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We analyze a method for the creation, storage, and retrieval of optomechanical Schrödinger cat states, in which
there is a quantum superposition of two distinct macroscopic states of a mechanical oscillator. In the quantum
memory protocol, an optical cat state is first prepared in an optical cavity, then transferred to the mechanical
mode, where it is stored and later retrieved using control fields. We carry out numerical simulations for the
quantum memory protocol for optomechanical cat states using the positive-P phase space representation. This
has a compact, positive representation for a cat state, thus allowing a probabilistic simulation of this highly
nonclassical quantum system. It is essential to use importance sampling to carry out the simulation effectively.
To verify the effectiveness of the cat-state quantum memory, we consider several cat-state signatures and show
how they can be computed. We also investigate the effects of decoherence on a cat state by solving the standard
master equation for a simplified model analytically, allowing us to compare with the numerical results. Focusing
on the negativity of the Wigner function as a signature of the cat state, we evaluate analytically an upper bound
on the time taken for the negativity to vanish, for a given temperature of the environment of the mechanical
oscillator. We show consistency with the numerical methods. These provide exact solutions, allowing a full
treatment of decoherence in an experiment that involves creating, storing, and retrieving mechanical cat states
using temporally mode-matched input and output pulses. Our analysis treats the internal optical and mechanical
modes of an optomechanical oscillator, and the complete set of input and output field modes which become
entangled with the internal modes. The model includes decoherence due to thermal effects in the mechanical
reservoirs, as well as optical and mechanical losses.
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I. INTRODUCTION

Schrödinger’s cat [1] features in the investigation of a
fundamental issue in quantum mechanics [2–4] namely: Does
quantum mechanics hold true in the macroscopic world? This
highly nonclassical state is also potentially useful, being pro-
posed as a resource in many quantum information applications
including quantum computation [5–7], quantum teleportation
[8], quantum metrology [9,10], and cryptography [11]. As
such, there has been much interest in creating Schrödinger
cat states of increasing size [12–25]. Recent experiments
use superconducting qubits to generate a cat state that is
a superposition of two distinguishable coherent states, with
the square distance in phase space between the two coherent
states up to 80 photons [26] and more recently, 100 photons
[27]. It remains a challenge however to prepare a massive,
mechanical system in a cat state, which has the potential for
testing theories of quantum gravity.

As well as being of fundamental importance, there
are potential applications. In a proposed quantum internet
[28–30], information is transmitted by light in a network of
nodes connected by optical fibers. At each node, the quantum
information is received and stored, to be later read out or sent
to other nodes. A quantum memory [31,32] is then essential
as the information of a quantum state needs to be stored on

demand. An optomechanical system is a good candidate for
a quantum memory, where the quantum state is stored in
long-lived mechanical modes. In an optomechanical system,
the optical and mechanical modes have been demonstrated
to interact via radiation pressure in such a way that state
transfer between these modes is achievable [33]. In this work
we investigate the storage of a cat state in an optomechanical
system. We consider cat states that are a superposition of two
distinguishable coherent states.

There have been several earlier proposals to create cat
states in mechanical systems. This is a timely goal as quantum
control in optomechanics has dramatically improved, notably
with the experimental observations of ground state cooling
[34–36], quantum state transfer [33,37], and entanglement
generation [26,38–40] to name a few. In the case of optome-
chanical cat-state generation, highly nonlinear interactions are
typically required. Recently there are novel schemes to create
[41,42] and enlarge the size of optomechanical cat states
[43–45].

Here we consider an alternative method that involves
quantum state transfer from an external optical cavity to the
mechanical system, which is essentially utilized as a quantum
memory. The type of quantum memory utilized here is an
on-demand synchronous dynamical memory, in which the
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mode-matched input and output of the memory is facili-
tated by the use of shaped gain and detuning, as treated in
previous mode-matched intracavity quantum memory pro-
posals [32,46]. This general strategy has been previously
analyzed for generation of entangled mechanical states [47].
There are related proposals suggested for systems without
cavities [48,49] and some recent strategies in optomechanics
of a similar nature, but with different protocols [50,51].

In our proposal, an optical cat state is prepared externally,
transferred, and stored as a mechanical cat state. It is later
retrieved on demand using control fields. An advantage of
this method is that optical or microwave cat states have
been generated with high fidelity [15,27]. The storage time
is completely controllable, allowing an analysis of deco-
herence effects. Finally, the verification measurements can
be made externally, using well-developed optical homodyne
techniques. This is essential, as there are no current techniques
that would allow an in situ quantum state tomography of a
mechanical oscillator.

For an efficient quantum memory, the coupling between the
input state and the physical system has to be optimized. The
system also has to store a quantum state in the desired mode.
These goals are achieved with mode matching by choosing an
optimal mode function. In Sec. II we provide a description
of a protocol using mode matching for transferring the cat
state between the optical and mechanical modes. The protocol
involves the storage and retrieval of the state, as in a quantum
memory. A theoretical model for this protocol was developed
earlier [52]. That work however only examined the transfer
of a coherent state. The model included dissipation as well as
thermal noise.

A cat state is sensitive to fluctuations and noise due to
the interaction with its environment. Hence, measurable sig-
natures are needed to verify the presence of a cat state. In
Sec. III we summarize several quantities that might be used
to signify a cat state. These quantities can then be used to
give a measure of the effectiveness of the cat-state storage and
retrieval. The signatures we examine are the fringe patterns in
quadrature probability distributions [41,42], the Wigner func-
tion [16,26,27,53] and its negativity [41,45], the off-diagonal
terms of the density operator [16], and a variance signature
[54–62].

We also give an analytical treatment of the decoherence of
an idealized cat state, with detailed calculations of this simpli-
fied model in the Appendix, taking into account the thermal
occupation number n̄th of the mechanical oscillator reservoir,
by solving the standard master equation. The solution tells us
how off-diagonal terms decay in time as a function of the cat
size, and also provides a way to calculate, for a given value of
n̄th, an upper bound on the time for a Wigner function to lose
its negativity, which is a typical indicator of nonclassicality.

As discussed by Paavola et al. [63], a “sudden death” effect
is observed in the presence of thermal noise, which fully
converts the cat state to a mixture if the cat state is coupled
to the thermal reservoir for long enough time. We report
however that the first two signatures undergo a premature
sudden death effect for sufficient coupling time in the absence
of thermal noise, failing to indicate nonclassicality despite that
the cat state has not fully decohered to a mixture of coherent
states.

In Sec. IV the positive-P phase space method used to
solve the full quantum memory model is explained. Despite
the highly nonclassical states involved, this can be readily
achieved using an exact probabilistic mapping of the full
quantum state into a phase-space representation. This involves
numerical simulation via the positive-P representation [64],
where the dimensionality of the complex phase space is
doubled. In this approach the entire input-output process, in-
cluding all participating optical and mechanical modes as well
as dissipation and noise, are included, in an exact quantum
dynamical simulation. The cat state can be easily treated using
this method if an appropriate importance sampling technique
is used. This section deals with the methodology for the
sampling of the cat state and its dynamics.

The results of our simulations including predictions for
the cat-state signatures and a discussion of feasibility is
given in Sec. V. Here we use typical parameter values from
recent electromechanical experiments. We analyze in detail
the effects of the different types of decoherence present in the
full model. This treats the complete protocol starting from an
externally generated cat state, storing it in a mechanical mode,
then retrieving and analyzing it externally. As expected, the
greater the level of loss and decoherence present, the more
quickly the cat signatures are extinguished. We find that cat
states with up to nine mechanical phonons can be stored for
short periods with realistic parameter values corresponding to
current experiments. This corresponds to a distance metric of
S = |α1 − α2|2 = 36. Further improvements in temperature
and loss rates will be needed to reach S = 100, which is
the largest cat state generated to date using superconduct-
ing waveguide techniques [27]. Results are summarized in
Sec. VI.

II. CAT-STATE TRANSFER

A. Cat-state generation

In electro-optical experiments, cat states have been gener-
ated at microwave frequency inside a cavity [27]. We consider
the cat state as a quantum superposition of two coherent states
|α0〉 and | − α0〉, in a mode with a corresponding operator
a0(t ). This original idealized cat state has the form

|ψcat〉 = 1√
N

(|α0〉 + | − α0〉), (2.1)

where the normalizing factor is

N ≡ 2[1 + exp(−2|α0|2)]. (2.2)

We note that this state will not be completely ideal due to
losses and thermal noise, but we assume here that we start
with an idealized cat state, in order to analyze the storage and
retrieval process.

Having been generated, the state is assumed to be rapidly
out-coupled to a waveguide, on timescales that are short
compared to the originating cavity internal losses and non-
linearities. Following a generic model given in previous work
[32,46,47], we assume that the output coupler is time depen-
dent. Using input-output theory, one therefore obtains

d

dt
a0(t ) = −κ (t )a0(t ) +

√
2κ (t )φ̂in

0 ,

φ̂out
0 =

√
2κ (t )a0 − φ̂in

0 . (2.3)
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We assume that the state is prepared at time t = t0 = −tW ,
then out-coupled at times t > −tW , by turning on the output
coupler so that κ (t ) > 0, up until the end of the output process
at t = 0. The resulting solution for a0(t ) is therefore

a0(t ) = e−K (t )

[
a0(t0) +

∫ t

t0

eK (τ )
√

2κ (τ )φ̂in
0 (τ )dτ

]
, (2.4)

where

K (t ) =
∫ t

t0

κ (τ )dτ. (2.5)

We choose K (t ) and hence κ (τ ) so that it corresponds
to a precise, temporally mode-matched function u0(t ), where
we define u0 such that φ̂out

0 (t ) = u0(t )a0(t ) + noise, which
implies

u0(t ) =
√

2κ (t ) exp

(
−

∫ t

t0

κ (τ )dτ

)
. (2.6)

This requires that κ (τ ) obeys the following equation:

d

dt
κ (t ) = 2κ (t )

d

dt
ln u0(t ) + 2κ2(t ). (2.7)

In general, this is a nonlinear differential equation that re-
quires a numerical solution for any given mode-matching
requirement. There are special cases that are analytically
soluble, however. One simple case is for a rising exponential
mode function. This is a case that corresponds to the required
mode-matched input in the present situation, to a good ap-
proximation as described later, with

u0(t ) =
√

2γ̄ exp(γ̄ t )�(−t ). (2.8)

Here, γ̄ is a parameter that sets the time scale of the state trans-
fer protocol as described later. The output coupler solution is
then, in the limit of −γ̄ t0 � 1, and for t < 0,

κ (t ) = γ̄ (e−2γ̄ t − 1)−1. (2.9)

This solution is rather simple mathematically. However, it
is not the simplest to implement. A one-sided pulse shape
leads to a singular coupling in this approximation, and this
appears to be a generic issue related to the sharp temporal
cutoff used here in order to have well-defined cat storage
times. Yet smooth, two-sided solutions exist as well. These
are described in earlier work [46,47]. The details of this type
of mode implementation, and how these change our results,
will be given elsewhere.

B. Cat-state download protocol

The approach to optomechanical state transfer used here is
based on previous work [52], which we indicate schematically
in Fig. 1.

The dynamical protocol for writing the input cat state into
the mechanical mode and later retrieving it, requires two
pulses at each stage: the preparation and transfer fields. The
preparation field is resonant to the optical cavity resonance
frequency ωo, and it prepares the optical cat state in the cavity.
The transfer field, with a frequency ωd such that the detuning
between the cavity and transfer field is the mechanical mode
frequency � = ωo − ωd = ωm, facilitates the transfer of the
cat state between the optical and mechanical modes. In total,

FIG. 1. The state transfer protocol. During the writing stage, both
the preparation field containing the cat state, and the transfer field
that couples the preparation field to the cavity, are turned on for a
duration of tw . Both fields are turned off during the storage stage for
ts . The stored state is read out by applying a second transfer field for
tr = tw .

the state transfer protocol consists of three stages, as shown in
Fig. 1. The optical quantum state is first generated externally
at time t = t0 = −tW , and transferred to the mechanical state
of motion. We note that this process is carried out using a
temporal mode-matching protocol to allow efficient transfer,
leaving the external source cavity in a vacuum state.

After the successful transfer, both fields are turned off for
a time ts . This allows the system to store the mechanical cat
for a prescribed time. This interval needs to be made as long
as possible, in order to test decoherence theories. When the
quantum state is to be read out, the transfer field is turned on.
The stored quantum state is transferred back to an intracavity
optical mode. Finally, it is coupled out of the cavity with
temporal mode matching to a waveguide traveling mode of
duration tr , for external detection. The protocol is completed
at the final time t = tf = ts + tr .

This quantum memory protocol [32,46] has been experi-
mentally implemented [33] in a superconducting electrome-
chanical device. It is a dynamical scheme which transfers
the prepared state from an external source to the mechanical
mode. Temporal mode matching is used both for input and
output. This ensures efficient transfer to and from the external
multimode waveguide modes. The mechanical state can be
coupled out after a well-defined storage time. This procedure
allows for studies of time-dependent decoherence.

C. Quantum optomechanical Hamiltonian

A typical optomechanical system consists of an optical
cavity and a mechanical oscillator that interact via radiation
pressure as shown in Fig. 2. The optics and mechanics are
characterized by their resonance frequencies and decay rates.
In the single mode model, the optical cavity and mechanical
oscillator have resonance frequencies ωo and ωm, respectively;
other frequencies are not involved and can be neglected.

The decay rate of the mechanical oscillator is γm while
we identify two separate sources of dissipation in the optical
cavity: the internal and external decay rates γint and γext. The
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FIG. 2. Schematic diagram of the optomechanical system.

total optical cavity decay rate is γo = γint + γext. The external
cavity decay rate γext determines the coupling strength of an
input and output field to the cavity, which allows the detection
of the cavity optical field. All other sources of dissipation are
included in the internal decay rate γint.

The dynamics of an optomechanical system is given by the
following standard Hamiltonian [65,66], in the rotating frame
of an external laser field,

H = h̄�a†a + h̄ωmb†b + h̄g0a
†a(b + b†)

+ h̄ε(t )(a† + a), (2.10)

where � = ωo − ωd is the detuning between the cavity res-
onance frequency ωo and the external laser carrier frequency
ωd . The third term in Eq. (2.10) corresponds to the nonlinear
radiation pressure interaction between the optical and me-
chanical modes, with a coupling strength determined by g0.
The mode operators a and b correspond to the intracavity
optical and mechanical modes, respectively.

The last term includes all external fields ε(t ) that are sent
into the optical cavity, which includes the external cat state
that is imprinted into the system and the transfer field. This
is described in greater detail later. In this work, we describe
the radiation pressure interaction term using a simplified,
linearized optomechanical Hamiltonian in the interaction pic-
ture, where

Hint = h̄g(t )(ab† + a†b). (2.11)

Here g(t ) = √
Ng0(�(−t ) + �(t − ts )) is the effective cou-

pling strength and N is the mean photon number in the
cavity due to the off-resonant transfer field used for switching
[66,67], � is the Heaviside step function, and ts is the storage
time. A rotating wave approximation is used in obtaining the
interaction Hamiltonian Eq. (2.11). The linearization approx-
imation is valid when an intense off-resonant driving field is
applied to enhance the optomechanical coupling strength, and
when the cavity decay rate is much smaller than the mechan-
ical frequency (the resolved sideband regime) [48]. We have
investigated the validity of this approximation elsewhere, by
carrying out full nonlinear quantum simulations [52,68].

We treat the optomechanical system as an open quantum
system, where the fluctuations of the system due to inter-
actions with its environment are taken into account. This
is necessary: a quantum cat state is fragile and sensitive to
perturbations. A standard formalism for treating such an open
system is provided by the master equation [69]

d

dt
ρ̂ = − i

h̄
[H, ρ̂] +

∑
j

γj [n̄j (2a
†
j ρ̂aj − aj ρ̂a

†
j − ρ̂aj a

†
j )

+ (n̄j + 1)(2aj ρ̂a
†
j − a

†
j aj ρ̂ − ρ̂a

†
j aj )]. (2.12)

Here ρ̂ is the density operator of the optomechanical system,
the index j = 1, 2 ∼ o,m refer to the cavity and mechanical
modes, respectively, and n̄j is the average thermal occupation
number from interactions with their corresponding reservoirs.

In our work we extend this approach to include the relevant
input and output modes used to create and retrieve the cat
state. Owing to its complexity, it is more convenient to
solve this large dynamical quantum system using an efficient
positive-P phase-space representation. This maps the relevant
density matrix into a positive probability distribution, and
its dynamics into a numerically tractable set of stochastic
equations. We note that while one can integrate the full set of
nonlinear equations generated by the full Hamiltonian H , as
we have done elsewhere, in this paper we take an idealized
case where only the linearized equations obtained from Hint

are treated.

D. Input-output relations

The state transfer protocol relies on an optimal mode
matching [32,52] for efficient coupling and detection of both
the input and output fields, to and from the optical cavity,
respectively. These fields have to be integrated with their
corresponding temporal modes uin(t ) and uout(t ), which are
obtained by solving the time evolution equations of the optical
a and mechanical b modes.

There are four relevant bosonic mode operators in the
model, as well as an infinite set of modes of the universe in the
input and output channels, giving a total Hilbert space of H.
Apart from selected mode-matched input and output modes,
these are optimally maintained in a vacuum state to get the
best fidelity, although our method can treat other possibilities,
and thermal phonon excitation will be included.

The operator time evolution equations are quantum
Langevin equations obtained using the linearized optome-
chanical Hamiltonian in Eq. (2.11), which are

d

dt
a(t ) = −γ0a − ig(t )b +

√
2γextφ̂

in
ext +

√
2γintφ̂

in
int,

d

dt
b(t ) = −γmb − ig(t )a +

√
2γmφ̂in

m. (2.13)

The total cavity decay rate is given by γ0 = γext + γint, where
γext corresponds to output coupling losses through the external
mirrors and γint corresponds to the remaining internal losses
in the cavity. The internal fields φ̂in

int, φ̂in
m are the quantum

Langevin noise operators due to interaction of the optome-
chanical system with its internal lossy environment for the
photons and mechanical phonons, respectively.

The following external input-output relation must also be
satisfied:

φ̂out
ext (t ) =

√
2γexta(t ) − φ̂in

ext(t ), (2.14)

where the external input and output fields are traveling waves.
These have a mode expansion for the field at the interface
mirror given by

φ̂in
ext(t ) =

∑
n�0

ain
n uin

n (t ),

φ̂out
ext (t ) =

∑
n�0

aout
n uout

n (t ). (2.15)
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Here φ̂in
ext is the external input into the cavity, where ain

0 is
a mode operator for the source of the cat state, and an>0 is
the set of external vacuum mode operators with orthogonal
temporal modes given by uin

n . We wish to store the input
state of ain

0 internally in the optomechanical device, where
uin

0 (t ) is the temporal mode of this preferred input state. This
is typically created in a second, external photonic cavity or
waveguide [47], and transferred on demand to the quantum
memory, with an engineered temporal mode shape. There are
many proposals for creating such cat states in the external
cavity [70–72], and this choice is left open here. In this work,
we assume perfect optomechanical input coupling from the
source cavity, so φ̂out

0 in Eq. (2.3) is equal to φ̂in
ext in Eq. (2.15),

and u0 in Eq. (2.6) is equal to uin
0 in Eq. (2.15). There is also an

output mode φ̂out
ext (t ), defined by the the input-output relation

[73] given above.
These equations are based on the input-output formalism

developed by Gardiner and Collett [73]. Similar treatments of
the quantum nature of the optomechanical coupling for the
study of entanglement have been given by Hofer et al. [74],
He and Reid [75], and Kiesewetter et al. [47,68].

E. Optimized mode function

Details of the calculations and derivations of these tempo-
ral modes can be found in the work of Teh et al. [52]. Here
we note that the solutions of the quantum Langevin equations
in Eq. (2.13) are obtained. From these solutions, the opti-
mal temporal mode function uin

0 (t ) that gives the best mode
matching—in terms of transfer efficiency—is found to be

uin
0 (t ) = −2i

√
(γ+ + m)(γ+ − m)γ+

m
sinh(mt )eγ+t�(−t ),

(2.16)

where γ+ = (γo + γm)/2, γ− = (γo − γm)/2, m =√
γ 2− − g2, g = √

Ng0 is the effective optomechanical
coupling strength, and � is the Heaviside step function.
Here we assume that N (t ) = N�(−t ). The corresponding
output temporal mode function uout

0 (t ) is related to the input
temporal mode function uin

0 (t ) via uout
0 (t ) = uin∗

0 (ts − t ), with
N (t ) = N�(t − ts).

In particular, the stored mode operator is

b(0) =
√

2γextga0

2
√

(γ+ + m)(γ+ − m)γ+
+ noise. (2.17)

From orthonormality of the relevant mode functions, the mode
input ain

0 and output aout
0 containing the fields to be stored

and retrieved, respectively, in the optomechanical system are
given by

ain
0 =

∫ 0

−∞
uin∗

0 (t )φ̂in
ext(t ) dt,

aout
0 =

∫ ∞

ts

uout∗
0 (t )φ̂out

ext (t ) dt, (2.18)

where φ̂in
ext(t ), φ̂out

ext (t ) are the cavity input and output fields.
We note that, to a good approximation, if γm 	 g 	 γo, if
γ̄ = γ+ − m, then

uin
0 (t ) ≈ i

√
2γ̄ eγ̄ t�(−t ). (2.19)

Apart from the phase factor, which is readily adjustable, this
is the approximate exponential form analyzed in treating the
download phase from the original cavity. However, we use the
full expression in the numerical simulations.

III. CAT-STATE SIGNATURES

As a preliminary exercise, we first consider the signatures
of a cat state generated in a single stationary bosonic mode,
which is a simplified model of the mechanical mode. The
corresponding density operator for the cat state ρ̂cat is then

ρ̂cat = 1

N (|α0〉〈α0| + | − α0〉〈−α0|
+ |α0〉〈−α0| + | − α0〉〈α0|). (3.1)

It is necessary to verify that the cat state is created and
successfully stored in a mechanical mode. This is done by
verifying the strength of the cat signature in the retrieved
output mode after a storage time ts . In this paper, three
possible cat state signatures are investigated. One of the
earliest signatures proposed in the literature is the presence
of interference fringes in the quadrature probability density
distribution [76]. A second signature is the negativity of the
Wigner function, which can be quantified by the negative
volume of that Wigner function [77]. As a third signature,
we reconstruct the density operator and infer the presence of
the optomechanical cat state from the off-diagonal terms [16].
Finally, we discuss a novel variance inequality cat signature,
which when violated, implies that the physical state is not in
a mixture of two distinguishable coherent states.

A. Interference fringes in quadrature probabilities

Using homodyne detection, the quadrature phase ampli-
tudes can be measured, after the state is transferred to an out-
put photonic mode. The interference fringes in the quadrature
probability distribution have been quantified as a cat measure
[41,42]. Generally, the rotated orthogonal quadratures X̂θ

and X̂θ+ π
2

are defined in terms of creation and annihilation
operators as

X̂θ = 1√
2

(e−iθ a + eiθa†),

X̂θ+ π
2

≡ Pθ = 1

i
√

2
(e−iθ a − eiθa†). (3.2)

The inner product of a coherent state |α〉 and a rotated quadra-
ture basis state |xθ 〉, which is the eigenstate of the quadrature
operator X̂θ and satisfies X̂θ |xθ 〉 = xθ |xθ 〉, can be shown to be
given by [76]

〈xθ |α〉 = 1

π
1
4

exp

[
−x2

θ

2
+

√
2e−iθ xθα − e−2iθα2

2
− |α|2

2

]
,

(3.3)

with α = |α|eiφ defined as the complex amplitude of the co-
herent state |α〉. In particular, we will consider the case θ = 0,
xθ=0 = x, and pθ=0 = xπ

2
= p. Without losing generality, we

also consider a real coherent state amplitude, setting φ = 0.
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FIG. 3. Probability density distribution P (x ) for the x quadrature
of the cat state Eq. (2.1) with α0 = 2 as given in Eq. (3.4).

The corresponding probability distribution, following
Eq. (3.3), is then

P (x) =〈x|ρ̂cat|x〉

= 1√
πN

{
exp[−(x −

√
2α0)2]

+ exp[−(x +
√

2α0)2] + 2exp
[ − x2 − 2α2

0

]}
(3.4)

for the x quadrature. This distribution P (x) consists of
two exponential terms that correspond to two Gaussian hills
around the values x = ±√

2α0, and also a rapidly decaying
exponential term, as shown in Fig. 3. On the other hand, the p

quadrature probability distribution P (p) is given by

P (p) = 〈p|ρ̂cat|p〉

= 1√
πN {2exp(−p2)[1 + cos(2

√
2pα0)]}. (3.5)

This contains a cosine term that gives rise to interference
fringes. As shown in Fig. 4, interference fringes arise in the
p quadrature probability distribution for the cat state (2.1). In
contrast, for a statistical mixture of two coherent states |α0〉
and | − α0〉, the same quantity will show no fringes.

FIG. 4. Probability density distributions P (p) for the p quadra-
ture of the cat state Eq. (2.1) with α0 = 2 as given in Eq. (3.5).

B. Wigner function and Wigner negativity

The Wigner function, introduced by Wigner [78], provides
a joint probability distribution W (x, p) of any two conjugate
variables x, p for a quantum state. Wigner functions satisfy
a set of mathematical properties that one normally associates
with a probability distribution [79]. This is certainly true for
the marginal distributions. For instance, the marginal distribu-
tion for x is given by

P (x) =
∫ ∞

−∞
W (x, p) dp (3.6)

as for a probability distribution. However, there exist quantum
states for which the corresponding Wigner function admits
negative values. In this case, the Wigner function cannot be
viewed as a probability distribution, but rather is a quasiprob-
ability distribution. The negativity is usually attributed to the
nonclassicality of the corresponding quantum state.

A cat state is a highly nonclassical physical state that has a
Wigner function which admits negative values. In the follow-
ing, we derive the expression for a cat state Wigner function,
which can be obtained from the characteristic function, the
Fourier transform of the Wigner function. In particular, we
use the Weyl-ordered characteristic function χ0:

χ0(λ) = Tr
(
ρ̂cate

λâ†−λ∗â). (3.7)

Introducing the complex variable λ, complementary to α, the
corresponding Wigner function is then given by

W (α) =
∫

exp(−λα∗ + λ∗α)χ0(λ)
d2λ

π2
, (3.8)

where we use
∫ · · · d2λ to indicate an integral over the entire

complex plane. For the cat-state density operator in Eq. (3.1),
χ0 consists of four terms and the corresponding Wigner
function can be shown to be

W (α) = 2

πN {exp[−2(α∗ − α∗
0 )(α − α0)]

+ exp[−2(α∗ + α∗
0 )(α + α0)]

+〈α0| − α0〉exp[−2(α∗ − α∗
0 )(α + α0)]

+〈−α0|α0〉exp[−2(α∗ + α∗
0 )(α − α0)]}. (3.9)

The first two terms correspond to the diagonal terms in the
cat-state density operator and are Gaussian distributed, while
the last two terms correspond to the off-diagonal terms in the
density operator. The Wigner function in Eq. (3.9) for α0 = 5
is plotted in Fig. 5. In terms of experimental measurements,
the superposition of α0 and −α0 corresponds to a squared
phase-space distance of S = |2α0|2 = 100, which has been
achieved in superconducting microwave experiments [27].

The two Gaussian peaks arise from the first two terms in
Eq. (3.9) while the region that admits negative values comes
from the last two terms in Eq. (3.9).

The Wigner function has been measured in experiments.
For instance, the Wigner functions of nonclassical photon
states in a cavity are directly measured [53] using the
Lutterbach and Davidovich procedure [80]. Using the same
procedure, the Wigner function of a two mode cat state is
measured more recently [26]. We note that these experiments
involve probing the cavity photon state with atoms, which
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FIG. 5. The Wigner function of a cat state as given in Eq. (3.9)
for a coherent amplitude α0 = 5. Here x and y in the plot are the real
and imaginary part of α in the Wigner function W (α), respectively.

is different from the quantum memory protocol proposed in
this paper. To measure quantum states of light, homodyne
tomography [81] is needed and this has been carried out both
in optomechanical experiments [37,82] and in experiments
that generate optical cat states [43,83].

Once we have the Wigner function, we can quantify the
negativity of the Wigner function by introducing the negative
volume δ, which is defined to be [77]

δ = 1

2

∫
[|W (α)| − W (α)] d2α. (3.10)

A factor of 1/2 in the definition above means that the Wigner
negativity δ takes values between 0 and 1, and any value larger
than 0 implies that the Wigner function W has negative values.

C. Reconstruction of the density operator

We note that the negativity of a Wigner function is not
sufficient to imply the existence of a cat state; it merely sig-
nifies the nonclassicality of the state. We get a clearer picture
from the presence or absence of the off-diagonal terms in the
density operator. In principle, a Wigner function contains all
the statistical information about a physical state and hence a
density operator can be obtained from a Wigner function. This
is done in Sec. V.

In practice, however, a density operator obtained from an
experimentally characterized Wigner function might not be
completely positive [84], which is unphysical. This is due to
the fact that only a finite number of measurements is recorded
in an experiment. Usually, some maximum-likelihood proce-
dure is carried out to find the most likely density operator that
characterizes a physical state in an experiment [26,84].

The modulus of the cat state density operator in the coher-
ent state basis is obtained by

|〈a|ρcat|b〉| = 1

N |(〈a|α0〉〈α0|b〉 + 〈a| − α0〉〈−α0|b〉
+ 〈a|α0〉〈−α0|b〉 + 〈a| − α0〉〈α0|b〉)|, (3.11)

where a, b, and α0 are taken here to be real for simplicity.
Figure 6 shows the modulus of the cat-state density operator in
the coherent state basis using Eq. (3.11). The presence of off-

FIG. 6. The modulus of the density operator for a cat state in the
coherent state basis as given in Eq. (3.11) with coherent amplitude
α0 = 5 in the coherent state basis based on Eq. (3.11).

diagonal terms implies the quantum superposition between
the two distinguishable coherent states |α0〉 and | − α0〉.

D. Variance method

Alternatively, the cat state can be distinguished from the
mixture ρ̂ = P+|α0〉〈α0| + P−| − α0〉〈−α0| by the method of
variances. Variance methods have been used previously to
detect quantum coherences [54–62]. If the system is indeed in
a mixture of two states ρ̂+ = |α0〉〈α0| and ρ̂− = | − α0〉〈−α0|,
then it is straightforward to show that the variance in the p

quadrature must satisfy

(�p)2
mix � 1

2
. (3.12)

This follows by considering that for any mixture ρ̂mix =∑
R PRρ̂R of states ρ̂R with probability weightings PR , the

variance (�p)2
mix of the mixture cannot be less than the

weighted sum of the variances (�p)2
R of the components ρ̂R

of the mixture: (�p)2
mix � ∑

R PR (�p)2
R . Next we use that

for all quantum states ρ̂R , (�x)R (�p)R � 1/2, and that for
the coherent states |α0〉 and | − α0〉, it is true that (�x)2

R = 1
2 .

From this, one can see that for each component of the mixture
(�p)2

R � 1
2 , and the result (3.12) follows.

In fact, the result (3.12) is predicted for any mixture
ρ̂mix = P+ρ̂+ + P−ρ̂− for which the variances of x for ρ̂±
are assumed to be respectively (�x)2

± � 1
2 . The experimental

observation of (�p)2 < 1/2 in association with the distribu-
tion functions shown in Fig. 2 thus confirms that the system
is not in a mixture of any two states ρ̂± that each generate the

Gaussian distributions P±(x) ∼ exp[−(x ∓ √
2α0)

2
] evident

in the P (x).
Calculation of the variance of p for the cat-state (2.1) gives

(�p)2
cat = 1

2
− 2α2

0exp
(−2α2

0

)
1 + exp

(−2α2
0

) (3.13)

in clear violation of (3.12) for all α0. The observation of
(�p)2 < 1/2 is a falsification of the mixed state ρ̂mix. Even
for quite small α0, this becomes exceedingly difficult to
measure. However, we will see below that there exist regimes
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of parameter space where (�p)2 < 1/2 for a non-negative
Wigner function.

IV. PHASE-SPACE SIMULATIONS

Having identified Schrödinger cat characteristic signatures
and expected properties, we now wish to analyze our more
realistic optomechanical quantum memory model. This has
two relevant coupled modes which can be macroscopically
occupied, together with input, output, and reservoir modes.
For this, we turn to a more powerful method: the positive-P
phase-space representation [64]. This has the advantage that it
can readily treat large, entangled Hilbert spaces, together with
thermal noise, dissipation, and if necessary nonlinear effects
as well [68,85].

A. Positive-P representation

The master equation given in Eq. (2.12) is an operator
equation and is generally intractable, especially if there is any
nonlinearity. Phase space methods can be used to transform
this operator equation into a set of stochastic differential
equations describing the dynamics of the optical, mechanical,
and reservoir modes in an optomechanical system. This is
achieved by noting that it is always possible to represent the
quantum density operator ρ̂ as an expansion of a positive
probability P (α) and a set of nonorthogonal projection op-
erators �̂(α),

ρ̂ =
∫

P (α)�̂(α) d2 α. (4.1)

In the general case, α = (α,α+) is a complex vector con-
sisting of two independent complex vectors for each mode,
namely α = (α, β,αin,αout) and α+ = (α+, β+,αin+,αout+),
where α corresponds to an operator vector a, and α+ corre-
sponds to a†.

Here �̂(α) is a set of projection operators parametrized
by α that forms a complete basis, P (α) is the corresponding
quasiprobability density function, and d2 α is an integration
measure over the relevant complex space. There are different
ways that this can be done, depending on the mapping used.
In this paper, the positive-P representation is used, so that the
projection operator �̂ is [64]

�̂(α) = |α〉〈α+∗|
〈α+∗|α〉 =

∏
m

�̂(αm), (4.2)

where |α〉 is a multimode coherent state [86] and α is the
corresponding vector coherent state amplitude, while αm =
(αm, α+

m ) gives the mode amplitude in the mth mode. This
approach generalizes Glauber’s P-representation [87], thus
allowing the inclusion of nonclassical states.

A set of operator identities enables a transformation of the
master equation Eq. (2.12) into a Fokker-Planck equation. A
probability distribution with a Fokker-Planck equation hav-
ing positive-definite diffusion always exists in the positive-P
representation and hence no truncation approximation is re-
quired. The numerical solutions are then exact, apart from the
sampling error which can be arbitrarily reduced by increasing
the number of samples in a simulation. Possible issues arising
from boundary terms, [88] which can be otherwise removed

[89], do not appear here. The positive-P representation has
the virtue of always being positive, even for quantum states
that are highly nonclassical, as for instance with cat states.
This allows the probabilistic sampling of quantum states. P
functions of this type have been used previously to represent
cat states generated dynamically in nonequilibrium parametric
oscillators [70–72]. Here we assume that the cat state is
already generated, and study how to transfer it to a mechanical
oscillator.

B. Stochastic differential equations

From the Fokker-Planck equation, we obtain a correspond-
ing set of stochastic differential equations that describe the
time evolution of the cavity α, α+ and mechanical β, β+ mode
amplitudes. The number of phase space variables is doubled
in the positive-P representation where a mode is characterized
by two phase space variables in order to represent quantum
superpositions. The stochastic differential equations for both
the cavity and mechanical mode amplitudes are given by

dα = [−γoα − ig(t )β]dt + dφin,

dα+ = [−γoα
+ + ig(t )β+]dt + dφin+,

dβ = [−γmβ − ig(t )α]dt +
√

2γmdφin
m,

dβ+ = [−γmβ+ + ig(t )α+]dt +
√

2γmdφin+
m , (4.3)

where α,α+ are conjugate in the mean, but not for individual
realizations, and

dφin =
√

2γextdφin
ext +

√
2γintdφin

int,

dφ+
in =

√
2γextd

(
φin

ext

)+ +
√

2γintd
(
φin

int

)+
. (4.4)

The terms φin
ext, φ

in+
ext are obtained from a mode expansion in

terms of external amplitudes αin,αin+, as in the operator mode
expansion, Eq. (2.15), so that

φin
ext(t ) =

∑
n�0

αin
n uin

n (t ). (4.5)

The conjugate terms are obtained by the usual map-
ping of φ → φ+, α → α+, and un → u∗

n. However,
φin

m, φin
int, φ

in+
m , φin+

int are Langevin noise terms obtained from
transforming the master equation (2.12) into a Fokker-Planck
equation, using the standard positive-P identities [64].

The effective optomechanical coupling strength g(t ) is
time dependent due to the optomechanical state transfer pro-
tocol used. It is a constant during the writing and read out
stages, and zero during the storing stage:

g(t ) =
⎧⎨
⎩

√
Ng0, −tw � t � 0,

0, 0 � t � ts ,√
Ng0, ts � t � tr ,

(4.6)

where tw, ts , and tr = tw are the durations for the writing, stor-
ing, and read out stages, respectively, and N is the intracavity
pump photon number.

The external cavity input φin
ext, φ

in+
ext contain the informa-

tion about the cat state to be stored in the mode amplitude
αin

0 , αin+
0 . Apart from this, the other input modes are assumed

to be in vacuum states. The internal cavity φin
int, φ

in+
int , and

mechanical φin
m, φin+

m inputs are in thermal equilibrium, and
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satisfy the following normally ordered correlations:〈
dφin

i dφin+
j

〉 = n̄i,thδij dt, (4.7)

where the indices i, j = 1, 2 ∼ int,m, and n̄i,th are the mean
thermal occupations. In this work, the experimental param-
eters used mean that only the mechanical thermal bath con-
tributes significantly. The optical thermal noises are neglected.

The input mode into the cavity and output mode from
the cavity are related by the input-output relation φout

ext (t ) =√
2γextα(t ) − φin

ext(t ) [73], together with a conjugate equation.
The integrated output αout

0 , αout+
0 mode amplitudes can be

obtained by integrating these modes with temporal mode
functions uin

0 (t ) and uout
0 (t ) as given below:

αout
0 =

∫ ∞

ts

uout
0 (t )φout

ext (t ) dt, (4.8)

where uout
0 (t ) is given by a time reversed version of Eq. (2.16),

defined for t > ts , and ts is the storage time. The integrated
output mode amplitudes αout+

0 are defined similarly.
The input mode function uin

0 in Eq. (2.16) has the form
[e(γ++m)t − e(γ+−m)t ]�(−t ), and it can be shown that [52]
in the limit where γm 	 g 	 γo, then e(γ+−m)t�(−t ) is the
dominating term during the writing stage. This suggests that
the duration of the writing stage has to be longer than
1/(γ+ − m). However, we use the exact mode function in
our calculations. In this work, we choose the writing stage
duration to be 10/(γ+ − m). The storage time ts is chosen
to be some fraction of the mechanical lifetime. Finally, the
read-out stage has the same duration as the writing stage.

C. Cat state and importance sampling

Initially we assume that only the external cat state in mode
ain

0 is excited, so that

ρ̂ = ρ̂cat ⊗ ρ̂ ′, (4.9)

where ρ̂cat is the state of the input mode ain
0 , and ρ̂ ′ is the

state of all the remaining modes, which are assumed to be
in the vacuum state, except that the mechanical mode may
be initially thermally excited. The cat density operator ρ̂cat in
Eq. (3.1) can be expressed in the positive-P representation as
follows:

ρ̂cat =
∫ ∫

P
(αin

0

)
�̂

(αin
0

)
d2 αin

0 . (4.10)

One of the possible compact positive-P distributions for the
cat state Eq. (2.1) is given by [64,85]

P
(αin

0

) = 1

N [δ+,+ + δ−,− + e−2|α0|2 (δ+,− + δ−,+)],

(4.11)

where δ±,± = δ(αin
0 ± α0)δ(αin+∗

0 ± α0). It is straightforward
to show that the positive-P distribution in Eq. (4.11) gives
the correct density operator in Eq. (3.1). This distribution is
particularly easy to sample. One draws a sample of αin

0 and
αin+

0 with values from one of the possible four terms with the
corresponding probability as given in Eq. (4.11).

In order to carry out positive-P simulations, an ensemble
of input coherent amplitudes αin

0 and αin+
0 that corresponds

to the correct cat-state statistics has to be sampled from
the positive-P distribution in Eq. (4.11). In particular, the
last two terms in Eq. (4.11) arise from the off-diagonal
terms in the cat-state density operator which is the source of
nonclassicality in a cat state.

For the case where α0 is large, the off-diagonal events
are rare in samples taken from the standard positive-P dis-
tribution. However, they can have a large effect on some
observables. The task is to include these rare, but significant
terms in our samples. This is achieved using the importance
sampling method, whereby a different distribution is used
such that these rare terms are sampled sufficiently. When
doing this, both the kernel function �̂ and the probability
distribution are modified so as to leave the density operator
invariant.

The weighted phase space representation of the input mode
density operator is now

ρ̂cat =
∫ ∫

f
(αin

0

)
�̂w

(αin
0

)
d2 αin

0 , (4.12)

where �̂w(αin
0 ) ≡ �̂(αin

0 )w(αin
0 ) is the weighted kernel func-

tion with weight w(αin
0 ) = P (αin

0 )/f (αin
0 ), associated with

the sampling of the distribution f (αin
0 ). A natural initial

distribution choice is a probability distribution of the form
f (αin

0 ) = 1
4 (δ+,+ + δ−,− + δ+,− + δ−,+), with equal proba-

bility assigned to each term. Instead of representing the cat-
state density operator ρ̂cat in terms of projection operators
|αin

0 〉〈αin+∗
0 |/〈αin+∗

0 |αin
0 〉 with the corresponding probability

distribution P (αin
0 ), it is now expressed in terms of an oper-

ator �̂w(αin
0 ), with the new probability distribution f (αin

0 ).
This weight function has to be taken into account when we
compute any observables.

The total initial density operator can now be written as

ρ̂0 =
∫

F0(α)�̂w(α) d2 α. (4.13)

Here �̂w(α) ≡ �̂(α)w(αin
0 ) and F0(α) = f (αin

0 )P ′(α′),
where α′ represents the other modes of the system, initially
in a vacuum or thermal state described by the distribution
P ′(α′). With this new quasiprobability distribution F0(α)
any moments we compute have to be weighted according to
w(αin

0 ) to obtain correct results. This is because �̂w(α) no
longer has a unit trace, and in fact for any trace that includes
the weighted input mode,

tr[�̂w(α)] = w
(αin

0

)
. (4.14)

We also note that, somewhat counterintuitively, the input
mode amplitudes αin

0 are time invariant. This is because, in
simple terms, they have a “use-by” time. The effect of these
mode amplitudes is transmitted to the cavity through the
associated time-dependent mode-function u0(t ), rather than
through any change in the input amplitudes themselves.

D. Wigner function and interference fringes

In this subsection we describe how a cat signature can be
computed numerically. The simplest cat signature is an in-
terference fringe, obtained from homodyne measurements on
the output field. This is directly computable from the density
operator, and hence one can obtain a sampled representation

063814-9



TEH, KIESEWETTER, DRUMMOND, AND REID PHYSICAL REVIEW A 98, 063814 (2018)

of interference by summing over the stochastic trajectories.
We note that the total density operator ρ̂ is a multimode
operator, while the cat signatures are inferred only from the
integrated output modes. To this end, we define a projection
operator |p〉〈p| that only acts on the chosen output mode. To
evaluate this, it is simple to trace over the nonobserved modes,
thus generating a single-mode density matrix, now defined in
terms of the output mode amplitudes αout

0 . These amplitudes
are evaluated through the integrals of Eq. (4.8).

We define the output single-mode density matrix as a
partial trace of the density matrix over all modes except the
mode-matched output mode, at the final evolution time of the
density matrix:

ρ̂out = trH′ [ρ̂(t = tf )]. (4.15)

This has a phase-space representation of

ρ̂out =
∫

P
(αout

0

∣∣αin
0

)
w

(αin
0

)
�̂

(αout
0

)
d αout

0 d αin
0 . (4.16)

Here P (αout
0 |αin

0 ) is the conditional probability of observing
αout

0 given an input amplitude αin
0 , and it is obtained by

integrating the P distribution over all the unobserved modes
except the input and output modes. The output quadrature
probability distribution can then be computed as follows:

P (p) = Tr[ρ̂out|p〉〈p|]

=
∫

P
(αout

0

∣∣αin
0

)
w

(αin
0

)
Tr

(
�̂

(αout
0

) |p〉〈p|) d αout
0 d αin

0 .

(4.17)

The output mode is traced out in the second line of Eq. (4.17).
We compute the probability distribution P (p) of the in-

tegrated output modes αout
0 , αout+

0 to verify the presence of
cat state in the quantum memory. In the Monte Carlo method,
P (p) in Eq. (4.17) is estimated from Ns phase-space samples,
[α1, . . . , αNs

]. This is shown explicitly below:

P (p) ≈ 1

Ns

Ns∑
i=1

w
(αin

0,i

) 〈
p
∣∣αout

0,i

〉〈
αout+

0,i
∗∣∣p〉

〈
αout+

0,i
∗∣∣αout

0,i

〉 . (4.18)

In particular, samples with index i going from 1 to Ns/2 corre-
spond to diagonal terms in the density operator and they have
a weight function w = 2/(1 + e−2|α0|2 ), while samples with
index i going from Ns/2 + 1 to Ns correspond to off-diagonal
terms in the density operator and the weight function is
w = 2e−2|α0|2/(1 + e−2|α0|2 ). For cases where the mechanical
thermal noise n̄th �= 0, the accuracy of the estimation improves
with the number of samples Ns . At zero temperature there is
no sampling error, giving an extremely efficient procedure.

In order to obtain the Wigner function of the integrated
output modes, it is necessary to relate the positive-P function
to its corresponding Wigner function. We write down the ex-
pression of the Wigner function in terms of the symmetrical-
ordered characteristic function and then represent the density
operator ρ̂out in that characteristic function in the positive-P

representation. These steps are explicitly shown below:

W (α) = 1

π2

∫
e(−λα∗+λ∗α)χW (λ) d2λ

= 2

π

∫
P

(αout
0

∣∣αin
0

)
w

(αin
0

)
e[−2(αout+

0 −α∗)(αout
0 −α)]d αout

0 d αin
0 .

(4.19)

In going from line 1 to line 2 in Eq. (4.19), the characteris-
tic function χW (λ) = Tr(ρ̂out

0 eλâ†−λ∗â ) is used, and the density
operator ρ̂out is expressed in the positive-P representation
as previously mentioned. Equation (4.19) is then computed
numerically for the integrated output modes αout

0 , αout+
0 using

the Monte Carlo method, giving

W (α) ≈ 2

πNs

Ns∑
i

w
(αin

0,i

)
e[−2(αout+

0,i −α∗)(αout
0,i −α)]. (4.20)

Here the weight function w is identical to the one given in
Eq. (4.18).

V. NUMERICAL RESULTS

In this section we describe the numerical method and
results for the cat-state signatures discussed in Sec. III. In all
of the simulations carried out, both the cavity and mechanical
modes are initially in their ground or thermally excited states.
The cat state is then sent into the cavity, where the cat state
is sampled using the importance sampling method discussed
in the previous section. We generate four different types
of positive-P trajectories which correspond to two diagonal
terms and two off-diagonal terms in the cat state density
operator. All numerical simulations were carried out in the
positive-P representation.

A. Parameter values

Going through the quantum memory protocol as de-
scribed in Sec. II B, the output from the cavity is subse-
quently integrated to give the output mode amplitudes αout

0 =
(αout

0 , αout+
0 ) in Eq. (4.8). These output modes are the quantum

states stored in the quantum memory and all cat-state signa-
tures computed in this section are based on these output modes
amplitudes.

For definiteness, we use experimental parameters from
the electromechanical experiment of Palomaki et al. [33]. In
their experiment, the resonator and mechanical decay rates
are γo/2π = 170 kHz and γm/2π = 17.5 Hz, respectively,
and the bare electromechanical coupling strength g0 is 2π ×
200 Hz.

All numerical simulations are carried out using XSPDE,
which is a Matlab open software package designed specially
for solving stochastic differential equations [90]. The algo-
rithm used for solving the stochastic differential equations is
the fourth-order Runge-Kutta method in the interaction pic-
ture [90,91]. As the linearized optomechanical Hamiltonian
is used for this work, the highest frequency parameter in the
stochastic differential equations is the decay rate γo. Based
on the Shannon sampling theorem [92], we choose a time step
�t = 1/(10γo) that is smaller than the sufficient sampling rate
criterion, which predicts that a time step less than 1/(2γo) is
needed.
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FIG. 7. The p-quadrature probability distribution computed us-
ing the positive-P distribution with Eq. (4.18) for α0 = 5 after
reading out from the quantum memory. The mean mechanical ther-
mal noise and internal loss rate are chosen to be n̄th = �int = 0
throughout the simulation. Here the optomechanical cat state has
a low decoherence due to the short storage time compared to the
mechanical oscillator lifetime. This figure is for a storage time of
0.02/�m. A total number of four samples are taken.

We express all stochastic differential equations in dimen-
sionless form, using a dimensionless time variable τ = γot

where γo is the resonator decay rate. All parameters then have
values that are relative to the resonator decay rate γo. These di-
mensionless parameters are denoted by capitalizing the Greek
letters of their corresponding experimental parameters. We
choose the dimensionless effective optomechanical coupling
strength G = g/γo = 0.6. This places the optomechanical
system in the weak coupling regime, where the linearization
approximation is valid [52]. We take the initial optical and
mechanical states to be in their ground state, except in the
last case treated. In simulations where the mechanical thermal
noise n̄th = 0, we take a total of four samples, which cor-
responds to four different trajectories for two diagonal and
two off-diagonal terms in the density operator. In cases where
n̄th �= 0, a total number of 2 × 105 samples are taken.

B. Interference fringes

Using the method of Eq. (4.18), fringes were calculated for
a cat state with amplitude α0 = 5 corresponding to 25 stored
phonons. In Fig. 7 we plot the p-quadrature distribution after
the read out from the optomechanical quantum memory. In
this figure there is no internal cavity loss and the storage time
is 0.02/�m.

The same quantity but with a storage time 0.3466/�m is
shown in Fig. 8. This storage time corresponds to the time
a Wigner function loses its negativity for a mean mechanical
thermal number n̄th = 0 as given by Eq. (A12). We note in this
case, the fringe pattern has vanished, consistent with a loss of
nonclassicality.

C. Wigner function

The Wigner function and its projection onto the phase
space plane are plotted in Figs. 9 and 10 for storage times

-4 -2 0 2 4
p

0

0.2

0.4

0.6

P
(p

)

n̄th = 0

FIG. 8. The p-quadrature probability distribution computed us-
ing using the positive-P distribution with Eq. (4.18) for α0 = 5. Other
parameters as in Fig. 7. Here the optomechanical cat state decoheres
for a storage time of 0.3466/�m, which is the time a Wigner function
loses its negativity according to Eq. (A12).

0.02/�m and 0.3466/�m, respectively. The storage time
0.3466/�m corresponds to the time a Wigner function loses
its negativity for a mean mechanical thermal number n̄th = 0
as given by Eq. (A12).

D. Reconstructed density operator

We reconstruct the density operator by looking at the
modulus of the density operator in the coherent state basis:
|ρab| = |〈a|ρ̂out

0 |b〉|. This can be achieved using the Monte
Carlo method as discussed in the previous section and is
shown below:

|ρab| = |〈a|ρ̂out
0 |b〉|

≈
∣∣∣∣∣ 1

Ns

Ns∑
i

w
(αin

0,i

) 〈
a
∣∣αout

0,i

〉〈
αout+

0,i
∗∣∣b〉

〈
αout+

0,i
∗∣∣αout

0,i

〉
∣∣∣∣∣. (5.1)

FIG. 9. The Wigner function computed using the positive-P
distribution and Eq. (4.20) for α0 = 5 after reading out from the
quantum memory. Here x and y in the plot are the real and imaginary
part of α in the Wigner function W (α) in Eq. (4.20) respectively.
Other parameters as in Fig. 7. This figure has a storage time of
0.02/�m, too short for substantial decoherence.

063814-11



TEH, KIESEWETTER, DRUMMOND, AND REID PHYSICAL REVIEW A 98, 063814 (2018)

0

0.1

10

0.2

n̄th = 0
W

ig
n

er
 f

u
n

ct
io

n
 W

0.3

2 5

xy

00 -5-2 -10

FIG. 10. The Wigner function computed using the positive-P
distribution and Eq. (4.20) for α0 = 5 after reading out from the
quantum memory. As previously, x and y in the plot are the real
and imaginary part of α in the Wigner function W (α) in Eq. (4.20),
respectively. Other parameters as in Fig. 8. Here the optomechanical
cat state decoheres after a storage time of 0.3466/�m, which is the
time a Wigner function loses its negativity according to Eq. (A12).

Here the weight function w is identical to the one given
in Eq. (4.18). The reconstructed density operator in the co-
herent state basis is plotted in Figs. 11 and 12 for storage
times 0.02/�m and 0.3466/�m, respectively. The storage time
0.3466/�m corresponds to the time a Wigner function loses its
negativity for a mean mechanical thermal number n̄th = 0 as
given by Eq. (A12). Here we note the presence of the nonzero
off-diagonal terms, for times where the Wigner negativity is
zero.

E. Wigner negativity

We also compute the Wigner negativity as defined in
Eq. (3.10) as a function of the optomechanical cat storage
time and thermal noise. The Wigner negativity can be easily
computed numerically once the Wigner function has been

FIG. 11. The reconstructed density operator computed using the
positive-P distribution and Eq. (5.1) for α0 = 5 after reading out
from the quantum memory. The mean mechanical thermal noise and
internal loss rate are chosen to be n̄th = �int = 0, and the storage time
is 0.02/�m. A total number of four samples are taken.

FIG. 12. The reconstructed density operator computed using the
positive-P distribution and Eq. (5.1) for α0 = 5 after reading out
from the quantum memory. The mean mechanical thermal noise
and internal loss rate are chosen to be n̄th = �int = 0. Here the
optomechanical cat state decoheres due to the finite mechanical
lifetime after a storage time of 0.3466/�m, which is the time a
Wigner function loses its negativity according to Eq. (A12). A total
number of four samples are taken.

obtained, and we use the trapezoidal numerical method to
carry out the integration involved.

The numerical results are then compared with the corre-
sponding analytical results based on the idealized character-
istic function solution in Eq. (A7). We define an auxiliary
amplitude given by

α±(t ) = α ± α0e
−�mt . (5.2)

The Wigner function at time t as a function of cat state ampli-
tude, storage time, and mean mechanical thermal number is
given by

W (α, t ) = 2

πN
1

1 + 2n̄th(1 − e−2�mt )

×
{

exp

[
− 2α∗

−(t )α−(t )

1 + 2n̄th(1 − e−2�mt )

]

+ exp

[
− 2α∗

+(t )α+(t )

1 + 2n̄th(1 − e−2�mt )

]

+〈α0| − α0〉exp

[
− 2α∗

−(t )α+(t )

1 + 2n̄th(1 − e−2�mt )

]

+〈−α0|α0〉exp

[
− 2α∗

+(t )α−(t )

1 + 2n̄th(1 − e−2�mt )

]}
.

(5.3)

The Wigner negativity from both the analytical and numerical
methods are plotted in Figs. 13 and 14 for a mean mechan-
ical thermal occupation number n̄th of 0 and 2, respectively.
Figure 15 shows a three-dimensional representation of the
Wigner negativity results as a function of mean mechanical
thermal occupation number and storage time.

F. Variance of the p quadrature

Here we compute the variance of p quadrature before
the cat state is stored and after the state has been read out
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FIG. 13. The Wigner negativity of the read-out state as a function
of the dimensionless storage time (in multiples of 1/�m) for cat
amplitudes α0 = 2, 3, 4, and 5. The mean mechanical thermal occu-
pation number and internal loss rate are chosen to be n̄th = �int = 0.
The corresponding data points in circles are analytical values based
on Eq. (5.3). The dashed vertical line is the upper bound of the time
for a Wigner function to lose its negativity, as given in Eq. (A12).
For n̄th = 0, the upper bound, in multiples of 1/�m, is 0.3466. A
total number of four samples are taken. The error bars denote the
time-step error in the phase-space simulations.

from the quantum memory. In particular, we compute this
observable for storage times where the corresponding Wigner
functions for the quantum memory output states lose their
negativity, with zero mean mechanical thermal number. Note
that the positive-P representation computes normally ordered
observables. Hence, a quantity such as 〈p̂2〉 has to be normally
ordered first for the numerical results in the positive-P repre-

FIG. 14. The Wigner negativity of the read-out state as a function
of the dimensionless storage time (in multiples of 1/�m) for cat
amplitudes α0 = 2, 3, 4, and 5. The mean mechanical thermal
occupation number n̄th = 2, and the internal loss is �int = 0. The
dashed vertical line is the upper bound of the time for a Wigner
function to lose its negativity, as given in Eq. (A12). For n̄th = 2,
the upper bound, in multiples of 1/�m, is 0.0912. A total number of
2 × 105 samples are taken. The error bars include both the sampling
error and time-step error.
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FIG. 15. The Wigner negativity of the read-out state as a function
of the dimensionless storage time Ts (in multiples of 1/�m) and the
mean mechanical thermal number n̄th for a cat amplitude α0 = 2. The
internal loss is �int = 0. A total number of 2 × 105 samples are taken,
except when n̄th = 0, where four samples are taken instead.

sentation to be correct. Thus

〈p̂2〉 = −1

2
(〈â2〉 + 〈â†2〉 − 2〈â†â〉 − 1)

= −1

2
(〈α2〉p + 〈α+2〉p − 2〈α+α〉p − 1), (5.4)

where α, α+ are the complex field amplitudes in the positive-
P representation. We compare the numerical results for the
variance with the corresponding analytical ones as given by
Eq. (3.13). The comparison is shown in Table I.

In practice, the variance of p quadrature for a cat state is
too tiny to be differentiated from the variance of p quadrature
for a mixed state, for a cat-state amplitude larger than 2.
However, in the cases where (�p)2 < 1/2 can be observed,
the variance method serves as a sufficient criterion to verify
the existence of a cat state. This is crucial as we see that for
n̄th = 0 and a storage time that corresponds to a state where
its Wigner function loses its negativity, only the reconstructed
density operator and the variance methods are able to detect
the presence of a density operator with nonvanishing off-
diagonal terms. The variance method has the advantage that
no state tomography is needed, as opposed to the density
operator reconstructed approach.

G. Decoherence effects on an optomechanical cat state

In the previous subsection, the internal cavity decay rate is
set to zero, which corresponds to an optimal optomechanical
quantum state transfer. In practice, the internal cavity decay
rate is nonzero, causing the quantum state transfer to be less
efficient. This introduces further decoherence to the quantum
state that is stored. In this section, we analyze more realistic
parameter values that correspond to recent electromechanical
experiments.

First we consider the case where there is a nonzero optical
internal loss �int. The state transfer protocol used in this paper
predicts that the stored amplitude, given an initial coherent
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TABLE I. The analytical and numerical values for the variance of p quadrature for different cat amplitudes α0. The analytical values are
obtained using the expression in Eq. (3.13). These values are obtained for the parameters n̄th = 0 and a storage time of 1/2ln(2), which is the
upper bound time for the loss of Wigner negativity of the read out state.

Analytical prediction for a Numerical value before Numerical value after read
Cat amplitude, α0 cat state, (�p)2

cat storage, (�p)2
in out, (�p)2

out

1 0.2616 0.2616 0.3809
2 0.4973 0.4973 0.4987
3 0.5000 0.5000 0.5000
5 0.5000 0.5000 0.5000

amplitude α, would have an expectation value of

〈b(0)〉 =
√

2�extGα

2
√

(K+ + M )(K+ − M )K+
, (5.5)

based on Eq. (2.17). If we consider a realistic internal cavity
decay rate �int = 0.05, then from the set of parameters we
use, the stored amplitude is 0.9745α. As shown in Fig. 16, this
significantly reduces the Wigner negativity of the retrieved cat
state, even at zero temperature.

Next, we consider the effect of finite thermal occupation
numbers in the mechanical mode. In Fig. 17 we show the
result for the Wigner negativity for internal cavity decay
rate �int = 0.05 and mechanical thermal occupation number
n̄th = 2. Also, the initial mechanical mode has an occupation
number of 0.5, instead of being in its ground state, to give an
example of a possible nonground-state initial condition.

With these more realistic parameter values, the maximum
detectable cat state has α0 = 3, with a squared separation of
S = |2α2

0 | = 36. This demonstrates that to store a mechanical
cat state having S = 100, as has been generated experimen-
tally in a microwave mode, will require reductions in the
loss rates and mechanical reservoir temperatures compared to
currently achieved values.

FIG. 16. The Wigner negativity of the read-out state as a function
of the dimensionless storage time (in multiples of 1/�m) for cat
amplitudes α0 = 2, 3, 4, and 5. The mean mechanical thermal
occupation number n̄th = 0. The internal cavity decay rate is nonzero
and contributes to further decoherence of the cat state. Here the
internal cavity decay rate is set to be �int = 0.05. A total number
of four samples are taken. The error bars denote the time-step error
in the phase-space simulations.

The ratio between the external cavity decay rate �ext and
the total cavity decay rate �o has been quoted as the efficiency
of an optomechanical-state transfer protocol [33]. In our case,
�ext/�o = 0.95, and we note that this only quantifies the
amplitude being stored; the coherent quantum superposition
in the quantum state has to be stored too. A quantum memory
that has high amplitude efficiency, while retaining the quan-
tum superposition of the stored quantum state is a challenge.
The detection inefficiency which is not included in our model
will no doubt make the verification of nonclassical quantum
states even more difficult [93]. However, with the improve-
ment in technologies such as optomechanical cooling using
squeezed states [94], efficient quantum state transfer [26,37],
and detection schemes, the generation and verification of
optomechanical cat states becomes feasible.

VI. CONCLUSION

In summary, we analyze a protocol for optomechanical
storage of a Schrödinger cat state. To analyze its proper-
ties, a simplified decoherence model for a stored cat state
was investigated by solving the single-mode master equation
analytically. Additionally, the full coupled system including

FIG. 17. The Wigner negativity of the read-out state as a function
of the dimensionless storage time (in multiples of 1/�m) for cat
amplitudes α0 = 2, 3, 4, and 5. The mean mechanical thermal occu-
pation number n̄th = 2. The internal cavity decay rate is nonzero and
contributes to further decoherence of the cat state. Here the internal
cavity decay rate is set to be �int = 0.05 and the initial mechanical
mode has an occupation number of 0.5. A total number of 2 × 105

samples are taken. The error bars include both the sampling error and
time-step error.
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input and output was simulated using the positive-P phase
space method. Provided importance sampling is utilized, this
provides a compact and efficient probabilistic representation
of such macroscopic quantum superpositions. The method
allows straightforward quantum state sampling to be carried
out, even for these highly nonclassical, entangled multimode
transients.

We then discussed typical cat-state signatures as a mea-
sure of the quality of the quantum memory, and described
the numerical methods required to compute these cat-state
signatures. The analytical predictions of the simplified model
were then compared with our numerical results, showing good
agreement. With the advent of finer quantum controls and
manipulations in optomechanics and their physical implemen-
tations in different systems, the goal of creating and storing
a small optomechanical cat state does appear achievable. We
have investigated a number of different sources of decoher-
ence, including losses in the optical system, losses in the me-
chanical system, initial thermal occupation of the mechanical
oscillator, and finite temperature mechanical reservoirs. All of
these clearly play a role in reducing the cat-state signatures,
especially as the stored photon number is increased, but are
not an insuperable barrier.

Our numerical methods provide an efficient way to probe
the feasibility of this protocol with realistic experimental
parameters. We show that a moderate size Schrödinger cat
state with n � 9 stored quanta and a phase-space squared
separation of S = 36 appears feasible with present quantum
technologies.
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APPENDIX

1. Decoherence of the cat state

A cat state is extremely sensitive to fluctuations and losses
due to the interaction with its environment. Here we assume a
simple model of decoherence provided by a master equation
that includes damping and thermal noise, in order to obtain
an analytical solution for the time evolution of a cat state in a
simple gedanken experiment. The time it takes for the Wigner
function of a cat state to become positive is also investigated.
This gives analytical insight and provides a comparison for
the numerical results of the main text, which compute the final
read out cat state after a storage time in a quantum memory.

The time evolution of a single-mode density operator due
to its interaction with a lossy environment is given by the
following master equation:

∂

∂t
ρ̂ = γ n̄(2a†ρ̂a − aa†ρ̂ − ρ̂aa†)

+γ (n̄ + 1)(2aρ̂a† − a†aρ̂ − ρ̂a†a). (A1)

Here ρ̂ is the cat state density operator, γ is the decay rate
of the relevant mode, and n̄ is the average thermal occupation

number due to the interaction with the environment. Using
phase space methods, we transform the above master equation
into a time-evolution equation of an s-ordered characteristic
function. The advantage of using phase space methods is that
the corresponding equations are much easier to solve than the
operator equation Eq. (A1). Here the s-ordered characteristic
function is based on the definition by Cahill and Glauber [95]
and is given by

χs (λ) = Tr[ρ̂eλâ†−λ∗â+s|λ|2/2], (A2)

such that s = −1, 0, 1 corresponds to the characteristic func-
tion in Q, Wigner, and P representations, respectively. By
multiplying both sides of Eq. (A1) by eλâ†

e−λ∗â and taking the
trace, it can be shown that the s-ordered characteristic function
satisfies the following time evolution equation [96]:

∂

∂t
χs (λ, t ) = −γ

(
λ

∂

∂λ
+ λ∗ ∂

∂λ∗

)
χs

− γ [s − (2n̄ + 1)]|λ|2χs. (A3)

Equation (A3) can be solved analytically using the method of
characteristics. These analytical solutions allow us to compare
with the numerical solutions obtained from a full quantum
simulation in later sections.

Since characteristic functions of different order are related,
we may choose s̄ = 2n̄ + 1 to simplify the partial differential
equation (A3). The corresponding partial differential equation
is

∂

∂t
χs̄ (λ, t ) = −γ

(
λ

∂

∂λ
+ λ∗ ∂

∂λ∗

)
χs̄ (A4)

and the solution can be shown to be [96]

χs̄ (λ, t ) = χs̄ (λe−γ t , 0). (A5)

The s-ordered characteristic function at time t is then obtained
through the relation

χs (λ) = exp

{
−[s̄ − s]

|λ|2
2

}
χs̄. (A6)

Using Eq. (A6) and the solution of the characteristic function
in Eq. (A5), the solution of an s-ordered characteristic func-
tion at time t is given by

χs (λ, t ) = exp

{
−[s̄ − s]

|λ|2
2

(1 − e−2γ t )

}
χs (λe−γ t , 0).

(A7)

Based on this solution of the master equation, we can now
investigate the time it takes for a cat state to lose its coherence.
In the formalism of density operators, this corresponds to
the absence of off-diagonal elements in a density operator.
The corresponding density operator then describes a statistical
mixture of two coherent states.

In the following subsections we first compute the time
taken for the off-diagonal terms of a cat density operator to
vanish, when expressed using a coherent state basis. Another
way to characterize the nonclassicality of a cat state is the
negativity of the Wigner function. We also derive the upper
bound for the time it takes for the Wigner function of a cat
state to become positive.
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2. Density operator off-diagonal terms: Zero temperature case

In this subsection we consider the case where the en-
vironment is at zero temperature T = 0, so that the mean
mechanical thermal occupation number n̄th = 0. In this limit,
the decay of the cat-state quantum coherence is due to the
finite quantum memory decay rate. This allows us to gain
insight on the rate of cat-state decoherence. The normally
ordered characteristic function for the cat density operator
(3.1), χ1(λ), is a sum of four terms:

χ1(λ) = 1

N
[
eλα∗

0 e−λ∗α0 + e−λα∗
0 eλ∗α0 + 〈−α0|α0〉e−λα∗

0 e−λ∗α0

+ 〈α0| − α0〉eλα∗
0 eλ∗α0

]
. (A8)

Here the first two terms correspond to the diagonal elements
of the cat density operator and the last two terms correspond
to the off-diagonal terms.

Next, we obtain the expression for the characteristic func-
tion of a cat state at time t , χs (λ, t ). From Eq. (A7) and
further setting s = 1 (which corresponds to the normally
ordered characteristic function), we find an expression with
four terms involving exponentials of α0, α∗

0 , and |α0|2, to-
gether with time-dependent factors. We identify two terms
as the diagonal terms in a density operator |α0e

−γ t 〉〈α0e
−γ t |

and | − α0e
−γ t 〉〈−α0e

−γ t |, respectively, and the other two
terms correspond to the off-diagonal terms |α0e

−γ t 〉〈−α0e
−γ t |

and | − α0e
−γ t 〉〈α0e

−γ t |, respectively, with a time-dependent
coefficient e−2|α0|2(1−e−2γ t ). The resulting density operator is
given by

ρ̂cat(t ) = 1

N
[|α0e

−γ t 〉〈α0e
−γ t | + | − α0e

−γ t 〉〈−α0e
−γ t |

+ e−2|α0|2(1−e−2γ t )|α0e
−γ t 〉〈−α0e

−γ t |
+ e−2|α0|2(1−e−2γ t )| − α0e

−γ t 〉〈α0e
−γ t |]. (A9)

The off-diagonal terms in Eq. (A9) vanish in a shorter time for
larger coherent amplitude α0 and damping rate γ . We note that
in the absence of thermal noise, the off-diagonal terms never
completely vanish, i.e., there is no “sudden death” effect of
the type discussed in Ref. [63].

3. Negativity of the Wigner function: Finite temperature case

Here we derive the upper bound on the time it takes for
the cat-state Wigner function to become completely positive.
In this subsection we include the effect of thermal noise. This

approach is based on the paper of Paavola et al. [63]. In that
paper, the upper bound of the time for any P function to lose
its negativity is obtained by calculating the condition for that
initial P function to turn into a Q function, which is always
positive. The upper bound tp was found to be

tp = 1

2γ
ln

(
1

n̄th
+ 1

)
, (A10)

where n̄th is the mean mechanical thermal occupation number
and γ is the decay rate of the system. Following the same
method, we obtain the upper bound of the time for a cat
Wigner function to lose its negativity.

The Wigner function at time t is given by

W (α, t ) =
∫

χ−1(λ, t )e|λ|2/2eλ∗αe−λα d2λ

π2

=
∫

χ−1(λe−γ t , 0)eq(t )|λ|2+α(λ∗−λ) d2λ

π2
, (A11)

where Eq. (A7) is used in the second line, and q(t ) ≡ 1/2 −
(1 + n̄th)(1 − e−2γ t ).

The right side of the equation above will correspond to a Q
function, which is always positive, if the condition q(t ) = 0.
The upper bound for the time it takes for the Wigner function
of the cat state to be positive t+ is therefore

t+ = 1

2γ
ln

(
1 + n̄th
1
2 + n̄th

)
. (A12)

Note that t+ is not the time where a cat Wigner function is
always positive, but the upper bound for the time it takes for
a cat Wigner function to become positive. It is a function of
the damping rate and the expectation value of the thermal
occupation number, and is not a function of the size of the
cat state.

To this end, it is worth noting that a non-negative Wigner
function does not imply there is no cat-state quantum co-
herence. The numerical results for other cat-state signatures
calculated at the time corresponding to t+ are given in Sec.
IV. At the time t+, while the Wigner negativity is zero,
other signatures can indicate the presence of a cat state. Let
us focus on the density operator in Eq. (A9) at the time
t+ for n̄th = 0. At the time t+ = 1/2γ ln2, the off-diagonal
terms in the density operator Eq. (A9) do not vanish, albeit
they make a tiny contribution that scales with the cat-state
amplitude as exp(−|α0|2). This suggests that more than one
signature should be measured and calculated in an experiment
to conclusively verify the existence of a cat state.
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