

Moreover, numerically simulating an open quantum sys-
tem is typically more demanding than simulating its closed
counterpart. Numerical methods can be employed [6], but,
in the most general case, the dimension of the Hilbert space
grows exponentially as 2N with the linear increase in the
number N of TLSs. In the open quantum setting, even if one
assumes only Markovian interactions with the environment,
this means that the Liouvillian space grows as 4N . This chal-
lenge makes the numerical solution of the system intractable
through a straightforward approach for large N .

A possible solution emerges if the system under study
allows one to consider all of the TLSs as identical and iden-
tically prepared at an initial time. Within the validity of these
assumptions, the open quantum dynamics across equivalent
sectors of the Liouvillian space effectively maps in the same
way due to the permutational symmetry of the system. The
identical behavior and mapping lead to a drastic reduction of
the resources required to describe the open system evolution
[15,56–82].

Hence standard numerical methods can exactly solve the
dynamics of N TLSs evolving under the action of homoge-
nous local Lindblad dissipation terms without the need to deal
with an exponentially large Liouvillian space. The treatment
of identical TLSs evolving under such homogenous and local
collective processes allows the scaling of the Liouvillian
space to be O(N4), with actually only O(N3) nonzero matrix
elements in the density matrix of the system. For a special
class of problems, which comprises many interesting models,
the scaling can be further reduced to O(N2).

This work

In this paper we introduce the Permutational-Invariant
Quantum Solver (PIQS), an open-source computational li-
brary that exploits the permutational symmetry of identical
TLSs. We use PIQS to solve different physical models that
can be described with local and collective Lindblad superoper-
ators. Our implementation, in the form of a PYTHON package,
is a low-effort easy-to-use tool which can be set up in a few
minutes and applied to a wide class of problems. At the same
time PIQS is optimized for performance and robustly tested.
PIQS is natively integrated with QuTiP, the quantum toolbox
in PYTHON, in order to allow the user to take full advantage of
the features provided by QuTiP [83,84].

Using PIQS, in the last section of this paper we numerically
investigate a number of model systems and effects, including
superradiant light emission, steady-state superradiance, spin
squeezing, limit cycles, and dissipatively coupled ensembles
of TLSs. We initially reproduce various known results, suc-
cessfully testing the validity and efficacy of our library. By
including local dissipation terms, we then demonstrate that
some of these effects become unstable, establishing important
limits on the class of physical implementations in which those
different effects could potentially be observed. Moreover,
we investigate how the TLS nonlinearity affects dissipative
systems in the ultrastrong-coupling regime.

The article is structured as follows. In Sec. II the Lindblad
master equation representing the physical model is intro-
duced. We show how permutational invariance is applied to
simplify the description of the density matrices, the overall
dynamics, and the rate-equation dynamics for populations.
We also provide an overview of existing works that exploit
permutational invariance, pointing out connections among
apparently unrelated works. We discuss how the simplification
can be used to study multiple ensembles of TLSs in different
cavities.

In Sec. III, we describe the structure of the computa-
tional library, with information on the usage of the code and
development and description of the various parts and op-
timizations that allow the study of many spin ensembles.
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Furthermore we provide information regarding the time and
space complexity of the problems and assess the performance
of the code.

In Sec. IV, we demonstrate how PIQS can be applied to
study the influence of local dissipation on collective phe-
nomena. As representative examples we investigate how the
time evolution of different quantum states can enhance su-
perradiant light emission [56] and spin squeezing [61]. Local
emission processes are found detrimental for steady-state su-
perradiant light emission [10], precluding its straightforward
application to thermodynamics systems governed by detailed
balance. We also study phase transitions in such noisy open
dynamics, extending previous work [57,78]. Moreover, we
analyze a coherently driven system undergoing collective
incoherent dissipation, as well as local dissipation processes.
The collective spin oscillations of such systems have recently
been interpreted as the signature of a quantum phase transition
and named boundary time crystals [85]. We generalize the
study of such limit cycles in the presence of local dissipation.
Being able to study multiple spin ensembles and their cou-
pling to one or multiple bosonic cavities, we also investigate
dissipatively coupled ensembles of TLSs, and the transient
exchange of collective excitation in a noisy environment [86].

Finally, we apply permutational invariance to the
ultrastrong-coupling regime. PYTHON notebooks containing
the code for each physical model treated here, and other inves-
tigations, can be found online [87]. The Appendix details the
explicit derivation of the matrix elements of the Lindbladian.

Original results

Before moving to the next sections, let us provide a brief
summary of the original results obtained in this investigation,
as discussed in Sec. IV:

(1) In Sec. IV A, we take advantage of PIQS to dis-
criminate different time evolutions for different initial states
evolving under the same superradiant dynamics. We illustrate
how very different time evolutions can arise for states with
same second moments, such as for the Greenberger-Horne-
Zeilinger (GHZ) state and the superradiant Dicke state |N

2 , 0〉.
We find that when the system is initialized in the |0, 0〉 Dicke
state, the introduction of local dephasing is favorable for light
emission. Moreover, we verify that under the nonoptimal su-
perradiant decay, the symmetric and antisymmetric coherent
spin states emit light in a similar fashion.

(2) In Sec. IV B, we find that in the bad-cavity limit,
steady-state superradiance does not display a threshold pump
rate if detailed balance governs local losses and local pump-
ing, at any temperature.

(3) In Sec. IV C, we investigate two-axis spin squeezing
beyond the Dicke symmetric ladder, finding that the state
with longest spin-squeezed time evolution does not belong to
the symmetric Dicke ladder for the local deexcitation chan-
nel. We consider the trade-off between spin squeezing and
spin-squeezing time, for all nonsymmetrical collective states,
addressing the interplay of local and collective dissipation and
the emergence of spin squeezing with the system size growth.

(4) In Sec. IV D, we assess the effect of collective loss
and pumping to the stability of the superradiant phase in
the presence of local dephasing and collective incoherent

processes. We then turn to the study of a driven-dissipative
system that has been shown to sustain time crystallization,
and we probe how the introduction of local and collective
pure dephasing affects the visibility of the collective spin
oscillations related to limit cycles.

(5) Generalizing our approach to multiple ensembles of
TLSs, in Sec. IV E, we show that negative-temperature ef-
fects are not robust to local dephasing, local losses, or even
collective losses of each of the TLS ensembles. Conversely,
we propose to exploit such dissipative dynamics for transient
spin-excitation schemes in arrays of coupled ensembles.

(6) Finally, in Sec. IV F, we extend the use of permuta-
tional invariance to the ultrastrong-coupling regime. We illus-
trate how the correct master equation with dressed local jump
operators can be analytically derived easily from the weak-
coupling model, exploiting permutational symmetry. We then
address the time evolution of the collective TLS population
inversion and the steady-state photon emission spectrum in
the range N � 1 for the open Dicke model in the ultrastrong-
coupling regime with dressed light-matter dissipation
terms.

II. THEORY

Here, we study the dynamics of a collection of N identical
TLSs, described by a Lindblad master equation,

ρ̇ = − i

h̄
[H, ρ] + γ⇓

2
LJ− [ρ] + γ�

2
LJz

[ρ] + γ⇑
2
LJ+ [ρ]

+
N∑

n=1

(γ↓
2
LJ−,n

[ρ] + γφ

2
LJz,n

[ρ] + γ↑
2
LJ+,n

[ρ]
)
, (1)

where ρ is the density matrix of the full system and H is the
TLS ensemble Hamiltonian. Here, [Jx,n, Jy,m] = iδm,nJz,n,
[J+,n, J−,m] = 2δm,nJz,n, and J±,n = Jx,n ± iJy,n. We will
use the spin operators Jα,n = 1

2σα,n for α = {x, y, z} and
J±,n = σ±,n. Note that H should be invariant under TLS
permutation; i.e., it can be constructed using any combination
of the collective operators Jα only and describes all-to-all spin
interactions (one way of looking at this is to picture the spins
as nodes in a complete graph, in which each edge, describing
the coupling of the ith and j th spin is simply associated to
the same global constant; i.e., there is no notion of lattice
dimensionality in this fully connected network [88]).

The Lindblad superoperators are defined by LA[ρ] =
2AρA† − A†Aρ − ρA†A and the γi terms are coefficients
characterizing emission, dephasing, and pumping, corre-
sponding to local and collective operators acting on the nth
TLS, also summarized in Table I.

The homogeneous local emission, γ↓, usually represents
radiative or nonradiative losses while the homogeneous local
pumping, γ↑, is the coefficient quantifying the rate of incoher-
ent pumping. In the context of bosonic heat baths governed by
detailed balance, we can identify γ↓ = γ0(1 + nT) and γ↑ =
γ0nT, where nT is the thermal population of the environment
and γ0 is a coefficient fixed for a given system. Homoge-
neous local dephasing, detrimental for coherent correlations
among the TLSs, is quantified by γφ . The corresponding
collective phenomena describe collective emission, γ⇓, typical
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TABLE I. Summary of the dissipative processes considered in Eq. (1) for the open quantum dynamics of an ensemble of N identical TLSs.

Process Jump operator Rate Lindbladian L[ρ]

Local emission J−,n = σ−,n γ↓
∑N

n 2J−,nρJ+,n − {( N

2 − Jz ), ρ}
Local dephasing Jz,n = 1

2 σz,n γφ

∑N

n 2Jz,nρJz,n − N

2 ρ

Local pumping J+,n = σ+,n γ↑
∑N

n 2J−,nρJ+,n − {(Jz − N

2 ), ρ}
Collective emission J− = ∑N

n J−,n γ⇓
∑N

m,n 2J−,mρJ+,n − J+J−ρ − ρJ+J−
Collective dephasing Jz = ∑N

n Jz,n γ�

∑N

m,n 2Jz,mρJz,n − J 2
z ρ − ρJ 2

z

Collective pumping Jz = ∑N

n J+,n γ⇑
∑N

m,n 2J−,mρJ+,n − J−J+ρ − ρJ+J−

of superradiant decay, collective pumping, γ⇑, and collective
dephasing, γ�.

It is worth recalling that Eq. (1) is derived [6] under the
assumptions that the environments are memory-less (Markov
approximation), that system and environment always remain
in a product state (Born approximation), and that the baths
are uncorrelated. These assumptions cannot always be made,
such as in the case of photosynthetic complexes [89], which
are strongly coupled to structured reservoirs [90].

Furthermore, in Eq. (1) the reservoir is traced out and the
TLS bare basis is used to construct the system’s superopera-
tors. If the TLSs are strongly coupled to another system, e.g.,
a cavity, one must derive a more nuanced master equation to
take into account the hybridization of the system eigenstates
[91–98]. Fortunately, as we show in Sec. IV F, it is possible
to extract such an equation from the general dissipators we
construct in PIQS. (Though this procedure is not strictly
necessary in systems where the coupling is only “effectively”
strong, and where the bare-basis master equation is still valid
[28,29,78,99–107]).

Let us stress that while the numerical methods employed
hereafter allow us to exactly solve the dynamics of Eq. (1),
the master equation is a second-order perturbative expansion
of the quantum dynamics induced by the time-ordering op-
erator, and in the form of Eq. (1) it implies performing a
rotating-wave approximation. As such, the γi coefficients of
Eq. (1) must be much smaller than the coupling present in
the Hamiltonian. Nevertheless, if only the bare-energy TLS
Hamiltonian is present, H = h̄ω0Jz, the dissipative dynamics
is insensitive to the physical value of the bare frequency, w0.
The same argument applies to any Hamiltonian diagonal in
the Dicke basis. In addition, in driven systems, when the real
physical frequencies of the system are large, the Hamiltonian
can be written in a rotating frame, where the effective Hamil-
tonian dynamics can be slower than dissipation, as is the case
of the nonequilibrium superradiant phase transition [43]. Thus
Eq. (1) can also be used as an effective model, with the real
physical frequencies different from the effective Hamiltonian
parameters, although these vary case by case, and in general
one needs to be careful in checking whether in a given case
this approach can be justified.

The crucial assumption which underlines the permut-
ational-invariant method used hereafter to solve Eq. (1) is that
there the TLSs are identical and identically prepared. This
means that the approach described here cannot be directly
applied to cases in which a non-negligible inhomogeneous
broadening is present [108,109] or in which each artificial

atom might have a tailored coupling to the environment
[110–112]. Furthermore, relative to the collective dissipation
terms in Eq. (1), the assumption made is that the TLSs couple
identically to a single mode of the environment, e.g., implying
that the wavelength of light is larger than the sample size
of the whole TLS ensemble and dipole-dipole interactions
and atomic motion are negligible, assumptions that might not
always be valid in some realistic implementations [113–119].
Moreover, the Dicke space formalism that will be applied
hereafter assumes that the initial state of the system must
be permutational symmetric; i.e., one is limited to the initial
condition in which none of the artificial atoms are individually
addressable. Dynamics of non-permutation-symmetric initial
states could in general be studied, as long as the calculated
observables are permutational symmetric, e.g., collective spin
moments.

The fact that all TLSs are identical affords us a critical
simplification because, even if local processes are present, we
do not need to work in the full 4N Liouvillian space, due to the
permutational symmetry of the system and the permutational
invariance of the Lindblad superoperators, which possess a
SU(4) symmetry. We can reduce the Liouvillian space to be
on the order of N4 instead, with actually only O(N3) nonzero
matrix elements for the density matrix of a permutational-
symmetric quantum system.

The reduction in complexity can be captured by using
the Dicke state basis, which will be introduced in the next
section. The symmetric properties of identical TLSs initially
prepared through the manipulation of collective spin operators
only produce a sparse block-diagonal density matrix. Using
the Dicke basis, Eq. (1) can be efficiently rewritten as a
symmetrized Liouvillian superoperator DS,

ρ̇ = DS[ρ], (2)

allowing us to simulate ensembles with a large number of
TLSs, on the order of hundreds. This computational advantage
enables the study of TLS ensembles coupled to bosons that
also experience a driven-dissipative dynamics, so that Eq. (1)
can be generalized to the light-matter Liouvillian DSB[ρ],

ρ̇ = DS[ρ] − i

h̄
[HB + HSB, ρ] + w

2
La† [ρ] + κ

2
La[ρ],

(3)

where [a, a†] = 1, w is the bosonic pump coefficient, and κ

is the bosonic cavity decay. Now ρ is defined as a tensor
product of the density matrices of the bosonic and spin
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subspaces. Here HB is a bosonic Hamiltonian, while HSB

is the spin-boson interaction. Given that the bosonic Hilbert
space has infinite dimension, numerical implementations re-
quire an effective cutoff on the photon number nph. The
dimension of the total light-matter Liouvillian space is then
multiplied by n2

ph. Note that Eq. (1) and Eq. (3) can be further
generalized to describe arrays or lattices of multiple TLS
ensembles in multiple bosonic cavities; see Fig. 1 for the
case of a single cavity. In this modular architecture, adding
each dissipative sub-system implies a tensor product with the
Liouvillian spaces of the other subsystems. This means that,
in the most general case, the size of the problem grows very
fast.

A. Dicke states

Before introducing the details of the Liouvillian dynamics,
let us begin by making some general considerations on the
structure of the Hilbert space of an isolated system. The study
of the collective behavior of ensembles of identical TLSs can
be simplified by introducing the Dicke states [3], which are
the eigenstates of the collective (pseudo)spin operators

J2|j,m〉 = j (j + 1)|j,m〉, (4)

Jz|j,m〉 = m|j,m〉, (5)

J±|j,m〉 = A±
j,m|j,m ± 1〉

=
√

(j ∓ m)(j ± m + 1)|j,m ± 1〉, (6)

where j � N/2 and |m| � j , with j,m integer or half in-
teger and jmin = 0, 1/2 for N as an even or odd number
of TLSs, respectively. The collective spin algebra ensures
that in Eq. (6), A±

j,m are real semidefinite coefficients. The
representation of collective processes using the Dicke states
reduces the 2N -dimensional Hilbert space to a dimension of
the O(N2) thanks to the intrinsic permutational symmetry
of Jα operators. The symmetric Dicke states, defined as the
Dicke states with j = N

2 , have an intuitive construction in
terms of the uncoupled eigenstates of the single TLSs, as
they are the symmetric superposition of a state with k excited
TLSs, ∣∣∣∣N2 , k − N

2

〉
= 1√(

N

k

)S[|e〉⊗k ⊗ |g〉⊗(N−k)], (7)

where S is the symmetrization operator, ( N

k
) is the bino-

mial coefficient, and |g〉 and |e〉 are the ground and excited
states, respectively, in the uncoupled basis for each TLS, and
(k − N

2 ) = m.
Note that the action of the collective operators in Eqs. (4)–

(6) restricts the Hilbert space for N TLSs to (N + 1) symmet-
ric states. The Dicke states with j < N

2 can be constructed
iteratively [120], as done in the standard construction of
Clebsch-Gordan coefficients. The state |N

2 − 1, N
2 − 1〉 is the

only other state orthogonal to |N
2 , N

2 − 1〉 with (N − 1) exci-
tations; all of the other states of the kind |N

2 − 1,m〉 in that
Dicke ladder are found just by applying the ladder operator
J−.

The states in the other Dicke ladders can be found by iter-
ating the orthogonalization process for every state |j, j − 1〉.
Each Dicke state |j,m〉 has a degeneracy

d
j

N = (2j + 1)
N !(

N
2 + j + 1

)
!
(

N
2 − j

)
!
, (8)

with respect to an irreducible representation in the uncoupled
TLS basis. It is this degeneracy at the core of the formalism
that allows the exponential reduction in resources employed
in PIQS. Note that nonsymmetric Dicke states with j < N

2
have been addressed in multiple spin systems [121] and have
recently been obtained in a single Rydberg atom with high
excitation number [122].

B. Permutational symmetry

Let us now approach the Liouvillian dynamics. The chal-
lenge introduced by the local operators Jα,n present in Eq. (1)
is that in general one does not know how they act on the Dicke
states.

For j = N
2 , the problem is trivial, as any Dicke state |N

2 ,m〉
of Eq. (7) is a symmetric superposition of k = ( N

2 − m)
excited TLSs in the uncoupled basis.

For j < N
2 though, there exist dN

j degenerate nonsym-
metric superpositions of TLSs in the uncoupled basis and
the action of Jα,n requires writing the state explicitly in the
uncoupled basis. In order to map the action of local processes
onto the Dicke states one needs to define a more general Dicke
state, |j,m, αj 〉 [3], where the additional symmetry quantum
number αj removes the degeneracy d

j

N . Using this basis, a
general density matrix can be written as

ρ =
∑

j, m, αj

j ′,m′, αj ′

pjmαj ,j ′m′αj ′ |j,m, αj 〉〈j ′,m′, αj ′ |, (9)

where pjmαj ,j ′m′αj ′ = 〈j,m, αj |ρ|j ′,m′, αj ′ 〉, while pjmαj
≡

pjmαj ,jmαj
is the probability density of a given diagonal matrix

element, and there is always a mapping to a given microscopic
representation in the uncoupled TLS basis. The usefulness of
Eq. (9) is limited, as finding all of the 2N representations is
tedious and effective strategies employing them are known
only for the subspace with m = (∓N

2 ± 1), relevant for single-
photon excitation processes [123–128].

While Eq. (1) does not limit its action to the (N + 1)
symmetric states of the coupled Dicke basis |N

2 ,m〉, it does
preserve the permutational symmetry of the system [56,58–
67,77] because the Lindblad superoperators are invariant un-
der the SU(4) transformation. This observation is crucial to
enable the simplification that is at the core of PIQS. The
density matrix of N identical TLSs that are initially prepared
through the action of collective spin operators is permutational
symmetric [129],

ρ =
∑
π∈SN

PπρP †
π , (10)

where Pπ is a given permutation operator and the sum is
over any possible permutation π . According to Eq. (10) we
can thus project ρ on the basis |j,m〉〈j ′,m′| of the Dicke
states. Furthermore Eq. (1) does not create coherences (matrix
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FIG. 2. Dicke space structure. (a) Block-diagonal structure of the density matrix in the Dicke basis, |j, m〉〈j,m′|, for N = 6. Each block
has a different value of j , decreasing from the top-left one for which j = N

2 . The size of each block is set by the multiplicity of m. Red equals
1, white equals 0. The blue region outside of the diagonal blocks (darker shading) is shown to highlight sectors that cannot be populated.
(b) The density matrix of the Dicke state |N

2 , N

2 〉, which is the fully excited state (top left matrix element). (c) The Dicke state |N

2 , −N

2 〉 is the
ground state if the Hamiltonian H = h̄ω0Jz (bottom right matrix element in the first block). (d) Qualitative representation (saturated palette)
of the steady state for H = h̄ω0Jz, and γ↓ = 0.3γ↑, γ↑ = ω0. Due to the choice of the Hamiltonian, only the matrix elements pjmm on the main
diagonal can be populated, and the choice of the relative strength of the dissipation determines the fact that the matrix elements pjjj are the
most populated ones. (e) The density matrix of the maximally symmetric Dicke state |N

2 , 0〉 (central matrix element in the first block). (f) The
density matrix of the subradiant Dicke state |0, 0〉. All these states are diagonal in the Dicke space, pjmm′ = 0 for m �= m′ (bottom right matrix
element).

elements with m �= m′) between Dicke states with j �= j ′,
so that we can write any density matrix in the Dicke basis
simply as

ρ =
∑

j,m,m′
pjmm′ |j,m〉〈j,m′|, (11)

with pjmm′ = 〈j,m|ρ|j,m′〉. Note that Eq. (11) is a block-
diagonal matrix, as shown in Fig. 2(a) for N = 6. Red repre-
sents pjmm′ = 1 and blue 0, as it corresponds to sectors that
cannot be accessed by the permutational-symmetric density
matrix written as in Eq. (11).

For any permutational-symmetric density matrix, each
block with fixed j contains the matrix elements corresponding
to the degenerate irreducible representations |j,m〉〈j,m′|.
The value of j decreases from j = N

2 (top left block in the
states of Fig. 2) to jmin (bottom right block) and the size of
each block is given by the spin multiplicity (2j + 1). Each
block j has a degeneracy dN

j , given by Eq. (8), and dN
j

grows with decreasing j (except for the only case dN
jmin+1 >

dN
jmin

). This means that while the corresponding blocks become
smaller and smaller with decreasing j , moving from left to
right in the matrix of Fig. 2, the number of degenerate states
represented by each block actually increases exponentially.

The total number of elements in the density matrix is thus∑N/2
j=jmin

(2j + 1)2 = 1
6 (N + 1)(N + 2)(N + 3) = O(N3).

In order to better illustrate the power of this represen-
tation, in panels (b)–(f) of Fig. 2 we show some density
matrices that are diagonal in the Dicke basis, with the white
parts representing elements with pjmm′ = 0. The Dicke state
|N

2 , N
2 〉, Fig. 2(b), and |N

2 ,−N
2 〉, Fig. 2(c), represent the states

with all spins up and all spins down, respectively, which,
for H = h̄ω0Jz, correspond to the fully excited and ground
states, respectively. The maximally symmetric superradiant
state |N

2 , 0〉, shown in Fig. 2(e), also contains a nonzero
matrix element in its largest block, with j = N

2 , while the
subradiant state |0, 0〉, Fig. 2(f), contains a nonzero matrix
element in the degenerate block with j = 0. The steady state
of Eq. (1) with H = h̄ω0Jz, γ↓ = 0.3γ↑, and setting γ↓ = ω0,
is a classical mixture of Dicke states and (like any steady
or thermal state of a Hamiltonian diagonal in the Dicke
basis) is characterized by matrix elements only on the main
diagonal.

In Fig. 3, we instead show the upper left block, with j = N
2 ,

of density matrices that are not diagonal in the Dicke basis.
These are density matrices in which the only nonzero terms
occupy the j = N

2 block. In Fig. 3(a), we show the GHZ
state, which in the uncoupled and Dicke basis, respectively,
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FIG. 3. Nondiagonal density matrices. Representation of quantum states in the Dicke basis |j, m〉〈j, m′|. We show for N = 10 only the
block with j = N

2 , which corresponds to the largest one in Fig. 2(a), since it is the only block with nonzero matrix elements. (a) The GHZ
state (four red matrix elements at the corners of the first block), (b) the symmetric coherent spin state (CSS) with a = b = 1√

2
in Eq. (13), and

(c) the antisymmetric CSS, with a = −b = 1√
2

in Eq. (13).

is written as

|GHZ〉 = 1√
2

(|e〉⊗N + |g〉⊗N )

= 1√
2

(∣∣∣∣N2 ,
N

2

〉
+

∣∣∣∣N2 ,−N

2

〉)
. (12)

In Fig. 3(b) and Fig. 3(c), we show the symmetric and
antisymmetric coherent spin states (CSS), respectively, which
are a specific case of the general CSS state [130,131]

|a, b〉CSS =
N⊗

n=1

(a|e〉 + b|g〉) (13)

=
N/2∑

m=−N/2

√
dmα

N
2 +mβ

N
2 −m

∣∣∣∣N2 ,m

〉
, (14)

with a = 1√
2

and b = ± 1√
2
, respectively. In Eq. (14), dm =

( N
N
2 + m

). The CSS states are also commonly written in the polar
basis,

|θ, ϕ〉CSS =
N⊗

n=1

(
cos

θ

2
|e〉 + eiϕ sin

θ

2
|g〉

)
. (15)

The diagonal matrix elements pjmm correspond to popula-
tions of Dicke states |j,m〉. The total number of Dicke states
nDS in the triangular Dicke space is

nDS =
N/2∑

j=jmin

(2j + 1) =
(

N

2
+ 1

)2

− 1

4
mod2(N ), (16)

where the modulo term in the formula above takes care of
ensembles with odd number of systems, for which jmin = 1

2 .

C. Permutational-invariant dynamics

Equation (1) can be rewritten by flattening the density
matrix into a vector, ρ → �ρ, and applying to it a matrix repre-
sentation of the superoperator that contains the full Liouvillian
as an n2

DS × n2
DS matrix D, with nDS given by Eq. (16), which

is the sum of a unitary, H̃ , and a dissipative part, L̃,

d

dt
�ρ = D �ρ = (iH̃ + L̃) �ρ. (17)

The nonzero matrix elements from Eq. (1) are obtained by
projecting onto the Dicke states 〈j̄ , m̄|ρ̇|j̄ ′, m̄′〉. For simplic-
ity of notation hereafter we set j̄ , j̄ ′ → j, j ′ and m̄, m̄′ →
m,m′. Due to the permutational symmetry of the Lindblad
superoperators, all terms with j �= j ′ are zero.

We adopt the notation introduced in Ref. [77] to treat
collective emission and local emission, and generalize it to in-
clude incoherent pumping [10], and local dephasing [56,121],
as well as adding the corresponding collective processes. We
can then write the projection of the symmetrized Lindbladian
matrix L̃ as

d

dt
pjmm′ = −�

(1)
j,m,m′pjmm′ + �

(2)
j,m+1,m′+1pjm+1m′+1

+�
(3)
j+1,m+1,m′+1pj+1m+1m′+1

+�
(4)
j−1,m+1,m′+1pj−1m+1m′+1

+�
(5)
j+1,m,m′pj+1mm′ + �

(6)
j−1,m,m′pj−1mm′

+�
(7)
j+1,m−1,m′−1pj+1m−1m′−1

+�
(8)
j,m−1,m′−1pjm−1m′−1

+�
(9)
j−1,m−1,m′−1pj−1m−1m′−1, (18)

where the explicit expressions for �
(i)
j,m,m′ are given in the

Appendix. An important feature of Eq. (18) is that the dy-
namics does not mix populations (m = m′) with coherences
(m �= m′), since any displacement in m is matched by the
same displacement in m′. There are only nine nonzero terms
determining a given density-matrix-element evolution [61],
whose meaning can be immediately understood by setting
m = m′, for clarity, and by inspecting the Dicke space [56]
in Fig. 4.

The dynamics of the probability density relative to a given
Dicke state depends on the interaction with its eight nearest-
neighboring Dicke states. By considering the effect on a single
Dicke state in the Dicke space picture investigated in [56], it
then becomes clear what the different contributions to Eq. (18)
are: the upper state with same cooperative number, �j = 0,
decays at a rate �

(2)
j,m+1,m′+1 that is determined by the collective

and local emission processes, proportional to γ⇓ and γ↓.
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FIG. 4. Dicke space for N = 8 showing the Dicke states |j, m〉 arranged in Dicke ladders, each with a given degeneracy dN
j . Sketch of the

dynamics experienced by a Dicke state, expressed in terms of the rates �(i ), where we omit the subscripts for clarity �(i ) = �
(i )
j,m,m′ . The effect

of different driven-dissipative collective and incoherent processes is shown with colored arrows. We show the Dicke space [56] and the action
of each rate onto a given Dicke state in the center of the Dicke space. All processes contribute to the rate �

(1)
j,m,m′ . Local pure dephasing, local

emission, and local pumping connect neighboring Dicke ladders. Collective emission and collective pumping connect vertically subsequent
rungs in the same Dicke ladder, while collective pure dephasing destroys correlations among different Dicke states. In the dashed rectangle,
the contribution to the time evolution of the state probability is expressed in terms of incoming probability from the other eight neighboring
states according to the rates �(i ), with i > 1, and population depletion at a rate �(1) (dashed black arrow).

While the terms in γ⇓ cannot change j , the local emission,
which is ∝ γ↓, can prompt transitions from states with �j =
±1, which are accounted for by the terms in �

(3)
j+1,m+1,m′+1

and �
(4)
j−1,m+1,m′+1. As these processes do not conserve the

cooperative number, they mix the populations of neighboring
Dicke ladder.

Local and collective dephasing, γφ and γ�, respectively,
are energy-conserving processes, since �m = 0, and they
determine the rates �

(5)
j+1,m,m′ and �

(6)
j−1,m,m′ . Finally, similarly

to collective emission, collective pumping ∝ γ⇑ contributes
only to �

(8)
j,m−1,m′−1, with �j = 0, while incoherent pumping,

∝ γ↑, also prompts transitions with �j = ±1, accounted for
by �

(7)
j+1,m−1,m′−1 and �

(8)
j,m−1,m′−1. Note that in the more favor-

able case of a diagonal problem, for which the Hamiltonian is
diagonal in J2, Jz, the scaling of the system’s size is effectively
only of O(N2).

D. Survey of previous results

The permutational invariance of Eq. (1) has been indepen-
dently explored by different authors in many recent and less
recent works. In this section we provide a global literature re-
view on the topic of permutational-invariant master equations,
which we hope will be useful to place this timely topic in its
due context. Until very recently [73,75], the literature on this
topic has been extremely fragmented.

In Table II we have summarized the results contained in the
relevant publications, highlighting the features studied, and
the dynamics generating them, showing both the Hamiltonian
and the dissipative terms studied, using the rates for the spin
mechanisms, Eq. (1), and bosonic dissipation, Eq. (3).

The use of permutational invariance for the treatment of
Eq. (1), has, to the best of our knowledge, first been derived in
Refs. [58,59], where it was applied to study optical bistability
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TABLE II. Features studied in driven-dissipative open quantum systems comprising several TLSs in works in which permutational-
invariant methods were applied. The works are grouped according to the general theory developed or according to the Hamiltonian studied, with
ω0, ωx , ωxx , ωxy , �, g, and g′ frequency parameters. For the master equation ρ̇ = i[H, ρ] + L[ρ] we show the relative interaction Hamiltonian,
the rates relative to collective TLS processes, homogeneous local TLS processes, and cavity rates. PT stands for phase transition, and spaser
stands for surface plasmon amplification by stimulated emission of radiation. An asterisk (∗) indicates that in Refs. [61,62] the collective
and local depolarization channel is considered, fixing 1

2 γ⇓ = 1
2 γ⇑ = γ� and 1

2 γ↓ = 1
2 γ↑ = γφ . A dagger (†) indicates that in Ref. [137] TLS

addition and subtraction are treated exploiting permutational symmetry.
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in systems in which both collective and local emission pro-
cesses, proportional to γ⇓ and γ↓, respectively, were present.

Recent research interest in the Dicke model, mainly stim-
ulated by Refs. [99,100], focuses on how collective couplings
can induce quantum phase transitions. At the same time,
methods describing the interplay of collective and local effects
date back to the early years of quantum optics. Its open
system approach was applied to laser theory, for which local
pumping and dissipation are fundamental. One such exam-
ple is the phase-space representation of Ref. [132], which
relies on the permutational symmetry of identical two-level
systems.

More generally, even in the presence of local dissipation,
it has been shown that it is sufficient to derive the (N +
1)(N + 2)(N + 3)/6 normal-ordered moments of collective
operators to provide all statistical information for an ensemble
of N identical TLSs [6]. One way to look at this is that after
simultaneously absorbing N quanta, the system saturates, so
this limits the amount of correlations that can be present in the
ensemble of TLSs.

Such kind of operator-based approaches are equivalent to
the density-matrix formalism used hereafter and derived in
Ref. [60], where it was applied to the numerical study of
antibunching in the emitted spectrum of a collection of N

coherently driven TLSs [133].
The core of the method applied in this paper, and detailed

in the Appendix, was developed in Ref. [61] for general
local processes. There, the action onto the Dicke states of the
Lindblad superoperators relative to local emission, dephasing,
and pumping processes was analyzed in a general framework.
In Refs. [61,62] the robustness of spin squeezing against
local and collective depolarization channels was tested. The
collective depolarization channel can be expressed in terms of
the Lindblad superoperators of Eq. (1),

LJx
[ρ] + LJy

[ρ] + LJz
[ρ] = 1

2 (LJ−[ρ] + LJ+ [ρ]) + LJz
[ρ],

(19)

and similarly one can do this for the local depolarization
channel. Furthermore, in Ref. [134] the effects of different
continuous measurement protocols under stochastic processes
have been addressed.

The same approach, which leverages the Dicke space for-
malism, has been employed for the study of the superradiant
and subradiant light emission of a collection of identical
particles whose motional degrees of freedom let a bosonic
or fermionic statistics emerge [77]. Moreover, the interplay
between superradiant and subradiant light emission in the
presence of dephasing and nonradiative emission mechanisms
has been investigated employing the Dicke triangle to visual-
ize the processes in the high-excitation and dilute-excitation
regimes [56,135]. Hereafter we will follow the formalism
adopted in those works.

Independently from Ref. [61], in Ref. [64] it has been
shown explicitly that the Lindblad evolution preserves SU(4)
symmetry, deriving a set of superoperators accounting for
the local processes. The superoperator approach has been
further extended in Refs. [67,72], mapping it onto Dicke
states. In Ref. [67] nonlinear effects in noisy open quantum
systems in cavity QED have been investigated, addressing the

study of lasing and steady-state superradiance and illustrat-
ing deviations from semiclassical approximations. A Ramsey
spectroscopy scheme, robust against decoherence, has been
proposed in Ref. [136]. Recently, in Ref. [79], it has been
proposed to exploit the local incoherent pumping to obtain
a peculiar resonance fluorescence spectrum from Rydberg
polaritons: the central peak of the Mollow triplet displays both
line narrowing, typical of steady-state superradiance, and a
nonclassical photon statistics with antibunching, typical of the
resonance fluorescence of a single TLS. In Ref. [79], the U(1)
symmetry of the model has been used to reduce the compu-
tational resources required for the TLS basis from O(N3) to
only O(N2). In Ref. [20] the crossover from the bad-cavity
limit characterizing steady-state superradiance to the good-
cavity limit of lasing has been explored using several methods,
including Monte Carlo simulations in the reduced Liouvil-
lian space using SU(4) generators [20]. Superradiant lasing
has also been studied through Monte Carlo simulations of
N > 105 TLSs which, beyond local excitation, deexcitation,
and pure dephasing processes, also included the possibility
of TLS loss from, and feeding into, the ensemble [137].
Stemming from steady-state superradiance investigations in
cavity QED, dissipatively induced spin synchronization in an
ion trap has been addressed in Ref. [15], displaying potential
applications in metrology.

Multilevel systems have been studied in Refs. [68–
70,73,74,80,138,139], always in the context of cavity QED.
In Ref. [68], it has been shown that once local dephasing
processes are accounted for, the mechanism that triggers the
coherent surface plasmon amplification by stimulated emis-
sion of radiation (spaser) requires higher pump rates than
those achieved in previous experiments, considerably limiting
the possibilities under which a spaser could operate in a
realistic nanodevice. This method has since been employed
for the study of superradiant light emission and subradiance of
an ensemble of TLSs [73,75,76]. In particular, in Ref. [73] a
comprehensive outlook on the use of permutational invariance
for two- and multilevel-system master equations is given, with
group theoretic considerations and the use of graph theory to
algorithmically further reduce the complexity of the master
equations.

In Ref. [140] PsiQuaSP, an open-source computational
library written in C, was introduced, allowing the study of
multilevel systems interacting with bosonic fields. PsiQuaSP
exploits state-of-the-art numerical libraries in C/C++, such as
PETSc, to perform efficient matrix multiplication and time
integration of differential equations and allows the user to
either use a set of prebuilt Lindbladians or to define an ad hoc
generic Liouvillian operator.

In Refs. [56,75] it has been shown that dark Dicke states
|j,−j 〉 can be engineered through an interplay of collective
and local losses and local dephasing. Reference [75] contains
also a study of spin squeezing for entanglement estimation.
With regards to state engineering, in Ref. [141], a method
to obtain a pure state through cavity cooling to the ground
state has been proposed, in which local dephasing is used as a
resource.

In the context of phase transitions of driven-dissipative
open quantum systems, recent studies [57,71,75,78] have
characterized the effect of local noise on the occurrence of
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the steady-state phases. Collective quantum jumps and bista-
bility has been studied in Ref. [63]. Reference [71] studied
bistable phases in an array of bosonic cavities, effectively
mapping the system onto the driven-dissipative XY model.
There, permutational invariance was employed to investigate
the closing of the Liouvillian gap in the presence of local
losses, γ↓. In Ref. [78], cavity losses, dephasing, and local
emission processes were considered, showing that their in-
terplay induces a nontrivial suppression and restoration of
the superradiant phase. Always in Ref. [78], the exact diag-
onalization method was employed without using the Dicke-
state formalism. The relevant code is developed in PYTHON

and available online as the PERMUTATIONS library [142]. In
Ref. [57], the effect of incoherent and coherent pumping
was addressed, studying the phase diagram in relation to the
superradiant, normal, and lasing phases and addressing the
emergence of chaos. Reference [138] addressed superradiance
in the presence of inhomogeneous dipole-dipole interactions.
In Ref. [81], permutational-symmetric simulations of Eq. (1)
have been used to support the experimental study of many-
body correlations in a quantum simulator with more than 100
trapped ions, while in Ref. [82] the use of out-of-time-order
correlations has been extended to probe entanglement.

Permutational invariance has been applied in several quan-
tum information studies, independently from the dynamics of
Eq. (1). While an exhaustive survey of these contributions is
beyond the scope of this section, let us mention that the Dicke
basis has been used to perform efficient state tomography and
to characterize multipartite entanglement [65,66,143–149].
The permutational symmetry of an ensemble of identical
qubits has also been applied in quantum information pro-
cessing strategies, including for efficient quantum algorithms
and optimal information compression [143,150–153]. Finally,
we point out that while the computational reduction here
employed arises from the SU(4) symmetry of the Lindblad
operators for a collection of spins, and through the properties
of Lie algebras this method has been extended to m-level sys-
tems [73–76], studies of bosonic lattices have also exploited
permutational symmetry of fully connected models, so far to
describe closed-system dynamics only [154,155].

III. PERMUTATIONAL-INVARIANT QUANTUM
SOLVER (PIQS)

The Permutational-Invariant Quantum Solver (PIQS) is an
object-oriented framework to study ensembles of N identical
TLSs evolving under both collective and local dissipation
processes [87]. PIQS is a robustly tested library developed in
PYTHON, designed to be memory efficient, fast, and easy to
use. The memory efficiency comes from the employment of
sparse matrices. The speed is due to the use of low-level C++
code behind the scenes. The ease of use is enabled by PYTHON.
By being tightly integrated with QuTiP, the open-source quan-
tum toolbox in PYTHON [83,84], PIQS is a modular tool that
extends the reach of investigations involving the dissipative
dynamics of large ensembles of TLSs.

Moreover, we provide a collection of functions to explore
the properties of the Dicke space and define the algebra of spin
operators and density matrices of important quantum states.
An extensive documentation and several tutorials based on

JUPYTER notebooks facilitate the interactive use of the tool
[87,156]. PIQS is released as an open-source project to pro-
mote open science, joining the growing pool of open-source
software libraries that are being developed for the simulation
of open quantum systems [83,84,140,142,157,158].

A. A TLS ensemble as a Dicke object

In PIQS, an ensemble of TLSs is represented as an
instance of the Dicke class. The basic setup of the en-
semble just requires the number N of TLSs. The Liou-
villian can be constructed simply by defining the rate co-
efficients, γi , according to Eq. (1) and a given Hamilto-
nian. All of the dissipative rates of Eq. (1) can be spec-
ified as attributes of a Dicke object using the keywords
emission, dephasing, pumping, collective_emission,
collective_dephasing, and collective_pumping. For
example, one can build the matrix for the symmetrized Liou-
villian superoperator, DS, simply by defining the emission
rate in units of inverse time and calling the function
liouvillian() of the Dicke class,

from piqs import Dicke

N = 10
ensemble = Dicke(N)
ensemble.emission = 0.2
D = ensemble.liouvillian()

The Liouvillian is constructed as an object of the Qobj
class, which is the class for quantum objects in QuTiP. This
integration allows the user to study the dynamical properties
of the system using the many functions present in QuTiP.
Any initial density matrix can evolve in time according to the
equation ρ̇ = DS[ρ], or its Liouvillian can be used to define a
more complex light-matter system, including bosonic degrees
of freedom and multiple TLS ensembles. In any case, the
Liouvillian superoperator is represented by a matrix D in the
Liouvillian space as shown in Eq. (17).

B. Initial states and operators

PIQS provides the spin algebra of collective operators and
important quantum states to let the user quickly set up a
model and explore its physics. For example, the functions
jspin(N, ‘‘+’’), jspin(N, ‘‘-’’) provide the collec-
tive jump operators J±. The operators of the collective algebra
can be called both in the Dicke basis (set as default and
specified by the argument basis=‘‘dicke’’) or in the
uncoupled basis (basis=‘‘uncoupled’’) of 2N TLSs. The
Hamiltonian for a TLS ensemble specified as a Dicke object
can be built by the user in the Dicke basis with this collective
algebra.

We provide functions to quickly define density matrices
corresponding to quantum states of interest, such as for
the coherent spin states, which can be called with css(N,
a, b) corresponding to Eq. (14), while the symmetric CSS
is called simply with css(N). The states can also be ini-
tialized in the uncoupled basis, Eq. (13); the “cartesian”
coordinates a and b are set as default and can be invoked
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FIG. 5. PIQS performance, small N . Running time as a function of the number N of TLSs in the system, up to N = 10. (a) Semilogarithmic
plot giving the time (in seconds) required to construct the Liouvillian superoperator, with H = ω0Jz in the Dicke basis (blue circles joined by
solid lines) and in the uncoupled basis (orange circles joined by dashed lines). We set ω0 = ωx = 1, the local processes γ↓ = γφ = γ↑ = 0.1,
and the collective processes γ⇓ = γ� = γ⇑ = 0.01. (b) Semilogarithmic plot giving the time (in seconds) required to solve the dynamics
given by the Liouvillian in the Dicke basis (blue circles joined by solid lines) and in the uncoupled basis (orange circles joined by dashed
lines). In both cases we use QuTiP’s master equation mesolve for H = ω0Jz, where ω0 = 1, with local processes γ↓ = γφ = γ↑ = 0.1, and
collective processes γ⇓ = γ� = γ⇑ = 0.01. We use 1000 integration time steps from t0 = 0, when the system is initially fully excited, to
tmax = 4 ln(N )/Nγ⇓.

with coordinates=‘‘cartesian’’, while the polar co-
ordinates θ , ϕ of Eq. (15) can be specified setting
coordinates=‘‘polar’’. The GHZ state of Eq. (12) is
called with ghz(N), while the fully excited state and the
ground state are invoked with excited(N) and ground(N),
respectively. These density matrices, just like the collective
spin operators, are given both in the coupled Dicke basis as
well as in the uncoupled 2N full Hilbert space. Moreover,
the user can initialize in the Dicke basis any Dicke state,
dicke(N, j, m).

An example of these instances is shown hereafter:

from piqs import (ghz, dicke, jspin)

rho1, rho2 = ghz(N), dicke(N,N/2,0)
[jx, jy, jz] = jspin(N)
H = jz + 0.5*jx

While the Dicke object defines an ensemble of N TLSs
and its properties, all operators, density matrices, and super-
operators are given as instances of QuTiP’s quantum object
class (Qobj).

C. The Liouvillian as a flexible quantum object (Qobj)

The lindbladian() and liouvillian() functions can
be used to construct the matrix form of the respective su-
peroperators as a sparse matrix wrapped as an instance of
QuTiP’s Qobj class. This gives a remarkable flexibility to
study a combination of TLSs and bosonic cavities, in the
weak-, strong-, and ultrastrong-coupling regimes.

Multiple TLS ensembles in open bosonic cavities

The super_tensor function from QuTiP allows the user
to construct two instances of TLS ensembles with PIQS and
then combine them together. It is easy to construct more com-

plex connectivities, e.g., placing the ensemble(s) in a single
or in multiple bosonic cavities. To this end, the possibility
of defining tensored Liouvillian spaces becomes crucial, as
it allows us to place a posteriori the Liouvillian matrices
describing the individual parts, which have a superoperator
form, in the tensor Liouvillian space. In QuTiP’s modular
environment it becomes natural to extend the reach of in-
vestigations, for example placing the TLS ensemble into a
photonic leaky cavity,

from piqs import num_dicke_states
from qutip import *
import numpy as np

# identity superoperators
nds = num_dicke_states(N)
nph = 20
a = destroy(nph)
itls = to_super(qeye(nds))
iph = to_super(qeye(nph))
# photonic Liouvillian
D_ph = liouvillian(a.dag()*a, [a])
# total TLS Liouvillian
D_tls = super_tensor(D_ph,itls) \

+ super_tensor(iph,D)
# light-matter interaction
H_i = tensor(a + a.dag(), jx)
D_i = -1j*spre(H_i)+1j*spost(H_i)
D_tot = D_tls + D_i

D. Cythonized code for memory-efficient fast
Lindbladian construction

The advantage of PYTHON comes from its easy-to-learn
syntax and interactive behavior as an interpreted language.
However, performing numerical calculations in PYTHON is
known to be much slower than compiled C/C++ code [84].
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FIG. 6. PIQS performance, large N . Semilogarithmic plots of
the running time as a function of the number of TLSs N in the
system, up to N = 100. We compare the time (in seconds) required
to build the matrix governing the dynamics and to solve it. We
compare two methods that both leverage PIQS. The first one is the
most flexible one, which builds the Liouvillian (blue circles joined
by dashed lines) and solves the dynamics using QuTiP’s mesolve

(blue circles joined by solid lines). The second one, applicable in
the subset of problems diagonal in the Dicke basis, uses an ad hoc
permutational-invariant solver, pisolve, which further decreases the
system’s size, building the matrix M (red stars joined by dashed
lines) and solving the relative rate equations (red stars joined by
solid lines). The dynamics is set by Eq. (1) with H = h̄ω0Jz, where
h̄ω0 = 1, the local processes are set by γ↓ = γφ = γ↑ = 0.1, and the
collective processes are set by γ⇓ = γ� = γ⇑ = 0.01. We use 1000
integration time steps from t0 = 0, when the system is initially fully
excited, to tmax = 4tD = 4 ln(N )/Nγ⇓.

To bypass this side effect, PIQS uses CYTHON routines to
compute the Lindbladian, which leads to performances similar
to low-level C/C++ code, all without sacrificing the advan-
tages of PYTHON. By writing the liouvillian function with
CYTHON we obtained a tenfold increase in performance with
respect to a PYTHON version of the same function.

Figures 5 and 6 show the performance of PIQS for small
and large N , respectively, on a commercial personal com-
puter with standard specifics (memory: 16 GB RAM at 2133
MHz; CPU: 2.3 GHz Intel Core i5). As a guide to the eye,
the markers in Figs. 5, 6 are joined by straight segments.
In Fig. 5(a), the plot shows the time required to construct
the matrix corresponding to the Liouvillian superoperator
in the dicke (blue solid segments) and uncoupled basis
(orange dashed segments). We set H = h̄ω0Jz with h̄ω0 = 1
and Lindbladian superoperator rates γ⇓ = γ⇑ = γ� = 0.01
for collective operators and γ↓ = γ↑ = γφ = 0.1 for the local
operators.

Already for N � 10 the calculation becomes computa-
tional intensive in the uncoupled basis, as the Liouvillian
space grows exponentially as 4N . In Fig. 6, a semilogarithmic
plot shows PIQS performance up to N = 100. The dashed
blue segments (circle markers) correspond to the time re-
quired to build the matrix of the Liouvillian superoperator,

showing that the Liouvillian can be built in less than 10
seconds.

E. Solving the master equation with mesolve

Once the Liouvillian is constructed, one can exploit
QuTiP’s master equation solver (qutip.mesolve) to solve
Eq. (1) or Eq. (3):

rho_tls = ghz(N)
rho_ph = ket2dm(basis(nph,0))
rho = tensor(rho_ph, rho_tls)
t = np.linspace(0, 1, 100)

result = mesolve(D_tot, rho, t,[])
rhot = result.states

As larger ensembles of N TLSs are considered, the real
limit depends on the computational power of the machine,
the scaling of the problem, known from its definition, and
the effective time required to solve the dynamics of the given
problem, which can vary greatly depending on the processes
considered and the magnitude of the rates. To assess this
systematically, in Fig. 5(b), we compare the time required to
solve the master equation with QuTiP’s master equation solver
mesolve using a Liouvillian in the dicke or uncoupled ba-
sis, considering every local and collective incoherent process.

We choose as the initial state ρ0 = |N
2 , N

2 〉〈N
2 , N

2 |. We use
1000 integration steps up to a maximum time tmax = 4tD,
where tD = ln(N )/Nγ⇓ is the superradiant delay time. We
find that the performance scales similarly to the construction
of the Liouvillian, Fig. 5(a), exploding exponentially in the
uncoupled basis, while remaining fast in the dicke basis.
In Fig. 6, the solid blue segments joining the circles show that
the exact time evolution for the collective density matrix, ρ(t ),
can be obtained in minutes even for N = 100 TLSs.

Diagonal solver

When the initial state of the system is in diagonal form in
the Dicke basis, such as those in Fig. 2, and the Hamiltonian
is also diagonal in the Dicke basis, the problem of Eq. (1)
can be further simplified since Eq. (18) then couples only the
diagonal matrix elements, pjmm. The number of matrix ele-
ments is then only

∑N/2
j=jmin

(2j + 1) = 1
4N (N + 1) = O(N2).

This means that it is possible to define a matrix for the
coefficients of the coupled linear differential equations, M ,
whose size scales only quadratically in N , allowing more
efficient simulations,

ṗ = Mp, (20)

where p is a vector containing only the diagonal matrix
elements of ρ; see the Appendix for details. We implemented
this option in the library, so that the user can solve the
dynamics with an ad hoc permutational-invariant solver for
the rate equations, pisolve(rho_tls, t), which generates
a vector p and then re-expands the results in terms of QuTiP’s
Results class, so that the user can obtain the full density
matrix ρ(t ) and any higher-order moment. Here rho_tls is
the density matrix of the initial TLS-ensemble state and t
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FIG. 7. Superradiant light emission. Superradiant decay of the total inversion, 〈Jz〉(t ), and emitted light, 〈J+J−〉(t ), for N = 20 TLSs, for
different initial states, with H = ω0Jz, ω0 � γ⇓, γ⇓/γφ = 1. The time is expressed in units of the superradiant delay time, tD = ln N/Nγ⇓.

the integration-time list. An example of a program using this
further space reduction to calculate the total inversion 〈Jz〉(t )
of the system defined by the Dicke object ensemble defined
above, is given here:

# diagonal solver
rho_tls = excited(N)
result = ensemble.pisolve(rho_tls, t)
rhot = result.states
jzt = expect(rhot, jz)

In Fig. 6, we plot the time required to build the coefficient
matrix M of Eq. (20) (dashed red segments joining the stars)
and to then solve the dynamics using pisolve (solid red
segments joining the stars), showing that for the subset of
problems diagonal in the Dicke basis the system’s dynamical
properties can be found up to two orders of magnitude faster.

IV. EXAMPLES AND APPLICATIONS

In this section we demonstrate how PIQS can be easily
used to model a variety of systems in which collective ef-
fects play an important role, assessing the influence of often-
neglected local dissipation. The interested reader can find
online several interactive PYTHON notebooks, including all of
those relative to the physical models treated below [87]. The
driven-dissipative dynamics of models that are diagonal in the
Dicke basis can be studied also with the fast solver pisolve.

A. Superradiant light emission

To begin, we study the paradigmatic example of super-
radiant light emission [3,120,159–164], which can be gen-
eralized to include local phase-breaking terms, particularly
relevant in large TLS ensembles and in solid-state implemen-
tations, in which suboptimal experimental conditions spoil
the simple picture of a single collective light emission cou-
pling [77,109,116,117,121,160,165–179] (see Ref. [56] for a
more comprehensive list of references). Here we add local

dephasing to the classical superradiant master equation,

ρ̇ = −iω0[Jz, ρ] + γ⇓
2
LJ− [ρ] +

N∑
n=1

γφ

2
LJz,n

[ρ], (21)

where ω0 is the bare TLS resonance, N is the number of
TLSs, and γ⇓ and γφ the rates of collective emission and local
dephasing, respectively. The relevant parameters that affect its
dynamics are N and γφ/γ⇓, which we set respectively to 20
and 1. In Fig. 7, the time evolution of the normalized total
inversion, Fig. 7(a), and light emission, Fig. 7(b), are shown
under the Liouvillian dynamics of Eq. (21) for different initial
states.

Thanks to the fact that PIQS allows us to obtain the time
evolution of the full collective density matrix ρ(t ), we can
compare different initial states that have the same moments or
nonclassical correlations at the initial time. The fully excited
state, |N

2 , N
2 〉, shown by dot-dashed curves in Fig. 7, is the one

that leads to a superfluorescent light emission after a delay
time tD = ln(N )/(Nγ⇓) [161] and then proceeds to a slow
decay on a timescale set by γφ [56,121,179]. The entangled
superradiant Dicke state |N

2 , 0〉 (solid orange curve), as well as
the symmetric |+〉CSS and antisymmetric |−〉CSS coherent spin
states, which are separable states, evolve almost identically in
time, as shown by the dashed and solid curves, respectively,
as predicted in Ref. [162] for γφ = 0.

The subradiant Dicke state |0, 0〉, which would exhibit a
frozen dynamics for γφ = 0, displays a slow decay due to
the presence of dephasing, as shown in Fig. 7(a). If local
incoherent losses were present, the decay of this state would
be faster and no light would be emitted. Yet, when only de-
phasing is present, a small light emission occurs, as shown in
Fig. 7(b); an intuitive analytical explanation for this dynamics
can be gained by looking at the Dicke space of Fig. 4: the
system moves from the state |j,−j 〉, with j = 0 at t = 0, to
an inner state |j + 1,−j 〉 with the same excitation number,
since �m = 0, and greater cooperative number, �j > 0, and
falls on states with |j + 1,−j − 1〉, and so on, emitting a
photon for each jump. We point out that, while superradiance
has been observed experimentally since the 1970s [165], the
generation of collective symmetric Dicke states of TLSs has
proven more elusive until recent times [180,181]. Nonsym-
metrical Dicke states have been implemented in atomic clouds
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[115,182] and deterministic generation has been pioneered in
superconducting circuits [173].

Finally, the GHZ state (dashed brown curves) displays a
distinctive superradiant peak in the emitted light. Note that
a first-order semiclassical theory or the cumulant-expansion
method would not distinguish between the time evolution
of the GHZ and that of the superradiant state or the
(anti)symmetric CSS, since at t = 0, they all have identical
first- and second-order moments.

B. Steady-state superradiance

The notion of a superradiant laser was introduced in
Refs. [183,184] to describe coherent light emission of a col-
lection of TLSs interacting with a single-mode cavity operat-
ing in the bad-cavity limit. It was extended to an incoherently
pumped steady-state light emission in Refs. [10,11] and veri-
fied experimentally in atomic ensembles of Rb and Sr atoms
[17,18]. In the bad-cavity limit, the photonic degrees of free-
dom can be traced out and the dynamics can be described by

ρ̇ = −iω0[Jz, ρ] + γ⇓
2
LJ− [ρ]

+
N∑

n=1

(
γ↑
2
LJ+,n

[ρ] + γ↓
2
LJ−,n

[ρ]

)
, (22)

where here γ↑ is the rate of homogeneous local pumping
and γ↓ that of local emission. Equation (22) corresponds to
having only a rotating-wave light-matter coupling, differently
from the Dicke-Hepp-Lieb phase transition [185,186]. For
the case in which γ↓ = 0, the existence of a threshold beyond
which the incoherently pumped system emits coherent light
with a superradiant enhancement factor has been shown
[10,11,20,72]. Its dynamics is determined by N and the
normalized local rates γ↓/γ⇓ and γ↑/γ⇓.

In Fig. 8(a) we show the normalized value of the emitted
light for the steady state of Eq. (22), 〈J+J−〉ss, as a function
of the local pumping rate divided by N for N = 10, 20,
30, and 40, thinnest to thickest curve. Solid black curves
correspond to γ↓ = 0. In agreement with Ref. [10], the value
of light emission in the steady state occurs at a point that is
found around γ↑ = Nγ⇓. We find that the maximum value,
occurring at the critical coupling, has a superradiant scaling.

The inclusion of local losses, as done in Eq. (22), in the
presence of collective phenomena can be relevant to ther-
modynamics schemes, e.g., for quantum heat engines [187–
193] and bio-inspired photon-absorption devices [194,195].
We thus consider the case in which the dissipative local
interactions obey detailed balance; that is, we set γ↑

γ↓
= nT

1+nT
,

where nT is the thermal occupation number. The red dashed
lines in Fig. 8 show the results in the high-temperature case
nT � 1, in which the system can become highly excited. We
see that thermal equilibrium in the local processes leads to
the disappearance of any resonant feature, with the emission
progressively dampened for larger values of N . In Fig. 8(b)
we study how temperature affects the superradiant behavior,
fixing the collective emission rate, γ⇓ = ω0, and the number
of TLSs, N = 40. We find that the detailed balance condition
is detrimental at any temperature, i.e., for any occupation
number nT, and for any ratio between of the local baths’ figure
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FIG. 8. Steady-state superradiance. (a) Value of the steady-state
light emission 〈J+J−〉ss/N as a function of the local pumping
strength γ↑, which is in units of Nγ⇓. We set γ⇓ and tune γ↑ for N =
10 (thinnest curves), 20, 30, 40 (thickest curves). Two different cases
are considered: in the first one, only collective emission is present,
γ↓ = 0 (solid black curves), see also Fig. 2 of Ref. [10]; in the second
one (dashed red curves), the local emission rate ensures the detailed
balance condition with respect to local pumping, γ↓ = γ0(1 + nT)
and γ↑ = γ0nT; we consider the high-temperature limit, nT � 1, thus
setting γ↓ = γ↑. (b) We study the steady-state light emission for fixed
γ⇓ = ω0 and N = 40, varying both γ0 and nT.

of merit, γ0, and the collective emission rate, γ⇓, thus showing
that cooperative light emission is prevented by the detailed
balance condition of the local baths.

C. Spin squeezing

Spin-squeezed states can improve the sensitivity of mea-
surements beyond the classical limit [196,197]. They have
recently been implemented on hundreds of trapped ions
[81,198] and large ensembles of atoms in Bose-Einstein con-
densates [130,131,199–202]. A typical squeezing Hamilto-
nian requires a second moment of the collective spin operators
[62,82,203–205].

Of this important class of problems, here we demonstrate
the study of the two-axis twisting Hamiltonian [197]

H = −i�(J 2
+ − J 2

−), (23)
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FIG. 9. Spin squeezing. (a) Time evolution of the spin squeezing parameter ξ 2 for two different dynamics and two different initial states:
the solid curve corresponds to γ↓ = �/5 and γ⇓ = 0, the dashed curve to γ↓ = 0 and γ⇓ = �/5. Here we consider N = 50 TLSs. The thin
curves qualitatively reproduce Fig. 3 of Ref. [61] and correspond to an initially fully excited state, |N

2 , N

2 〉. The thick curves instead correspond
to the nonsymmetric Dicke state with longest time under spin-squeezed evolution, ξ 2 < 1, the |j, j〉 Dicke state with j = 14. (b) Study of
the minimum spin-squeezing parameter ξ 2, for any initial Dicke state |j, m〉: We consider γ↓ = �/5 and γ⇓ = 0 and N = 20; the size of the
circles and the shading of the filling give the strength of the maximum spin squeezing obtained. (c) Trade-off between the spin-squeezing time
τ and the minimum spin-squeezing parameter ξ 2 for different initial states, fixing N = 20 for two different dynamical conditions, either in the
presence of collective dissipation only (circles joined by the solid orange segmented line) or local dissipation only (dashed blue segmented
line). (d) The minimum value of the spin-squeezing parameter ξ 2 (maximum squeezing) is explored for different values of γ↓ and γ⇓, with
initial state the fully excited state for N = 20. (e), (f) Color plots for the minimum spin-squeezing parameter value ξ 2 and the time at which it
is reached τ as a function of γ↓, fixing γ⇓ = �/5. The dashed lines help identify qualitatively the region with spin squeezing (parameter space
to the right of the line).

evolving under the dissipative dynamics

ρ̇ = − i

h̄
[H, ρ] + γ⇓

2
LJ− + γ↓

2

N∑
n=1

LJ−,n
[ρ]. (24)

In Ref. [61], it has been shown that the collective emission
in γ⇓ and the homogeneous local emission in γ↓ affect
in a different way the spin squeezing of the system, with
the local emission being less detrimental than the collective
emission mechanism to the attainable degree of spin squeez-
ing. In Fig. 9(a) we plot the spin-squeezing parameter ξ 2 =
N〈�J 2

y 〉/(〈Jz〉2 + 〈Jx〉2) [130] for N = 50. The horizontal
black dashed line marks the boundary ξ 2 = 1 below which
there is spin squeezing in the system. The black solid curves
correspond to Eq. (24) with γ↓ = 0 and γ⇓ = �/5, while the
red dashed curves show the homogeneous local dynamics,
γ↓ = �/5 and γ⇓ = 0. The thin curves correspond to a sys-
tem initialized in the excited state |N

2 , N
2 〉 and qualitatively

reproduce Fig. 3 of Ref. [61].
We have then used PIQS to explore all |j,m〉 Dicke states

to identify those evolving with spin squeezing [206,207]. We
found that while the excited state provides the greater degree
of spin squeezing, for some nonsymmetric states |j, j 〉 the
system displays spin squeezing with a delay and for a longer
time [208]. In Fig. 9(a), the thick solid curves correspond

to a system initialized in the Dicke state |j, j 〉, with j < N
2 ,

setting j = 14, which is the state which exhibits the longest
time evolution as a spin squeezed state for the dynamics
governed by γ↓. This is ∼30% longer than for the |N

2 , N
2 〉 state

previously considered in the literature [61].
In Fig. 9(b) we show the spin-squeezing parameter min-

imum value for any initial Dicke state, fixing N = 20. It is
discernible that only the first seven states |j, j 〉, beginning
from j = N

2 and decreasing value, display spin squeezing,
for the dissipative dynamics in which only local emission
is considered, γ↓ = �/5. Similar qualitative results hold
for the dynamics influenced by collective dissipation only,
γ⇓ = �/5. In Fig. 9(c), a study of the optimal condition
for maximum spin squeezing and spin squeezing time is
shown, for such seven initial states displaying spin squeezing,
this time adding, to the local dynamics studied in panel (a)
(markers joined by the dashed line), also a comparison to the
dynamics for which γ⇓ = �/5 (solid lines). Both local and
dissipative dynamics have the same effect on spin squeezing,
with collective emission being more detrimental. The plot
shows that the relation between maximum spin squeezing
and spin-squeezing time is nonmonotonic, giving indication
of different optimal conditions for cases in which either spin
squeezing or the time of the spin-squeezed evolution might be
most relevant.
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In Figs. 9(d)–9(f) we then turn to explore a more general
mixed collective-incoherent dissipative dynamics, in which
both γ↓ and γ⇓ coexist in Eq. (24). In Fig. 9(d) we explore
the coherent-incoherent parameter space to study mixed con-
ditions, finding that the cooperative decay is more detrimental
than local decay to spin squeezing, and both have qualitatively
the same detrimental effect, even when they are both present
in the dynamics. In Figs. 9(e)–9(f), we provide a color plot
of maximum spin squeezing [panel (e)] and the time of its
occurrence, τ [panel (f)], in the parameter space of local and
collective dissipation as a function of the number of particles,
in order to ascertain the presence of any optimal condition
emerging from cooperative behavior. We fix γ⇓ = �/5 and
vary both γ↓ and N . While the maximum spin squeezing
achievable improves monotonically for greater N , due to the
cooperative nature of the unitary spin-squeezing Hamiltonian,
the time of its occurrence is nontrivial, and a condition for
engineering longer spin-squeezing time (under nonoptimal
spin squeezing) can be found, which can be of interest in
metrological experimental conditions in which the time to
perform measurements might want to be maximized.

An interesting direction would be to further explore the ef-
fect of local and collective dissipation terms in order to obtain
robust, steady-state spin-squeezing states generation [209],
also in the presence of a dissipative cavity, addressing the
interplay with bosonic squeezing. Since PIQS grants access to
the full density matrix, it also allows us to investigate higher-
order quantum correlations and other entanglement witnesses,
such as the quantum Fisher information [200,210–213].

D. Phase transitions

Driven-dissipative systems of the kind specified by Eq. (1)
and Eq. (3) are being intensively studied in the context
of out-of-equilibrium phase transitions [39–42,45,52,81,214–
223]. These systems challenge some of the fundamental as-
sumptions for systems at equilibrium. Recent studies have
highlighted the rich physics that can be inferred from the
properties of the Lindbladian superoperators and their spectra
[36,37,218]. Other systems of ensembles of TLSs have shown
collective phenomena such as synchronization, symmetry
breaking, and long-lived state protection [15,85,86,136,224–
228].

Open Dicke model

The Dicke model in a driven-dissipative setting has been
the object of much attention, comprehensively described in a
recent review [43]. Here we will show how PIQS can be used
to study a model including pumping and losses both at the
local and collective level, described by the equation

ρ̇ = − i

h̄
[H, ρ] + γ⇓

2
LJ− [ρ] + γ⇑

2
LJ+ [ρ] + κ

2
La[ρ]

+
N∑

n=1

(
γ↓
2
LJ−,n

[ρ] + γφ

2
LJz,n

[ρ] + γ↑
2
LJ+,n

[ρ]

)
, (25)

with

H = h̄ω0Jz + h̄ωcava
†a + h̄gJx (a + a†). (26)

Note that, although usually for values of the coupling con-
stant g comparable to the frequencies of the bare excitations,
more refined open quantum system approaches, described in
Sec. IV F, have to be used [93,95,96,98,229–231], Eq. (25)
is fully justified in effective models [57,76,78,99,100]. The
introduction of local dissipative terms modifies the properties
of the steady state of Eq. (25). References [40,57,78] have
studied the superradiant phase transition [185,186] in the pres-
ence of several local driven-dissipative processes. In Ref. [40]
it has been shown that the coupling to a thermal bath affects
the critical temperature of the phase transition, i.e., when the
γ↓ and γ↑ are governed by detailed balance. The influence of a
general Markovian bath

∑
n L[J−,n+λJ+,n](ρ), with λ a dimen-

sionless real parameter, has also been assessed in Ref. [40],
highlighting that for λ → 1 and hence considering the limit
of

∑
n L[Jx,n](ρ), the critical point moves to ever higher light-

matter couplings and there is no superradiant phase.
Reference [78] has illustrated that the inclusion of local

incoherent emission, γ↓, in the presence of local dephasing,
γφ , can restore the existence of the superradiant phase. The
interplay between the superradiant, normal, and lasing phases
has been addressed in Ref. [57] with regards to a general
Dicke Hamiltonian with an additional degree of freedom in
the coupling of the counter-rotating terms. The occurrence of
each phase has been found to depend on the ratio of coherent
collective pumping in the Hamiltonian and local pumping, γ↑.

Here we reproduce part of these results and further extend
the study to address the effect of collective pumping and
emission. In Fig. 10, we group contour plots of the Wigner
function of the photonic part of the steady state of Eq. (25),
ρph,

W (x, p) = 1

π

∫ ∞

−∞
〈x − x ′|ρph|x + x ′〉e2ipx ′/h̄dx ′, (27)

with x and p here representing the phase-space conjugate co-
ordinates of the photonic mode operators, a = 1√

2
(x + i

h̄
p).

We set N = 10, κ = ω0 = ωcav, and assess the effect of differ-
ent conditions of collective and local pumping and emission,
always maintaining local dephasing, γφ = 0.01ω0, which is
detrimental to the superradiant phase. We calculate the Wigner
function using QuTiP’s wigner() function. In Fig. 10(a),
we add only incoherent pumping, γ↑ = 0.1ω0, which does
not restore the superradiant phase and actually decreases
the squeezing of the system. In Fig. 10(b), the existence of
two displaced and squeezed blobs is restored by a term in
γ↓ = 0.1ω0, qualitatively reproducing the result obtained in
Ref. [78].

Naively, one would expect a duality between the models
of Figs. 10(a) and 10(b), with κ , γφ , γ↓ (which displays
the superradiant transition) and κ , γφ , γ↑ (which shows no
transition). The reason there is no transition is because this
duality also requires the sign on ω0 in Eq. (26) to be flipped.
In the pumping case, the system is thus effectively far detuned
from resonance and the superradiant phase transition does not
occur. In Fig. 10(c), we find that collective pumping, with
γ⇑ = 0.1ω0, is detrimental to the superradiant phase, while
for collective losses with γ⇓ = 0.1ω0, shown in Fig. 10(d),
the fingerprint of the superradiant phase is still discernible.
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FIG. 10. Open Dicke model. Here we consider the Wigner func-
tion of the photonic part of the steady state; x and p are the
conjugate operators of the photonic mode operators. We fix the
cutoff of the photonic Hilbert space at nph = 20 and study the
influence of local and collective processes. For N = 10 TLSs, H is
given by Eq. (25), with ωcav = ω0, g = 2ω0/

√
N , κ = ω0, and γφ =

0.01ω0. (a) Adding γ↑ = 0.1ω0 does not restore the superradiant
phase transition. (b) Adding γ↓ = 0.1ω0 restores the superradiant
phase transition, and reproduces one panel of Fig. 1 of Ref. [78].
(c) Adding both γ↓ = 0.1ω0 and the collective pumping γ⇑ = 0.1ω0

is detrimental to the superradiant phase. (d) Adding to γ↓ = 0.1ω0,
also the collective emission γ⇓ = 0.1ω0 still allows us to resolve the
superradiant phase.

Limit cycles and boundary time crystals

The interplay of competing collective phenomena in open
quantum systems can lead to limit cycles, as shown in
Ref. [85] for the case of a collection of N TLSs that are coher-
ently driven at a frequency ωx , and that can also collectively
decay, at a rate γ⇓.

Here we consider the same model as in Refs. [85,226],
but generalized to include also local emission and local or
collective dephasing terms,

ρ̇ = −iωx[Jx, ρ] + γ⇓
2
LJ− [ρ] + γ�

2
LJz

[ρ]

+
N∑

n=1

(
γ↓
2
LJ−,n

[ρ] + γφ

2
LJz,n

[ρ]

)
. (28)

Note that, in the context of quantum optics, nonlinear effects
arising from Eq. (28) have been studied also in relation
to optical bistability and cooperative resonance fluorescence
[59,232–234] and more recently in connection to Hopfield
neural networks [88]. Two regimes of this model can be
defined, one of strong dissipation, ωx � N

2 γ⇓, and one of
weak dissipation, ωx � N

2 γ⇓. In Ref. [85], which considers
γ↓ = γφ = γ� = 0 and γ⇓ ∝ 1

N
, it has been shown that in

the weak dissipation regime, the total spin oscillations in
〈Jz(t )〉, set by γ⇓ ∝ 1

N
, become more clear with N , and the

gap of the Liouvillian spectrum vanishes, a probe of phase
transition (PT). The observation of this phenomenon has been
proposed in a Raman-driven cold-atom setup [99] and named
as a boundary time crystal [85].

In Ref. [85], it has been shown that the collective spin
oscillations characterizing the limit cycle in the steady state
are robust against nonlinear perturbations in the Hamiltonian.
Using PIQS, we studied the effect of local dephasing on
the collective spin oscillations. In Fig. 11(a), the normalized
collective TLS inversion is plotted as a function of time for
N = 30 with ωx/γ⇓ = 4

N
, no local emission, γ↓ = 0, and

for different values of dephasing, γφ/ωx = 0, 0.01, 0.1, 1. We
find that local dephasing affects the visibility of the collective
oscillations and its detrimental effect with respect to collective
processes can be traced in the decrease of the normalized
total spin length, 〈J 2(t )〉, a measure of cooperation in the
system, as shown in Fig. 11(b). Similarly, we have found
that when local losses, instead of dephasing, are included,
the effect is detrimental for the observation of the collective
oscillations (not shown; available online) [87]. If collective
dephasing processes, proportional to γ�, are included, we find
that this collective effect does not shift the frequency of the
spin oscillations; see Fig. 11(c). Collective dephasing leaves
the total spin length unchanged; see Fig. 11(d). Both local
and collective pure dephasing are detrimental to the visibility
of the spin oscillations. We note that a recent study has also
assessed the robustness of time crystallization in a system
under local noise, i.e., inhomogeneous broadening [235].

E. Multiple spin ensembles

With PIQS it is simple to study multiple TLS ensembles
coupled to a single cavity or multiple bosonic cavities. The
approach can be generalized to k ensembles of TLSs, with
k > 2 and each ensemble with a given Nk TLS population. In
the case of open driven-dissipative quantum systems, Eq. (1)
has been used to study a dynamical phase transition that can
synchronize two populations of atoms as in a quantum version
of a Huygens clock with local and collective driving and
dissipation [13].

For simplicity, here we perform a study of two TLS en-
sembles, with populations N1 and N2. In the bad-cavity limit,
the cavity degree of freedom can be traced out. It has been
shown in Refs. [86,228] that if N1 �= N2, and both ensembles
are driven and can dissipate only through a common channel,
a peculiar exchange of spin inversion can be engineered in
the system. We will consider a generalization of the collective
dynamics considered in Ref. [86], to include the possibility of
a single ensemble of TLS to experience a collective or local
dissipative dynamics. We thus consider the master equation

ρ̇ = −iω0
[
J (1)

z + J (2)
z , ρ

] + γ⇓
2
L(J (1)

− +J
(2)
− )[ρ]

+ γ⇑
2
L(J (1)

+ +J
(2)
+ )[ρ] +

2∑
k=1

γ⇓,k

2
L

J
(k)
−

[ρ]

+
Nk∑
n=1

(
γ↓
2
L

J
(k)
−,n

[ρ] + γφ

2
L

J
(k)
z,n

[ρ]

)
, (29)
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FIG. 11. Boundary time crystal. The dynamics of Eq. (28) is shown in the case of weak dissipation (ωx � N

2 γ⇓) for N = 30, with the
system initialized in the excited state |N

2 , N

2 〉, for different dephasing rates γφ/ωx = 0, 0.01, 0.1, 1 (thicker to thinner curves). (a) The total
inversion, 〈Jz〉(t ), normalized by N/2, is plotted in time. These results extend those obtained for γφ = 0 in Ref. [85]. (b) The total spin length,
〈J 2〉(t ), normalized by j2 = N

2 ( N

2 + 1), is shown. In panels (c) and (d), the same quantities are plotted for different collective dephasing rates,
γ�/ωx = 0, 0.01, 0.1, 1 (thicker to thinner curves).

where γ⇓ (γ⇑) is the rate of collective decay (pumping) of
the two coupled ensembles, γ⇓,k (γ⇑,k) is the rate of collective
decay (pumping) of the single ensemble k, while γ↓ and γφ are
the local emission and local dephasing rates, respectively. In
Eq. (29), the operators J (k)

α,n and J (k)
α are the local and collective

operators of the k ensemble, respectively.
For N1 < N2, at t = 0 all spins of the first ensemble are in

the ground state, while the spins in the second ensemble are
all excited,

|ψ〉 = |g · · · g〉N1
⊗ |e · · · e〉N2

=
∣∣∣∣N1

2
,−N1

2

〉
⊗

∣∣∣∣N2

2
,
N2

2

〉
,

(30)

which on the right-hand side of Eq. (30) has been written as
a tensor product of Dicke states, so that the system can be
readily studied using PIQS formalism. In Fig. 12 we show the
total spin inversion of each ensemble, 〈J (k)

z (t )〉, as a function
of time for the first ensemble (black curves) and the second
ensemble (red curves) for N1 = 5 and N2 = 15 for different
dynamical conditions. We investigate the low-temperature
limit, setting the thermal occupation number to nT � 1. The

time is normalized in terms of the superradiant dynamics of
the second ensemble, using the standard definition of delay
time as tD = ln(N2)/N2γ⇓.

In Fig. 12(a), the solid curves in the plot show the time
evolution given by Eq. (29) for γ⇓,1 = γ⇓,2 = γφ = γ↓ = 0
and γ⇓ > 0, with an exchange of collective spin excitation
among the two ensembles and a negative-temperature effect
in the steady state for the spins of the first ensemble [86].
We note that this effect can be interpreted by resorting to the
Dicke space picture, considering the total coupled ensembles
as a single one, N = N1 + N2. If only collective emission and
pumping are allowed, the master equation can be rewritten
simply as a unique system,

ρ̇ = −iω0[Jz, ρ] + γ⇓
2
LJ− [ρ] + γ⇑

2
LJ+ [ρ]. (31)

The initial condition of Eq. (30) means that the system is
prepared in a state with nonmaximal cooperative number j <
N
2 = N1

2 + N2
2 . At zero temperature, Eq. (31) then reduces to

the standard superradiant master equation. The persistence of
excitation in the initially unexcited ensemble can be inter-
preted as the system being effectively confined in the ladder
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FIG. 12. Spin-excitation exchange in multiple TLS ensembles. The robustness of the spin-excitation exchange given by the dynamics of
Eq. (29) is studied for two dissipatively coupled ensembles of TLSs. Black and red curves display the time evolution of the total spin inversion
of the first and second ensembles, respectively, normalized by N1/2 and N2/2, respectively. Here we set N1 = 5, N2 = 15, the system is
initially in the state |N1

2 ,−N1
2 〉 ⊗ |N2

2 , N2
2 〉, and nT � 1, thus neglecting collective pumping, γ⇑, in Eq. (29). (a) For γ⇓ = ω0 (solid curves), the

first ensemble, initially unexcited, starts at 〈J (1)
z (0)〉/(N1/2) = −1 (black thin solid curve) and ends up in an excited steady state, while the

initially excited second ensemble, starting at 〈J (2)
z (0)〉/(N2/2) = 1 (red thick solid curve), ends up deexcited; these solid curves qualitatively

reproduce the results of Ref. [86]. We investigate the effect of local incoherent emission, γ↓, adding it to both ensembles, showing that the
excitation exchange becomes only transient, as the excitation lost by the second ensemble (red thick dashed curve) is partly acquired by the
first ensemble (black thin dashed curve) at short times; eventually also the second ensemble relaxes to the ground state. (b) We show the effect
of collective emission from each of the two ensembles, γ⇓,i = γ⇓ (dot-dashed curves), as well as that of local pure dephasing, for γφ = γ⇓
(dotted curves). As in panel (a), the system is initialized in an antisymmetric state, with the first ensemble not excited at t = 0 (black thin
curves) and the second ensemble fully excited (red thick curves). The delay time is tD = ln(N2)/N2γ⇓.

of dark Dicke states, as discussed in Refs. [56,75]. We now
generalize the dynamics: If each of the ensembles is allowed
to dissipate incoherently, γ↓, the steady-state excitation of
the first ensemble, initially unexcited, becomes only transient,
and it eventually relaxes to the ground state, as shown by the
dashed curves of Fig. 12(a).

In Fig. 12(b), we assess the effect of dephasing, γφ = γ⇓
(dot-dashed curves), and collective emission from each of
the TLS ensembles, γ⇓,i = γ⇓,i (dotted curves), for i = 1, 2,
which are both shown to deplete the population inversion of
the first ensemble for t � tD. On the one hand, the introduc-
tion of these local and collective mechanisms is a detrimental
effect for the preservation of the steady-state collective spin
excitation of the N1 TLSs in the first ensemble and prevents
robust negative-temperature effects. On the other hand, these
processes actually open the way to the investigation of ex-
citation exchanges and delayed light emission in collections
of TLS ensembles, e.g., coupled in series in an array of
cavities. More complex experimental conditions than that of
Eq. (29) can be simulated with PIQS, e.g., one or multiple
ensembles of TLSs interacting with one or multiple bosonic
environments, all able to dissipate. This could extend previ-
ous investigations to the dissipative regime or consider more
complex connectivities [78,79,86,136,228,236–239].

F. Ultrastrong-coupling regime

When the strength of the light-matter coupling becomes
comparable to the bare excitation frequencies, the interaction
becomes nonperturbative. The rich phenomenology which
becomes then observable [92,96–98,240–259] has led to a
remarkable interest in those nonperturbative regimes, which
have been experimentally realized in a number of experimen-
tal implementations well described, at least in first approxi-

mation [260–264], by the Dicke model [265–281]. A number
of works investigated the impact of losses in this regime,
demonstrating in particular how the standard Lindblad form of
the master equation can fail, leading to unphysical processes
as emission of light from vacuum [93,95,96,98,229–231,282].

A commonly used approach to solve those problems is to
write the master equation in the basis of the dressed states fol-
lowing, e.g., Ref. [93]. This allows us to avoid unphysical pro-
cesses as the (ultrastrongly) coupled energies are used instead
of the bare ones. Here we show that PIQS, and more generally
the permutational-invariant approach, is flexible enough to
allow one to consider the correct ultrastrong-coupling (USC)
master equation. For simplicity we neglect the Lamb shift in
H and assume that the TLSs interact with a white-noise bath
and set all γi = 0 besides γ↓. We thus consider the master
equation

ρ̇ = − i

h̄
[H, ρ] +

∑
r,s>r

(
κ

2
|Xr,s |2 + γ↓

2

N∑
n=1

∣∣J r,s
x,n

∣∣2

)

×L[|r〉〈s|](ρ), (32)

where |r〉, |s〉 are the dressed light-matter eigenstates of H in
Eq. (26), and the condition s > r ensures that the jumps are
from states of higher to lower energy only. We have projected
the spin operators onto the dressed basis,

Jα,n =
∑
r,s

J r,s
α,n|r〉〈s|, (33)

with α = {x, y, z,+,−} and similarly Xr,s = 〈r|(a + a†)|s〉.
The problem of solving Eq. (32) for N � 1 is that in order
to explicitly write the brakets contained in Eq. (33) for each
of the N TLSs, one seems to be forced to place them into
the 2N Hilbert space. Nevertheless, if we exploit the fact that
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FIG. 13. Ultrastrong-coupling regime. We compare the solution of the master equation valid below the ultrastrong-coupling (USC) regime
and for effective models (black dashed curve) with the correct USC master equation (blue solid curve) for N = 10 TLSs in a lossy cavity. The
parameters are ωcav = ω0, g = 0.1ω0, γ↓ = κ = 0.01ω0, and the photonic Hilbert subspace has a cutoff of nph = 3. (a) The intracavity photon
population, 〈a†a〉(t ), is calculated with two different Liouvillians, relative to the USC regime (solid blue curve) and to the non-USC regime
(dashed black curve). We subtract to these quantities the photon population in the steady state of the USC Liouvillian 〈a†a〉GS. The initial
state is the tensor state |N

2 , −N

2 〉 ⊗ |0ph〉. The different dynamics prompt different time evolutions tending to the USC steady state (dashed
yellow line) and non-USC steady state (solid green line). (b) The extracavity photon emission spectrum S(ω) is shown, according to the two
calculations, here initializing the system in the ground state of the light-matter Hamiltonian. The dotted vertical red lines correspond to the
polariton frequencies ω = ω0 ± √

N
g

2 .

with PIQS we can build the permutational-invariant Lind-
bladian superoperator for the undressed interactions, LJ−,i

,
in the Dicke basis |j,m〉〈j,m′|, we can explicitly write the
USC master equation in the Liouvillian space given by the
Dicke basis. By projecting this object onto the dressed USC
basis, without requiring an explicit expression for the local
operators, from Eq. (33) we obtain

N∑
n=1

∣∣J r,s
−,n

∣∣2
s>r

= 1

2
〈s|

N∑
n=1

LJ−,n
(|r〉〈r|)|s〉s>r , (34)

and similarly for the other local spin operators to obtain the
overlaps present in Eq. (32). This approach can be generalized
to the dynamics induced by the other local processes, dephas-
ing and pumping. In Figure 13(a), we plot the time evolution
of the excess intracavity photon population, with respect to the
steady-state value, for a many-body system comprising N =
10 TLSs, initialized in a tensor state with no cavity photons
and the spins in the Dicke state |N

2 ,−N
2 〉. The Hamiltonian

light-matter coupling is given by Eq. (26), with ω0 = ωcav and
g = 0.1ω0. We assume that no pure dephasing is present and
we consider homogeneous local spin dissipation and photon
loss, γ↓ = κ = 0.01ω0, with the bath temperatures zero, so
that no pumping is included and the steady state is effectively
the dressed ground state of the light-matter Hamiltonian of
Eq. (26).

The solution of Eq. (32) is shown by the solid blue curve,
with the steady-state photon population marked by the dashed
yellow line. The solution of the master equation valid in the
non-USC regime (dashed black curve) leads to the wrong
steady state (solid green line), which overestimates the steady-
state intracavity photon population.

It is known that one of the problems of not employing
the correct USC Liouvillian, as in Eq. (32), is an unphysical
estimate of the extracavity photon emission rate, which gives
photon generation even when only dissipative processes are
present [91,93]. In Fig. 13(b), we compare the steady-state

photon emission spectrum, S(ω), which for positive frequen-
cies and white reservoirs can be calculated from

S(ω > 0) ∝
∫ ∞

−∞
〈a†(τ )a(0)〉e−iωτ dτ, (35)

using the quantum regression theorem, implemented in
QuTiP’s spectrum() function. The time evolution of the
photon operators in Eq. (35) is calculated according to the
two master equations. In the first case, we use the non-USC
master equation of Eq. (1) [dashed curve in Fig. 13(b)], which
leads to the prediction of an unphysical photon spectrum
with asymmetric-intensity peaks at the polariton frequencies
ω = ω0 ± √

N
g

2 . The correct spectrum obtained using
Eq. (32) shows no photon emission [solid curve in Fig. 13(b)].

V. CONCLUSIONS

We have provided a computational library for the investiga-
tion of the open quantum dynamics of many TLSs that lever-
ages permutational invariance, PIQS [87]. We have shown
how the Dicke states and the Dicke space are powerful tools to
study the interplay of local and collective processes, giving a
unifying analytical framework to visualize and quantify their
effect, extending its application to the presence of collective
pumping and collective dephasing. By coherently organiz-
ing an overview of existing works that use permutational-
invariant methods, we could systematically highlight the rich
physics that has been investigated in this setting. We have
demonstrated how PIQS can be used to investigate a range of
physical phenomena in the context of driven-dissipative open
quantum systems, and we have shown how they are influenced
by local dissipation.

We have provided original results in all subsections of
Sec. IV. Since we can resolve the time evolution of the col-
lective density matrix, we could study how the same dynamics
leads to very different time evolutions, depending on the initial
preparation of the system. We began by studying the dynamics
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governed by superradiant decay in the bad-cavity regime
and with local dephasing. We could pinpoint the different
evolutions of the maximally symmetric Dicke state |N

2 , 0〉 and
the GHZ state, which cannot be captured by second-order
approximate methods relying on the factorization of collective
spin moments. On the other hand, we verified that there is no
significant difference between the evolution of the entangled
|N

2 , 0〉 state and the symmetric and antisymmetric CSS, sepa-
rable states that are easier to initialize in experiments. In the
same setting, we have also pointed out that local dephasing
can be beneficial to light emission for a state initialized in a
dark state, |0, 0〉, as long as collective emission and dephasing
mechanisms are faster than local emission.

Turning to the case of steady-state superradiance in the
bad-cavity limit and under incoherent local pumping and local
losses, we have found that a system at detailed balance does
not display a threshold pump with regard to the nonlinear
enhancement of emitted light. We have then investigated
spin squeezing in the two-axis twisting model in presence of
dissipative local or collective spin flips. We have used PIQS
for state engineering, finding that the initial state with longest
spin squeezing time does not belong to the Dicke symmetric
ladder.

In the context of nonequilibrium phase transitions, we
have studied the open Dicke model in the presence of local
dephasing and local pumping. By assessing the effect of
collective dissipation and incoherent driving to a system expe-
riencing local dephasing, we found that, for a fixed resonance
frequency, collective pumping is more detrimental than col-
lective emission to the occurrence of the superradiant phase.
We then studied time crystallization in a driven-dissipative
open quantum system out of equilibrium, verifying that the
related collective spin oscillations are affected by the presence
of local dephasing. The reduction in their visibility is marked
by a decrease of the system’s cooperation number.

Generalizing our study to the dissipative dynamics of
multiple ensembles of TLSs, we have investigated how the
exchange of collective spin excitations among two ensembles
of TLSs is affected by local dephasing, local losses, or col-
lective losses in each of the ensembles. On the one hand,
we have found that such processes are detrimental for the
observation of negative-temperature effects in the steady state.
On the other hand, we proposed to use the transient dynamics
arising under such conditions to exchange excitations in arrays
of coupled ensemble of TLSs.

Finally, we have shown that the permutational invariance of
the TLS Lindblad superoperators can be used to analytically
derive the correct Lindblad master equation for the USC
regime in terms of dressed light-matter superoperators, thus
unlocking the study of local dissipative processes in the USC
regime for N � 1. We have thus used PIQS to investigate
time-dependent and steady-state properties of the open Dicke
model in the USC regime in the presence of cavity and local
TLS losses. We calculated the relaxation of the system to
the correct steady state, and showed that this model correctly
predicts no photon emission from the steady state.

There are multiple opportunities for future research di-
rections involving the interplay of macroscopic coopera-
tive effects and noise both for fundamental aspects and
for applications to quantum technology [283–291]. Effec-

tive spin models relevant to photon-mediated long-range
interactions [45,63,71,292–297] can be studied, especially
as PIQS allows us to explore the range of qubit systems
engineered in current and near-term quantum simulators
[81,175,198,298–300]. With regard to the permutational-
invariance numerical tool employed here, it could be further
extended to include processes of other and more general
Lindblad superoperators, e.g., terms LJx

, LJy
, LJx,n

, and
LJy,n

[67,74]. Another interesting open question is the exten-
sion of permutational-invariant approaches to non-Markovian
baths [90,301], Floquet driving [302], stochastic processes
and continuous-measurement protocols [134,303,304], and
out-of-time-ordered correlators [305].

Finally, the USC regime seems a promising field in which
to investigate the effect of local dissipation for ensembles with
N � 1, as using PIQS one can retain the full nonlinearity of
the TLSs beyond the usually explored dilute-excitation regime
[250,306].

ACKNOWLEDGMENTS

We thank Peter Kirton, Jonathan Keeling, Michael Gegg,
Anton Frisk Kockum, Marcello Dalmonte, Yu-Ran Zhang,
Jiabao Chen, and Michael Foss-Feig for useful discussions
and comments. N.L. and F.N. acknowledge support from
the RIKEN-AIST Challenge Research Fund, and the John
Templeton Foundation. S.D.L. acknowledges support from a
Royal Society research fellowship. N.L. acknowledges partial
support from Japan Science and Technology Agency (JST),
(JST PRESTO Grant No. JPMJPR18GC). F.N. is partly sup-
ported by the MURI Center for Dynamic Magneto-Optics
via the Air Force Office of Scientific Research (AFOSR)
(FA9550-14-1-0040), Army Research Office (ARO) (Grant
No. W911NF-18-1-0358), Asian Office of Aerospace Re-
search and Development (AOARD) (Grant No. FA2386-18-1-
4045), Japan Science and Technology Agency (JST) (the Q-
LEAP program, the ImPACT program and CREST Grant No.
JPMJCR1676), Japan Society for the Promotion of Science
(JSPS) (JSPS-RFBR Grant No. 17-52-50023, JSPS-FWO
Grant No. VS.059.18N).

APPENDIX A: COEFFICIENTS OF THE
PERMUTATIONAL-INVARIANT DYNAMICS

In Eq. (1), which we rewrite here,

ρ̇ = − i

h̄
[H, ρ] + γ⇓

2
LJ− [ρ] + γ�

2
LJz

[ρ] + γ⇑
2
LJ+ [ρ]

+
N∑

n=1

(
γ↓
2
LJ−,n

[ρ] + γφ

2
LJz,n

[ρ] + γ↑
2
LJ+,n

[ρ]

)
,

(A1)

the problematic terms with regard to the exponential increase
of the Liouvillian space size are the jump terms relative to the
local Lindbladians. We can rewrite them explicitly using the
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relations of the SU(2) algebra

γ↓
2

N∑
n=1

LJ−,n
[ρ] = γ↓

2

[
2

(
N∑

n=1

J−,nρJ+,n

)
− Jzρ − ρJz − Nρ

]
, (A2a)

γφ

2

N∑
n=1

LJz,n
[ρ] = γφ

2

[
2

(
N∑

n=1

Jz,nρJz,n

)
− N

2
ρ

]
, (A2b)

γ↑
2

N∑
n=1

LJ+,n
[ρ] = γ↑

2

[
2

(
N∑

n=1

J+,nρJ−,n

)
+ Jzρ + ρJz − Nρ

]
. (A2c)

In Refs. [61,62], it is shown that the first term can be rewritten in terms of the Dicke states

N∑
n=1

Jr,n|j,m〉〈j,m′|J †
q,n = aN

qr (j,m,m′)|j,m + q̃〉〈j,m′ + r̃| (A3a)

+ bN
qr (j,m,m′)|j − 1,m + q̃〉〈j − 1,m′ + r̃| (A3b)

+ cN
qr (j,m,m′)|j + 1,m + q̃〉〈j + 1,m′ + r̃|, (A3c)

where q, r = {+,−, z} so that J−,n = σ−,n, J+,n = σ+,n, Jz,n = 1
2σz,n, and q̃, r̃ = {+1,−1, 0}, respectively, and

aN
qr (j,m,m′) = Aj,m

q Aj,m′
r

xN,j,a

2
= Aj,m

q Aj,m′
r

1

2j

(
1 + α

j+1
N (2j + 1)

d
j

N (j + 1)

)
, (A4a)

bN
qr (j,m,m′) = Bj,m

q Bj,m′
r

xN,j,b

2
= Bj,m

q Bj,m′
r

α
j

N

2jd
j

N

, (A4b)

cN
qr (j,m,m′) = Dj,m

q Dj,m′
r

xN,j,c

2
= Dj,m

q Dj,m′
r

α
j+1
N

2(j + 1)dj

N

, (A4c)

where

A
j,m
± = √

(j ∓ m)(j ± m + 1), Aj,m
z = m, (A5)

B
j,m
± = ±√

(j ∓ m)(j ∓ m − 1), Bj,m
z =

√
(j + m)(j − m), (A6)

D
j,m
± = ∓√

(j ± m + 1)(j ± m + 2), Dj,m
z =

√
(j + m + 1)(j − m + 1), (A7)

and

α
j

N =
N/2∑
j ′=j

d
j ′
N = N !

(N/2 − j )!(N/2 + j )!
, (A8)

with d
j

N given by Eq. (8). By definition, α
j+1
N = 0 for j = N

2 . Here α
j

N is not the symmetric quantum number of the Dicke state
|j,m, αj 〉, but we keep the notation to be consistent with previous works. We have also introduced the coefficients xN,j,a , xN,j,b,
and xN,j,c, defined by the right-hand side of Eq. (A4) as they will be convenient to write the rates in a more compact form. In
Eq. (A3) there is mixing only between j blocks of the density matrix with �j = ±1, while within each block j , the change in
m is �m = ±1, 0. Using the identity for density matrix, Eq. (11), we can rewrite the master equation of Eq. (1) in terms of the
Dicke states |j,m〉

d

dt
pjmm′ (t )|j,m〉〈j,m′| = pjmm′

{
γ⇓
2

(2A
j,m
− A

j,m′
− |j,m − 1〉〈j,m′ − 1|) − γ⇓

2
{[(Aj,m

− )2 + (Aj,m′
− )2]|j,m〉〈j,m′|}

+ γ�

2
[2mm′ − (m2 + m′2)]|j,m〉〈j,m′|

+ γ⇑
2

{2A
j,m
+ A

j,m′
+ |j,m + 1〉〈j,m′ + 1| − [(Aj,m

+ )2 + (Aj,m′
+ )2]|j,m〉〈j,m′|}

+ γ↓
2

[
2

(
N∑

n=1

J−,n|j,m〉〈j,m′|J+,n

)
− (N + m + m′)|j,m〉〈j,m′|

]
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+ γφ

2

[
2

(
N∑

n=1

Jz,n|j,m〉〈j,m′|Jz,n

)
− N

2
|j,m〉〈j,m′|

]

+ γ↑
2

[
2

(
N∑

n=1

J+,n|j,m〉〈j,m′|J−,n

)
− (N − m − m′)|j,m〉〈j,m′|

]}
. (A9)

We have from Eq. (A3) that dephasing gives

N∑
n=1

Jz,n|j,m〉〈j,m′|Jz,n = mm′ xN,j,a

2
|j,m〉〈j,m′| + Bj,m

z Bj,m′
z

xN,j,b

2
|j − 1,m〉〈j − 1,m′|

+Dj,m
z Dj,m′

z

xN,j,c

2
|j + 1,m〉〈j + 1,m′|. (A10)

Note that in the relative definition of Refs. [61,62] there is a factor 1
2 missing for local dephasing and that the result here is

correct. The jumps from losses are

N∑
n=1

J−,n|j,m〉〈j,m′|J+,n = A
j,m
− A

j,m′
−

xN,j,a

2
|j,m − 1〉〈j,m′ − 1| + B

j,m
− B

j,m′
−

xN,j,b

2
|j − 1,m − 1〉〈j − 1,m′ − 1|

+D
j,m
− D

j,m′
−

xN,j,c

2
|j + 1,m − 1〉〈j + 1,m′ − 1|, (A11)

and the jumps from the pump

N∑
n=1

J+,n|j,m〉〈j,m′|J−,n = A
j,m
+ A

j,m′
+

xN,j,a

2
|j,m + 1〉〈j,m′ + 1| + B

j,m
+ B

j,m′
+

xN,j,b

2
|j − 1,m + 1〉〈j − 1,m′ + 1|

+D
j,m
+ D

j,m′
+

xN,j,c

2
|j + 1,m + 1〉〈j + 1,m′ + 1|. (A12)

It is possible to perform an analytical check on the probability density current flow in the dynamics equations of Eq. (A9). If we
consider Eq. (1), since Tr[ρ] = 1 we have that

∑N/2
j=jmin

∑j

m=−j
d
dt

pjmm(t ) = 0. Since this equation is valid at any time t and in
principle at a time t = 0 it is possible to initialize the system in a specific Dicke state |j,m〉, then for each population probability
the sum of the relative rates must be 0 = −�

(1)
j,m,m + ∑

i>1 �
(i)
j,m,m.

We can express the functions as �
(i)
j,m,m′ explicitly as

�
(1)
j,m,m′ = γ⇓

2
[(Aj,m

− )2 + (Aj,m′
− )2] + γ⇑

2
[(Aj,m

+ )2 + (Aj,m′
+ )2] + γ�

2
(m − m′)2

+ γ↓
2

(N + m + m′) + γ↑
2

(N − m − m′) + γφ

2

(
N

2
− mm′

(
N
2 + 1

)
j (j + 1)

)
, (A13a)

�
(2)
j,m,m′ = γ⇓A

j,m
− A

j,m′
− + γ↓

2
A

j,m
− A

j,m′
−

(
N
2 + 1

)
j (j + 1)

, (A13b)

�
(3)
j,m,m′ = γ↓

2
B

j,m
− B

j,m′
−

(
N
2 + j + 1

)
j (2j + 1)

, (A13c)

�
(4)
j,m,m′ = γ↓

2
D

j,m
− D

j,m′
−

(
N
2 − j

)
(j + 1)(2j + 1)

, (A13d)

�
(5)
j,m,m′ = γφ

2
Bj,m

z Bj,m′
z

(
N
2 + j + 1

)
j (2j + 1)

, (A13e)

�
(6)
j,m,m′ = γφ

2
Dj,m

z Dj,m′
z

(
N
2 − j

)
(j + 1)(2j + 1)

, (A13f)

�
(7)
j,m,m′ = γ↑

2
B

j,m
+ B

j,m′
+

(
N
2 + j + 1

)
j (2j + 1)

, (A13g)

�
(8)
j,m,m′ = γ⇑A

j,m
+ A

j,m′
+ + γ↑

2
A

j,m
+ A

j,m′
+

(
N
2 + 1

)
j (j + 1)

, (A13h)
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�
(9)
j,m,m′ = γ↑

2
D

j,m
+ D

j,m′
+

(
N
2 − j

)
(j + 1)(2j + 1)

. (A13i)

The terms of the coefficients proportional to γ⇓, γ�, and γ⇑, differently from the local phase-breaking mechanisms in γ↓, γφ ,
and γ↑, do not depend explicitly on N . The lindbladian function at the core of the PIQS library uses Eq. (A13) to build the
matrix corresponding to the total Liouvillian superoperator.

Hereafter we consider the special case of a diagonal problem. For the terms on the main diagonal for which m′ = m, we can
simplify the notation �

(i)
j,m,m = �

(i)
j,m and write in explicit form the compact expressions

�
(1)
j,m = γ⇓(1 + j − m)(j + m) + γ⇑(1 + j +m)(j − m) + γ↓

(
N

2
+ m

)
+ γ↑

(
N

2
− m

)
+ γφ

(
N

4
− m2 1 + N/2

2j (j + 1)

)
, (A14a)

�
(2)
j,m = γ⇓(1 + j − m)(j + m) + γ↓

(N + 2)(j − m + 1)(j + m)

4j (j + 1)
, (A14b)

�
(3)
j,m = γ↓

(j + m − 1)(j + m)(j + 1 + N/2)

2j (2j + 1)
, (A14c)

�
(4)
j,m = γ↓

(j − m + 1)(j − m + 2)(N/2 − j )

2(j + 1)(2j + 1)
, (A14d)

�
(5)
j,m = γφ

(j − m)(j + m)(j + 1 + N/2)

2j (2j + 1)
, (A14e)

�
(6)
j,m = γφ

(j − m + 1)(j + m + 1)(N/2 − j )

2(j + 1)(2j + 1)
, (A14f)

�
(7)
j,m = γ↑

(j − m − 1)(j − m)(j + 1 + N/2)

2j (2j + 1)
, (A14g)

�
(8)
j,m = γ⇑(1 + j + m)(j − m) + γ↑

(1 + N/2)(j − m)(j + m + 1)

2j (j + 1)
, (A14h)

�
(9)
j,m = γ↑

(j + m + 1)(j + m + 2)(N/2 − j )

2(j + 1)(2j + 1)
. (A14i)

Equation (A14) fully determines the Lindbladian part of the dynamics of Eq. (1) for problems for which (i) the Hamiltonian
is diagonal in the |j,m〉〈j,m′| basis and (ii) the system is initialized in a state that is diagonal in this basis. In this special case,
we can write the master equation Eq. (1) simply as a rate equation in matrix form, see Eq. (20),

d

dt
p = Mp. (A15)

With pj,m ≡ pjmm this can be ordered as

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pN/2,N/2

pN/2,N/2−1

. . .

pN/2,−N/2

pN/2−1,N/2−1

. . .

pjmin,−jmin

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pN/2,N/2

pN/2,N/2−1

. . .

pN/2,−N/2

pN/2−1,N/2−1

. . .

pjmin,−jmin

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; (A16)

p is the nDS-dimensional vector of the diagonal matrix elements of the general density matrix in the Dicke basis, and M is
the nDS × nDS-dimensional matrix of coefficients. Since, for each problem, the number of two-level systems can be fixed, we
just write �

(i)
N,j,m,m as �

(i)
j,m for simplicity. Let us now write the matrix M explicitly for N = 4, setting only γ↓ and γ⇓ different
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from zero,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�
(1)
2,2 0 0 0 0 0 0 0 0

�
(2)
2,2 −�

(1)
2,1 0 0 0 �

(6)
1,1 0 0 0

0 �
(2)
2,1 −�

(1)
2,0 0 0 �

(4)
1,1 �

(6)
1,0 0 0

0 0 �
(2)
2,0 −�

(1)
2,−1 0 0 �

(4)
1,0 �

(6)
1,−1 0

0 0 0 �
(2)
2,−1 −�

(1)
2,−2 0 0 �

(4)
1,−1 0

�
(3)
2,2 �

(5)
2,1 0 0 0 −�

(1)
1,1 0 0 0

0 �
(3)
2,1 �

(5)
2,0 0 0 �

(2)
1,1 −�

(1)
1,0 0 �

(6)
0,0

0 0 �
(3)
2,0 �

(5)
2,−1 0 0 �

(2)
1,0 −�

(1)
1,−1 �

(4)
0,0

0 0 0 0 0 �
(3)
1,1 �

(5)
1,0 0 −�

(1)
0,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A17)

The 4-dimensional block in the lower right corner of M in Eq. (A17) is given by M for N = 2, and the structure of the matrix
M iterates similarly for greater N . For different N , the matrix elements change, as all the rates �

(i)
j,m do change with N ; see

Eq. (A14). Only in the case of collective phenomena, the values of the matrix M are independent of the number of TLSs. The
sum of the elements of each of the columns of the matrix M must add to zero. Using Eq. (A14) we obtain that for a row k of the
matrix M , in the middle of the Dicke space (to avoid special boundary conditions),

Mk =
(

· · ·
k−(2j+3)

�
(3)
N,j+1,m+1,

k−(2j+2)

�
(5)
N,j+1,m,

k−(2j+1)

�
(7)
N,j+1,m−1 · · ·

k−1

�
(2)
N,j,m+1,

k

−�
(1)
N,j,m,

k+1

�
(8)
N,j,m−1, · · ·

k+(2j−1)

�
(4)
N,j−1,m+1,

k+2j

�
(6)
N,j−1,m,

k+(2j+1)

�
(9)
N,j−1,m−1

)
,

(A18)

where the uppermost superscripts show the column corresponding to each row element. The matrix M is a square matrix of side
nDS, which is extremely sparse, with at most nine nonzero elements per row.
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