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Determinantal polynomial wave functions induced by random matrices
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Random-matrix eigenvalues have a well-known interpretation as a gas of like-charge particles. We make
use of this to introduce a model of vortex dynamics by defining a time-dependent wave function as the
characteristic polynomial of a random matrix with a parameterized deformation, the zeros of which form a gas
of interacting vortices in the phase. By the introduction of a quaternionic structure, these systems are generalized
to include antivortices and nonvortical topological defects: phase maxima, phase minima, and phase saddles.
The commutative group structure for complexes (which undergo topologically allowed reactions) generates a
hierarchy. Several special cases, including defect-line bubbles and knots, are discussed from both an analytical
and computational perspective. Finally, we return to the quaternion structures to provide an interpretation of
two-vortex fundamental processes as states in a quaternionic space, where annihilation corresponds to scattering
out of real space, and identify a time-energy uncertainty principle.
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I. INTRODUCTION

The emergent phenomenon of the quasiparticle is a pro-
foundly useful concept that pervades much of physics [1,2].
The zoo of quasiparticles includes phonons, surface plasmons,
polaritons, oscillons, solitons, and excitons [3–5]. Topological
defects [6] may also be regarded as quasiparticles in the broad
sense of the term. Such defects may be in a complex scalar op-
tical field (e.g., phase vortices [7], phase maxima and minima,
and phase saddles [8]), real vectorial optical fields (e.g., C
lines, disclinations, skyrmions [9]), and tensorial optical fields
(e.g., homotopy-group classification of tensor defects [6]).

The topological defects of optical fields in particular [9],
and classical fields more generally [6], are well known to
exhibit phenomena that have direct analogs to the behavior
of genuine particles. Examples include the obvious parallel
between the fundamental electromagnetic process of pair pro-
duction (e.g., γ → e+ + e−) and the spontaneous formation
of a paired phase vortex and phase antivortex [10], and the
parallel between the decay of unstable particles and the decay
of higher-order phase vortices into a set of lower-order phase
vortices [11] (the “critical point explosions” [12]).

This paper is devoted to defect-line dynamics and topo-
logical reactions in the phase of classical complex scalar
optical fields. Such interacting defects include local max-
ima and minima in the wave-function phase, together with
phase saddles, phase vortices, and phase antivortices. We
approach this topic from the perspective of polynomial wave
functions [9–11,13] generated by determinantal polynomials
of random matrices. This approach is motivated by (i) the
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utility and mathematical simplicity of low-order polynomial
functions as local descriptors of topologically nontrivial fields
[9–11,13,14], (ii) the ensemble of such fields that can be
generated by suitable ensembles of random matrices, and
(iii) the opportunity to explore, at length, a nonstandard
physical application of the eigenvalue dynamics of random
matrices [15], in which individual random matrices are put
into a correspondence with polynomial wave functions, with
a further correspondence being developed between the evo-
lution law for the random-matrix ensemble and the physical
law governing the spatiotemporal evolution of the associated
determinantal wave function.

Random matrices have found several applications in
physics, beginning with Wigner in 1955, who hypothesized
that the eigenvalue statistics of some ensembles of Hermitian
matrices “may reproduce some features of the. . .behavior
of atomic nuclei” [16]. Wigner’s conjecture and preliminary
work was followed up by Dyson, with papers in 1962 [17–20]
that laid the foundation for modern random-matrix theory.
Part of his work (building on that of Wigner) established
fundamental differences between random matrices with real,
complex, and quaternionic entries, and found deep connec-
tions between the symmetry classes of random matrices
and those of various algebraic structures. This is known as
Dyson’s Threefold Way [20].

Another application is quantum chaos, which, broadly
speaking, is the study of quantum systems whose classical
analog exhibits chaotic behavior [21]. Canonical examples
are the Sinai and stadium billiards, as studied in Bohigas
et al. [22]. It has been found [21] that the statistics of these
classically chaotic systems match those of the eigenvalues of
random matrices (the energy levels are strongly correlated
and repel), while the statistics of the classically nonchaotic
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systems are Poissonian (the energy levels are essentially in-
dependent). This has become known as the quantum chaos
conjecture [23], and has enabled the description of quantum
chaotic systems which do not have a classical analog: through
an appeal to universality, such systems are identified as quan-
tum chaotic if their statistics match those of the corresponding
random-matrix ensembles. While the quantum chaos conjec-
ture is well established by statistical data, a detailed theoret-
ical understanding of the connection between the quantum
systems and random matrices is still lacking. A recent work
[23] makes progress in this direction by calculating the form
factor (Fourier transform of the two-point correlation func-
tion) for an Ising model in a periodically kicking transverse
field, showing that it agrees in the two leading orders to the
corresponding random-matrix form factor, that of the circular
orthogonal ensemble.

A particularly important and widely studied class of ran-
dom matrices is the statistical ensemble of N × N matrices of
the form

M =

⎡
⎢⎢⎣

a1,1 + ib1,1 a1,2 + ib1,2 . . . a1,N + ib1,N

a2,1 + ib2,1 a2,2 + ib2,2 . . . a2,N + ib1,N

...
...

. . .
aN,1 + ibN,1 aN,2 + ibN,2 . . . aN,N + ibN,N

⎤
⎥⎥⎦.

(1)

Here, each entry of M is a complex random variable a + ib,
in which the real and imaginary parts are independently and
identically distributed (iid) as Gaussians with mean zero and
variance (2N )−1/2. These matrices are known as Ginibre
matrices [24]. Although eigenvalues can be degenerate in
principle, for Ginibre matrices there is a vanishing probability
of eigenvalues coinciding.

It is well known that the eigenvalues of Hermitian opera-
tors M = M† are strictly real numbers [25]; however, when
the operators are non-Hermitian, then the eigenvalues are
generic complex numbers. In a series of work beginning in
1984 [26,27], it was shown that in the limit of large matrix
dimension, the eigenvalues of independent and identically
distributed (non-Hermitian) matrices are supported only on
the unit disk, centered at the origin, on which the eigenvalues
are uniformly distributed. This has become known as the
“circular law.” The fact that the eigenvalues of non-Hermitian
operators can be nonreal presents many technical problems,
yet several techniques have been developed to deal with these.
One approach is to “Hermitize” the non-Hermitian matrices,
which is the approach used to establish the circular law. The
basic idea of Hermitization is to create a four-dimensional
quaternionic space to perform calculations over C [28–30].
This is analogous to the use of complex variables allowing
one to analytically define the Stieltjes transform for Hermitian
problems [30]. We will discuss further connections to the
theory of quaternions in the present work.

The two-dimensional (complex) eigenvalue distributions of
non-Hermitian operators can be studied as stochastic point
processes, under the category of “determinantal point pro-
cesses”; see Hough et al. [31] for some examples. The joint
probability density function (JPDF) for the (complex) eigen-
values (λj ) of matrices of the form in Eq. (1) is proportional

to [24]

N∏
j=1

e−|λj |2
∏

1�j<k�N

|λj − λk|2, (2)

which has a natural interpretation as a Coulomb gas with loga-
rithmic intraparticle electrostatic repulsion, confined within a
Gaussian potential (see, e.g., Forrester [32]). It is this interpre-
tation that inspires us to introduce dynamical behavior to the
eigenvalue “particle gas.” Note that the vanishing probability
of eigenvalue degeneracy for a Ginibre matrix is evident in
Eq. (2).

The precedent for this approach (in the case of Hermitian
matrices) is the work by Dyson [33,34], pointing out that
Eq. (2) is the stationary solution to the equations of motion of
a Coulomb gas undergoing Brownian motion. The conclusion
is that when the matrix executes Brownian motion (according
to a specified law), the eigenvalues of the matrix also undergo
Brownian motion. This approach has been continued (e.g.,
[35,36]) and, very recently, with investigations into adapting
the results to non-Hermitian ensembles [37].

In contrast to these approaches, we would like to use
the random matrix to generate a distribution of particles,
which then undergo deterministic evolution. On this theme,
the dynamics of eigenvalues in the Hermitian–non-Hermitian
crossover regime of [38,39] (the elliptic ensembles) have been
studied using matrices of the form

H(t ) = 1

2
(M + M†) + t

2
(M − M†), (3)

where M is a Ginibre matrix as in Eq. (1) and t ∈ [0, 1]
is a dimensionless time parameter. The matrix interpolates
between the matrix H(0), which is Hermitian, and H(1) = M,
which has no Hermitivity constraint. By calculating the time
derivative of the diagonalized matrix D = Q−1H(t )Q, a set of
2N (N + 1) coupled first-order differential equations can be
found, which determine the velocities of the eigenvalues [15].
The initial velocities are in the purely imaginary direction,
implying that the first motion of the eigenvalues as they begin
to explore the complex plane is perpendicularly away from the
real line.

Section II interprets the eigenvalues of a random Hamil-
tonian (which depends on a time parameter) as an evolving
system of vortices or like-charge particles. This is in the
context of earlier work along the same lines (see above),
although we discuss how this interpretation can be applied
to a wide class of evolution equations. By defining our wave
function to be the characteristic polynomial of the matrix,
the zeros of the wave function are the eigenvalues λ = x +
iy ∈ C, which thereby map to locations (x, y) in two spatial
dimensions. The characteristic polynomial is a polynomial in
the single variable λ, with complex coefficients, and so in
general it has complex solutions. By interpreting the real and
imaginary parts of the zeros as the coordinates of a vortex,
we create an interacting gas of these zeros. By analyzing
the phase of the resulting wave function, we see that every
zero has positive winding number, and so eigenvalues must
always be interpreted as phase vortices [7,9] (as opposed to
antivortices, which have negative winding number). Addition-
ally, we present some data from simulations using a specific
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Hamiltonian and then present some exact calculations for
small matrix size using this Hamiltonian. While much of this
material is of course well known, it forms a foundation, as
well as establishes notation, for the results that are subse-
quently developed. It can also be seen that this is unrelated
to other determinantal constructions of wave functions, such
as the Slater determinant [40].

In Sec. III, we discuss a different determinantal polyno-
mial expression for the wave function, where half of the
polynomial variables are replaced by the complex conjugate.
This creates a two-variable polynomial with complex coef-
ficients, imposing the condition that half of the zeros are
now antivortices, with the remainder being vortices. This
opens up the possibility of vortex-antivortex annihilation and
creation; indeed, we find through simulation that it is very
easy to generate scenarios with a rich structure of behavior.
While this former point is well known, we use it to establish
connections to the theory of quaternionic random matrix
ensembles. Then in Sec. IV, we generalize the system by
allowing for any number of vortices and antivortices. Defects
in the phase of the relevant wave functions are seen, in
Sec. V, to obey topological rules for creation and annihila-
tion events associated with phase vortices, phase antivortices,
phase saddles, and phase extrema (i.e., phase maxima and
phase minima). Examples are given of defect-line reactions,
which are both richer and more general than those that only
involve vortices and antivortices, including the construction
of defect-line knots and bubbles. The defect-line knots, while
closed when considered only at the level of nodal lines, are
seen to be not closed when considered at the more general
level of defect lines. Similarly, the possible closed-defect-
line structures are richer than those merely associated with
nodal lines. The countably infinite set of all possible defect
complexes is considered in Sec. VI, as generated by the un-
derlying algebraic structure of the possible defect complexes.
These are arranged into multiplets and supermultiplets, which
are somewhat analogous to the corresponding constructs in
the quark model of hadrons. Section VII considers transient
quaternionic solutions that comprise unstable intermediate
states associated with a certain vortex-antivortex annihilation
event and a delayed, but nevertheless associated, subsequent
vortex-antivortex creation. For the system studied, the quater-
nionic states obey an energy-lifetime uncertainty principle.
The role of scattering into quaternionic degrees of freedom
arises naturally, a connection which is considered in some
detail. We then discuss broader implications and avenues for
future work in Sec. VIII. We conclude with Sec. IX.

II. EVOLVING-MATRIX MODEL FOR VORTEX GAS

We consider a direct correspondence between the char-
acteristic polynomial of a square matrix, and an associated
complex wave function that may in turn correspond to a spec-
ified physical system. The continuous temporal evolution of
any one matrix M induces a time-varying determinantal wave
function �, with an associated governing equation for the
latter that may be chosen to coincide with a particular physical
law. We pay particular attention to the vortical character of the
time-dependent wave functions induced by random matrices,
setting up a formalism and establishing a notation that is

subsequently generalized to the more general topic of defect
lines. As we shall see, many aspects of the associated nodal-
line networks, and more generally of the defect-line networks,
may be locally described by considering the evolution of a
2 × 2 matrix and its associated determinantal wave function.

A. Characteristic-polynomial wave function

Consider an N × N complex matrix M, the eigenvalues λj

of which obey the usual characteristic equation

χ (λ) = det(M − �N ) = 0. (4)

Here, �N = λI, I is the identity matrix, and det denotes
the matrix determinant. In general, one has N eigenvalues
λ1, λ2, . . . , λN in the complex plane. These eigenvalues may
be degenerate, but (as discussed in Sec. I for the specific
case of the Ginibre ensemble) if one considers matrix deviates
drawn from an ensemble with specified continuous probability
distribution independently governing each element, the likeli-
hood of degeneracy is infinitesimally small.

By making the identification

λ = x + iy, (5)

where the real numbers x and y are spatial coordinates in
two transverse dimensions, one can consider the characteristic
polynomial χ to be a complex wave function �:

χ (λ = x + iy; t ) = �N,N (x, y; t ). (6)

We have added the time label t above to allow the character-
istic polynomial and the associated wave function to evolve
with time in an as-yet unspecified manner. This label may be
continuous or discrete. The subscripts on �N,w denote that the
wave function originates from an N × N matrix and the wind-
ing number of the wave-function phase is w when traversing
a contour enclosing all zeros, which, in this section, is also
equal to N (we will discuss phase-winding numbers in more
detail below). When using the above wave function to model
a given (2+1)-dimensional physical system, the evolution of
χ (x, y; t ) should be such that �(x, y; t ) evolves in time in a
manner consistent with the relevant physical law governing
�(x, y; t ). We shall return later in the present section to the
choice of temporal evolution law for χ (x, y; t ), but for the
moment we leave this unspecified.

The wave function defined by Eqs. (4) and (6) will be
a polynomial of order N in x and y. While finite-order
polynomials are guaranteed to diverge for large x and y,
there are many contexts in which they have proved to be a
powerful approximation for the local behavior of complex
scalar wave fields obeying a rich variety of evolution equa-
tions [9–11,13,14]. These include, but are not limited to, exact
polynomial solutions to the (2+1)-dimensional Schrödinger
equation, the d’Alembert wave equation, and the wide class
of evolution equations associated with linear shift-invariant
coherent imaging systems [9–11,14,41,42].

There is a close correspondence between choices for the
matrix M(t = 0) from a suitable ensemble of complex ran-
dom matrices, and wave functions describing a random ar-
rangement of vortices over a disk. If each element of the
N × N matrix M is a complex random variable with zero
mean and variance (2N )−1/2, then for N � 1 the eigenvalues
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are uniformly and randomly distributed within the unit disk
in the complex plane (the circular law mentioned in Sec. I).
This corresponds to a characteristic-polynomial wave function
�(x, y; t = 0), within which is embedded a random gas of
like-charge vortices. As mentioned earlier [see Eq. (2)], this
vortex gas may under certain circumstances behave as a
Coulomb gas. Our core focus, however, is on application to
a much broader class of system.

Whatever the structure of M, the associated finite-order
polynomial wave functions can describe vortical structures,
for which the wave-function phase exhibits a screw-type phase
dislocation with integer winding. This has been well studied,
e.g., in the context of finite-order polynomial approximations
to vortical coherent scalar electromagnetic fields [9–11]. The
factorizability of a polynomial of order N in λ = x + iy ∈ C
implies that

�N,N (x, y; t ) =
N∏

j=1

{[x − Re(λj )] + i[y − Im(λj )]}, (7)

which is manifestly vortical in the sense described below.
Recall that typically the random-matrix eigenvalues at

(x, y) = (Re(λ), Im(λ)) will be nondegenerate. Each eigen-
value will then be an isolated zero of the characteristic polyno-
mial. Further, each wave-function zero will be a branch point
for the phase

�(x, y; t ) ≡ arg[�(x, y; t )] (8)

of the associated wave function, with unit phase winding. This
corresponds to the m = 1 case of the more general expression
for admissible phase windings [7,11],

1

2π

∮
�

d� = m, (9)

where � is a simple anticlockwise-traversed smooth closed
contour in the x-y plane and m is the winding number. The
integer m is often called the net topological charge of the
vortex or vortices enclosed within �. See Sec. V for more
discussion of the winding number.

Since a characteristic polynomial is a polynomial in the
complex variable λ = x + iy, the associated wave function
can only support vortices with m � 1 (see Appendix A).
Physical systems such as Bose-Einstein condensates (BECs)
in a sufficiently rapidly rotating trap [43] or Abrikosov vor-
tices in the order-parameter field of a type-II superconductor
[44] naturally form wave functions in which all topological
charges have the same sign and magnitude. One final example
of quantum systems described by wave functions containing
vortices, all of which have the same topological charge, is the
interior of one lobe of an Onsager vortex cluster formed in a
turbulent vortical cold quantum gas [45].

B. Toy model for topology of defect-line collisions

We introduce a simple model for the defect-line topology
of multivortex collisions. While trivial in mathematical form,
it will later be apparent that this model generates topolog-
ical dynamics for a range of phase defects beyond merely
multiple-vortex collisions. However, in the present section,

I

I1

I2

I3
...

S1

S2

S3
...0

t

FIG. 1. Generic scattering scenario for phase-defect collisions.
Time t runs from left to right. For t large and negative, free, incident
phase defects I1, I2, . . . converge with purely radial motion towards
an interaction region I. Within the space-time volume I, for which
the internal lines are not shown, various topological reactions of the
phase defects may occur. After the interaction, when t is large and
positive, one has a series of scattered free phase defects S1, S2, . . .

diverging with purely radial motion away from I.

we restrict our attention to the application of the toy model
to multiple-vortex collisions; see Fig. 1.

The explicit model that we consider is

M(t ) = M0 + tS, (10)

where M0 is a (fixed) random complex Ginibre matrix,

S = diag( s, . . . , s︸ ︷︷ ︸
N
2 copies

,−s, . . . ,−s︸ ︷︷ ︸
N
2 copies

), (11)

with s ∈ C a deformation parameter and t ∈ R a dimen-
sionless time parameter. Despite this rather simple form, we
find that the evolution of the vortex systems exhibits quite
nontrivial behavior. Unless otherwise specified, we restrict
ourselves to the cases where N is even.

To explore the utility of this toy model in more detail,
first note that when M0 = 0, the wave function for M(t ) is
(x + iy − st )N/2(x + iy + st )N/2, corresponding to N/2 vor-
tices at position (−st, 0) and another N/2 vortices at (st, 0);
however, any small perturbation from M0 �= 0 explodes the
degeneracy of these vortices. In that case, for large |t |, the
Ginibre eigenvalue JPDF given by Eq. (2) decomposes into
two noninteracting factors,

N/2∏
j=1

e−|σj |2e−|τj |2
∏

1�j<k�N/2

|σj − σk|2|τj − τk|2, (12)

up to a proportionality factor which depends on t , where
(without loss of generality) σj = λj + ts and τj = λj − ts.
We interpret Eq. (12) as our system splitting into two disjoint
Ginibre eigenvalue distributions for large |t | (where the two
pieces are consequently separated by a large distance)—this
scenario is represented by the right- and left-hand sides of
Fig. 1. Taking the time evolution chronologically, as t in-
creases, the vortices converge towards the (x, y) origin and
enter the interaction region I. Then, as t becomes increasingly
positive, the vortices exit the interaction region and diverge
from the (x, y) origin when t is large and positive. Hence
our association of the determinantal wave function induced by
Eq. (10) with a quasiparticle phase-defect collision problem
(elastic scattering):

v + v + · · · → v + v + · · · , (13)
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where v denotes a vortex. In this context, the matrix M0

may be viewed as perturbing the coalescence of the con-
verging vortex trajectories, introducing nontrivial interaction
dynamics.

We are primarily interested in the topologically distinct
reactions of phase defects in this toy model, in the “black-box”
interaction region I, and hence it is not unphysical to fix
the asymptotic behavior in this toy model in the manner that
has been adopted. Indeed, this choice amounts to continuous
deformation of the space-time trajectories associated with the
phase defects, a process which does not alter their topological
structure (i.e., the topological classification of the defect-
line graph that is generated). Interestingly, as shall be seen
throughout the paper, while the trivial temporal evolution
defined by Eq. (10) is linear in t , the induced defect-line
trajectories exhibit a behavior that is both highly nonlinear and
remarkably rich. All defect-line plots in the remainder of the
paper can be viewed as special cases of possible topological
reactions in the interaction region I of Fig. 1.

C. Time evolution

We now consider time evolution explicitly. We assume
the N × N complex matrix M(t ) to evolve as a continuous
function of time t . The evolution may be deterministic or
stochastic. For deterministic evolution laws, we are partic-
ularly interested in matrices M(t ) for which the associated
polynomial wave function obeys a specified physical law, al-
though the formalism explored here permits arbitrary smooth
evolution laws to govern M(t ). This point will be explored
in further detail later. An example of stochastic evolution for
M(t ) is given by the previously mentioned complex random
matrices whose eigenvalues undergo continuous Brownian
motion in the complex plane [19,37].

We place relatively little emphasis on the particular means
for evolving M(t ) in time since, as already emphasized, we are
principally concerned with topological aspects of the phase of
the induced wave function in 2 + 1 dimensions. As pointed
out by Dirac, these topological aspects of the wave-function
phase arise solely from the continuity and single-valuedness
of the said complex wave functions, independent of the par-
ticular field equation governing their spatiotemporal evolution
[7].

The evolution law governing M(t ) may be viewed as
inducing an associated evolution law for the corresponding
polynomial wave function.

More interestingly, in the context of setting up a cor-
respondence between evolving matrices and evolving wave
functions, a given evolution law for a wave function may be
considered to induce an associated evolution law for M(t ).
Suppose, in this latter context, that one is given a physical law
of evolution for a specified (2+1)-dimensional wave function.
By restricting consideration to partial differential equations
of first order with respect to time, the physical law may be
written as

i
∂�(x, y; t )

dt
= H (x, y; t )�(x, y; t ), (14)

where H (x, y; t ) is the Hamiltonian operator (infinitesimal
generator of time evolution). If the wave function is specified

M0

Ψ ( )t=0

M

Ψ ( )t>0

T

detΛ

( )t>0M

TΨ

detΛ

FIG. 2. Chart outlining the correspondence between evolving
matrices M(t ) (or ensembles thereof) and associated evolving de-
terminantal wave functions (or wave-function ensembles).

at a time t = t0, evolution through a subsequent infinitesimal
time δt > 0 gives

�(x, y; t0 + δt )

= �(x, y; t0) − iδtH (x, y; t0)�(x, y; t0). (15)

One then has the following iterated cycle of steps to
evolve M in time so that the associated characteristic
polynomial obeys Eq. (14) (see Fig. 2): (i) Begin with
the N × N matrix M(t = t0) and determine the associated
wave function �N,N (x, y; t = t0) by applying the operator
det� M = det(M − λI). (ii) Use the Hamiltonian operator
to determine �N,N (x, y; t = t0 + δt ), using a suitable finite-
difference scheme such as that given above or more sophis-
ticated schemes such as the Cayley form [46]. (iii) Solve
the updated characteristic equation �N,N (x, y; t = t0 + δt ) =
0 for all eigenvalues of the as-yet-unknown N × N matrix
M(t = t0 + δt ). (iv) Choose the updated matrix M(t = t0 +
δt ) to be any member of the class of matrices that has the
desired eigenvalues at t = t0 + δt , such that each element of
the updated matrix differs at most by a term of order δt from
the corresponding matrix element at time t = t0.

Typically, the class of matrices in (iv) will have a continu-
ous infinity of members at each t , and so there is no inverse
of det� (hence the dashed vertical arrows in Fig. 2). One
may then apply any convenient auxiliary condition to render
the particular choice of updated matrix to be unique. The
freedom in the choice of auxiliary condition, corresponding
to the class of matrices which generates the same eigenvalues,
is somewhat analogous to gauge freedom.

The above is summarized via the chart in Fig. 2. The upper
row corresponds to the evolving matrix field M(t ), with the
lower row corresponding to the associated determinantal wave
function �(x, y; t ). Here, M0 ≡ M(t = 0) denotes the initial
matrix, which has time-evolution operator TM, such that

M(t ) = TM M0 = e−itHM M0. (16)

In Eq. (16), we have used the matrix exponential and HM
is some matrix operator. The wave function �(x, y; t = 0) ≡
�(t = 0) corresponding to M0 is evolved in time via

�(t ) = T��(t = 0) = e−itH �(t = 0), (17)

where H is given by Eq. (14) (to first order in t) and T� is the
induced operator,

T� = det� TM det−1
� , (18)

where we again stress that det−1
� is the operation of mapping a

monic polynomial (see below Eq. (22)) onto any matrix in the
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equivalence class of matrices that yield the same characteristic
polynomial. (This is not a bijective operation and so, strictly
speaking, there is no inverse; however, we would like to avoid
the distracting complications of defining maps on equivalence
classes.) There are many ways to define this operator, and we
will use some specific examples, but at an ensemble level
a general way to create a random matrix having a specific
set of eigenvalues is via conjugation. If {λ1, . . . , λN } are the
(complex) zeros of a polynomial wave function �, then let
D = diag(λ1, . . . , λN ) and let Q be an N × N random matrix
(perhaps Ginibre or unitary, as long as the inverse exists).
Then define

det−1
� D = QDQ−1. (19)

The determinantal formalism maps matrices to wave func-
tions (downward-pointing arrows in Fig. 2), with the cor-
responding “inverse” operation denoted by upward-pointing
arrows. Both upward- and downward-pointing arrows, which
correspond to a change of representation, have the previously
mentioned gaugelike freedom. The equation of motion corre-
sponding to the top row of the chart is the matrix-evolution
law in Eq. (16), with the corresponding wave-function evo-
lution law given by Eq. (17). If one wishes to work with
statistical mixtures rather than pure states, each matrix M
and associated wave function � can be assigned a real non-
negative statistical weight, with each member of the ensemble
then being evolved in the manner described above.

When a given matrix is evolved through time, the
associated eigenvalues (vortex cores) in the characteristic
polynomial of the matrix (the wave function induced by the
matrix) will in general trace out a complex nodal-line network
in space-time. An indication of the level of complexity that is
possible is given by the fractal nodal-line networks associated
with visible-light vortical speckle fields [47] and the tangled
nodal-line networks associated with turbulent quantum gases
[48].

While the nodal-line network may be rather complicated, it
is natural to consider a local analysis of topological reactions
exhibited by a small number of nodal lines. Indeed, many
two-vortex topological reactions (and topological reactions
involving phase maxima, phase minima, and phase saddle
points; see below) may be locally described by a 2 × 2 matrix.
Hence the significant attention paid, in this paper, to the topo-
logical dynamics in the nodal-line evolution (and, more gener-
ally, the defect-line evolution) associated with characteristic-
polynomial wave functions induced by a 2 × 2 matrix.

For a 2 × 2 matrix

M0 =
[
a0 b0

c0 d0

]
, a0, b0, c0, d0 ∈ C, (20)

at time t = t0, the characteristic polynomial gives

χ (λ; t0) = λ2 − (a0 + d0)λ + a0d0 − b0c0, (21)

which we then evolve in time to some new polynomial,

χ (λ; t0 + δt ) = λ2 − k1λ + k2. (22)

Note that the determinantal nature of this polynomial forces it
to be monic, that is, it forces the coefficient of λ2 to be unity.
This may be viewed as permitting a time-varying normaliza-
tion in the induced wave functions χ , which can be accounted

for in the usual way, e.g., by calculating expectation values
of operators Â via 〈χ |Âχ〉/〈χ |χ〉, the integration being over
a specified finite-volume region since finite-order polynomial
wave functions are not square integrable. For this reason, for
the remainder of the paper we shall work with non-normalized
wave functions.

To construct the matrix M1 at time t0 + δt , we solve the
pair of equations

k1 = a1 + d1, k2 = a1d1 − b1c1. (23)

We can choose d1 = d0 ± const · δt and c1 = c0 ± const · δt

(these choices then fix the other parameters a1, b1), which
gives us a continuous set of possible matrices M1, each of
which is no more than O(δt ) away from M0 in some suitable
metric.

As a simple example of this means for evolving a 2 × 2
matrix so as to conform with a specified Hamiltonian, con-
sider

T� = e−itH , H = ∂

∂x
+ ∂

∂y
. (24)

Then,

T��(0) = �(t ), (25)

and, for the degree-two polynomial, we have (to first order
in t)

T��(0) =
(

1 − it
∂

∂x
− it

∂

∂y

)
[λ2 − (a + d )λ + (ad − bc)]

(26)

= λ2 − [a + d − 2t (1 − i)]λ

+ (ab − bc) − t (1 − i)(a + d ). (27)

This corresponds to (up to leading order in t)

M(t ) = TMM0, (28)

with

TMM = M − (1 − i)

[
t 0
0 t

]
. (29)

Conversely, if we assume the simple matrix evolution of
Eq. (10), with s = 1, then a corresponding operator on the
wave function is given by

T�� = e−itH �, H = i(2d0 − [λ]), (30)

where d0 is the lower right element of the matrix M0 and [xk]
is the operator that returns the coefficient of xk .

D. Simulations

As a first numerical example, we generate a random matrix
M0 as in Eq. (1) with N = 10 and then evolve in t using the
toy Hamiltonian given by Eq. (10), with s = 1 and 0 � t � 1.
Recall that for these Ginibre matrices, there is a vanishing
probability of eigenvalue degeneracy, so the wave function
�10,10(x, y; t ) of Eq. (6) will have 10 isolated zeros for
almost all t . These must all be vortices of the same helicity
[winding number, which is defined in Eq. (9)]. Figure 3 plots
the phase �10,10(x, y; 0) = arg[�10,10(x, y; 0)] of the initial
polynomial wave function, with t = 0. The vortex cores are
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FIG. 3. Phase of �10,10(x, y; 0) for a random 10 × 10 matrix as
in Eq. (1). All zeros—which in this case are eigenvalues of M—are
vortices and are marked as blue dots. In this and all subsequent phase
plots, phase � is given modulo 2π , with a linear grayscale between
black (� mod 2π = −π ) and white (� mod 2π = π ).

labeled with a blue dot, each serving as a branch point for
the Riemann sheets of the multivalued phase. Note that while
the branch-point locations have the physical meaning that they
correspond to vortex cores, the branch-line locations have
no physical meaning. Indeed, the branch lines move if one
alters the wave function via a meaningless global phase factor
corresponding to multiplication by any complex constant with
modulus unity.

Evolving the system through time t ∈ [0, 1] [according to
Eq. (10)], we obtain the (2+1)-dimensional representation of
the trajectories of the zeros (eigenvalues) of the polynomial
wave function; see Fig. 4. The topological conservation laws
governing phase vortices and phase antivortices are seen to
apply: (i) The total topological charge (total winding number)
is conserved over time, and (ii) the nodal lines (wave-function
zeros, eigenvalue trajectories) threading the vortex cores are
continuous one-dimensional manifolds that may neither begin
nor end at any point within the volume [50]. Recall the
observation of Dirac [7], that the conservation of topological
charge for the phase of the evolving polynomial wave function
is independent of the particular equation of motion governing
the spatiotemporal evolution of the wave function. We will
discuss these topological aspects of phase defects in more
depth in Sec. V.

E. Special cases of characteristic equation

As emphasized by several workers, a particular utility of
finite-order polynomial wave functions is that they give a
convenient local description of a wide variety of complex
fields [9,11]. While the order-N polynomial wave functions
induced by N × N matrices may indeed provide such a local
description, leading to space-time networks of N nodal lines
such as that in Fig. 4, one may seek a more localized analysis

FIG. 4. Trajectories of the vortices of �10,10(x, y; t ) from Fig. 3.
Figure 3 is the bottom layer of this diagram (t = 0), with additional
phase maps corresponding to t = 0.5 and t = 1 also shown. Al-
though there are some close collisions (highlighted by the dashed
green circle), there are no annihilation events, consistent with the
vanishing probability of eigenvalue degeneracy (instability of vor-
tices with m > 1). See Supplemental Material [49] for a video of
this system.

still, in which only a small number of nodal lines feature. In
particular, one may be inspired by an evident analogy with
the “elementary processes” of quantum electrodynamics and
its generalizations, in which Feynman diagrams of arbitrary
complexity may be assembled by constructing all topologi-
cally distinct concatenations of a relatively small number of
processes (e.g., the electron-photon vertex, the quark-gluon
vertices, etc.) [51]. Similarly, we may examine the space-time
nodal-line networks such as that given in Fig. 4—together
with the more complicated networks that shall arise later in the
paper—and seek to describe the corresponding “elementary
topological processes” by considering the temporal evolution
of characteristic-polynomial wave functions of very low or-
der. While an N = 1 characteristic-polynomial wave function
would suffice to locally describe the trivial topological dy-
namics evident in Fig. 4, we shall see that the N = 2 and N =
3 cases suffice to cover many of the topological dynamics
considered in the present paper. This motivates consideration
of exact formulas for the nodal-line dynamics corresponding
to the N = 2 and N = 3 cases, a topic to which we now turn.

We consider the Hamiltonian in M(t ) in Eq. (10), but em-
phasize that the logic below may be applied more generally.
Expand each eigenvalue λj to first order in t :

λj (t ) = λj,0 + λj,1t + O(t2). (31)

Hence the eigenvalue velocity at position λj,0, together with
the velocity of the associated vortex core in the characteristic-
polynomial wave function, is given by λj,1. We now calculate
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this velocity for the cases N = 2 and N = 3, before general-
izing to the case of arbitrary N � 1.

1. Vortex velocity for N = 2

Consider the 2 × 2 matrix

M0 =
[
a b

c d

]
, (32)

where each of the entries a, b, c, d is a random complex
number. The eigenvalues of M0 are

λ±,0 = a + d ±
√

(a − d )2 + 4bc

2
. (33)

Now we add the perturbing matrix

S =
[
s 0
0 −s

]
, (34)

and calculate the eigenvalues of M = M0 + tS, to give

λ±,1 = ± d − a√
(a − d )2 + 4bc

s (35)

= ± d − a

2λ±,0 − a − d
s. (36)

2. Vortex velocity for N = 3

Define the fixed matrix

M0 =
⎡
⎣a b c

d e f

g h k

⎤
⎦, (37)

where, again, each of the entries is a random complex number.
For the odd-sized matrices, we need to modify the definition
in Eq. (10) of the deformation matrix, taking the following as
the definition:

S =
⎡
⎣s 0 0

0 0 0
0 0 −s

⎤
⎦. (38)

In principle, we can write down the exact solution for cubic
equations and so there are exact expressions for the eigenval-
ues of M0 [52, Sec. 1.11] (these expressions date back to at
least Cardano in 1545); however, for our purposes, the leading
order in t will suffice. Using Eq. (31), we obtain

λj,1 = [ae + f h − ek − bd + (k − a)λj,0]s

bd − ae + cg + f h − ak − ek + 2λj,0(a + e + k) − 3λ2
j,0

, (39)

for j = 1, 2, 3.

3. Vortex velocity for arbitrary N

Now consider vortex (eigenvalue) velocity for arbitrary
N , focusing on the velocity of a particular eigenvalue, λj (t ).
The time-dependent characteristic polynomial can always be
factored as (cf. Eq. (2) in Groszek et al. [53])

χ (λ; t ) = [λj (t ) − λ]χ̃j (λ; t ). (40)

The above expression defines the modulating function (en-
velope) χ̃j (λ; t ), which (for a polynomial) we can write
explicitly as

χ̃j (λ; t ) =
∏
k �=j

[λk (t ) − λ]. (41)

Differentiating with respect to t gives χ̇ (λ; t ):

M(t ) −→ χ (t ) −→ χ̇ (t ). (42)

Note that Jacobi’s formula for the derivative of a determinant
may be used to evaluate χ̇ (λ; t ) as

χ̇ (λ; t ) = tr{Ṁ(t )adj[M(t ) − λI]}, (43)

where tr denotes matrix trace and adj denotes the adjugate ma-
trix (i.e., the transpose of the cofactor matrix). Regardless of
how one chooses to calculate χ̇ (λ; t ), differentiating Eq. (40)
with respect to time gives

χ̇ (λ; t ) = λ̇j (t )χ̃j (λ; t ) + [λj (t ) − λ] ˙̃χj (λ; t ) (44)

[if χ is polynomial, then the quantities in Eq. (44) are mani-
festly differentiable].

Now consider a (time-dependent) small open disk �j (t ) ⊂
R2 around the eigenvalue λj (t ), such that there is no other
eigenvalue λk in �j (t ). This implies that χ̃j (z; t ) is nonvan-
ishing for all z ∈ �j (t ). Note that for Ginibre matrices, such
an open disk almost surely exists since one can assume the
zeros of the characteristic polynomial to be isolated, up to
an irrelevant set of measure zero. Evaluate Eq. (44) at the
vortex core λ = x + iy = λj (t ) ∈ �j (t ), thereby eliminating
the second term of this equation. Since χ̃j (λ; t ) �= 0 on �j (t ),
we can divide through by this quantity to give the eigenvalue
velocity (vortex velocity):

λj,1 =
[

χ̇ (λ; t )

χ̃j (λ; t )

]
λ=λj (t )

=
(

tr{Ṁ(t )adj[M(t ) − λI]}
det[M(t ) − λI]/[λj (t ) − λ]

)∣∣∣∣
λ=λj (t )

. (45)

The above calculation harmonizes with the idea that vor-
tices and antivortices may be considered as quasiparticles—
e.g., it is a direct analog of the result in Eq. (9) of Groszek
et al. [53], for a point-vortex-model velocity associated with
screw-type phase defects in solutions to the Gross-Pitaevskii
equation. Our pointlike objects in two dimensions (2D) have
space-time trajectories such as that in Fig. 4. The associated
force that a given vortex experiences at a given instant of time
will then be proportional to the derivative of the eigenvalue
velocity with respect to time; this eigenvalue acceleration may
in turn be associated with a “field” with which the “particle”
locally interacts. It is natural that such a particlelike quality to
the vortex trajectories should emerge as a simple consequence
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of the formalism outlined in the present paper since such a
connection between vortices and associated quasiparticles is
well known in the literature on vortical wave functions; see,
e.g., Groszek et al. [53], and references therein.

III. EVOLVING-MATRIX MODEL FOR
VORTEX-ANTIVORTEX GAS

Notwithstanding the previously mentioned list of phys-
ical systems whose wave functions admit vortices of only
one sign, there is a much wider class of vortical systems
where windings of both signs are present. Examples in-
clude (2+1)-dimensional coherent optical speckle beams [9],
chaotic wave-packet evolution in a Buminovich stadium [54],
paraxial propagation of coherent x rays scattered by spatially
random media [55], and turbulent Bose-Einstein condensates
[48]. This prompts us to generalize our formalism to this
broader class of matrix-induced polynomial wave functions.
The present section therefore considers polynomial wave
functions with an equal number of vortices and antivortices,
with the subsequent section further generalizing to the case
where the number of vortices and antivortices is not equal.

A. Generalized characteristic-polynomial wave functions

We incorporate antivortices by forming polynomials in a
complex variable and its complex conjugate [8,12,56],

N/2∏
j=1

(λ − βj )(λ∗ − αj ). (46)

The associated polynomial wave function

N/2∏
j=1

{[x − Re(βj )] + i[y − Im(βj )]}

×{[x − Re(αj )] − i[y + Im(αj )]} (47)

will have N/2 vortices at positions [Re(βj ), Im(βj )] and N/2
antivortices at positions [Re(αk ),− Im(αk )].

In analogy with Eq. (4), we would like a determinantal
representation of this wave function and so we define

χ (λ, λ∗; t ) = det(M(t ) − �N/2), (48)

where M is an even-dimensional complex Ginibre matrix as
in Eq. (1) and

�N/2 = I ⊗
[
λ 0
0 λ∗

]
. (49)

We then define the wave function by

�N,0(x, y; t ) = χ (λ, λ∗; t ), (50)

noting that there is now a winding number of zero when
tracing any closed contour that contains all zeros of Eq. (50).
This determinant representation is reminiscent of quaternionic
structures that exist in random matrix theory—see details
regarding quaternionic matrix ensembles in Appendix B.
Quaternionic ensembles, also termed “symplectic ensembles,”
are one of the three classic universality classes identified by
Dyson in his seminal sequence of papers from 1962 [17–20].

From Appendix B, we see that �N/2 is a matrix whose
diagonal 2 × 2 blocks are of the form in Eq. (B2), with
α = λ ∈ C, β = 0. Hence we can view the function χ in
Eq. (48) as mapping between planes that are embedded in
four-dimensional quaternionic space, and each of these is
isomorphic to the complex plane.

Interestingly, there is not always N zeros (x, y) ∈ R2 of
Eq. (50). In Sec. VII, we will explicitly make use of the
quaternion embedding to access the solutions in the case that
these zeros do not exist. As shall be seen, this potential lack
of a full set of solutions leads naturally to vortex-antivortex
pair-creation and pair-annihilation processes, which further
leads us to consideration of an additional topological network
associated with maxima, minima, and saddles in the phase
of the generalized characteristic-polynomial wave function.
This additional network has its own topological conservation
laws and interacts with the previously considered nodal-line
network in a well-defined manner.

A point we would like to stress is that the wave-function
zeros in this section (and the following section) are no longer
eigenvalues, as Eq. (48) is no longer the characteristic poly-
nomial of the matrix.

B. Simulations

Here we use the same matrix as that used to generate
Figs. 3 and 4, together with the same matrix evolution law
as in Eq. (10). However, we now use the wave function
�10,0(x, y; t ) from Eq. (50). We see in Fig. 5 that at t =
0.7485, there are six solutions, three of which are vortices
and three of which are antivortices. Each solution is either
a vortical or antivortical branch point for the multivalued
phase of the determinantal polynomial wave function, with
half having winding number m = 1 and half having winding
number m = −1. The absence of a net phase winding is

FIG. 5. Plot of �10,0(x, y; 0.7485) = arg[�10,0(x, y; 0.7485)],
where M(t ) is from Eq. (10) and the matrix M0 is the same
as that used in Figs. 3 and 4. The blue dots are the zeros of
�10,0(x, y; 0.7485).
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FIG. 6. Trajectories of the zeros of �10,0(x, y; t ) from Fig. 5. See
Supplemental Material [49] for a video of this system.

evident since no branch lines cross the edge of the sampled
domain. Once again, the specific locations of the branch lines
themselves have no physical meaning.

When the nodal lines threading the vortex cores of
�10,0(x, y; t ) are plotted in the three-dimensional space-time
volume, Fig. 6 results. Note that Fig. 5 is the middle layer
of this diagram. At t = 0, there is one vortex-antivortex
pair (dipole), and the vortex merely moves transversely as
t increases from 0 to 1.5. The antivortex at t = 0 traces
out a hairpin structure in space-time, corresponding to a
vortex-antivortex pair being created, with the created vortex
annihilating the antivortex that was initially present, leaving
the created antivortex to evolve until t = 1.5. There is also
a closed nodal-line loop, corresponding to several events of
spontaneous creation and subsequent annihilation of vortex-
antivortex pairs. A maximum of three vortices and three
antivortices is seen at any one time in this simulation, of which
the diagram in Fig. 5 is an example. Note that the winding
number w = 0 is invariant over time.

IV. DETERMINANTAL MODEL FOR AN ARBITRARY
NUMBER OF VORTICES AND ANTIVORTICES

Having introduced the possibility of antivortices, we gen-
eralize the wave functions in Eqs. (6) and (50) further to admit
an arbitrary number of vortices and antivortices. To this end,
we define

�N,2ξ−N (x, y; t ) = χ (λ, λ∗; t ) = det(M − �ξ ), (51)

where

�ξ = diag(λ, . . . , λ︸ ︷︷ ︸
ξ copies

, λ∗, . . . , λ∗︸ ︷︷ ︸
N − ξ copies

), (52)

and so ξ is the number of vortices and the winding number
is 2ξ − N , which is the difference between the number of
vortices and antivortices.

In the case that there are N zeros, {(xj , yj ) ∈ R2}j=1,...,N ,
then

χ (λ, λ∗; t ) =
ξ∏

j=1

(λ − βj )
N−ξ∏
k=1

(λ∗ − αk ), (53)

with associated polynomial wave function

�N,2ξ−N (x, y; t ) =
ξ∏

j=1

{[x − Re(βj )] + i[y − Im(βj )]}

×
N−ξ∏
k=1

{[x − Re(αk )] − i[y + Im(αk )]},

(54)

and so we interpret �N,2ξ−N as a wave function with (up
to) ξ vortices and N − ξ antivortices [8,12,56]. The cases in
Eqs. (7) and (48) are then given by the specializations ξ = N

and ξ = N/2, respectively. [We note that when ξ = N/2,
an equal number of elementary row and column swaps is
required to convert the matrix in Eq. (51) to that in Eq. (48),
and so the determinant is preserved.]

Simulations

We again use the same matrix that was used to generate the
simulations in Figs. 3 and 4. We calculate the wave function
via the determinant in Eq. (51), with ξ = 7, and M(t ) given
by Eq. (10). This gives Figs. 7 and 8.

FIG. 7. Plot of �10,4(x, y; 0.499) = arg[�10,4(x, y; 0.499)] from
Eq. (51) with ξ = 7, where M(t ) is from Eq. (10) and the matrix
M0 is the same as that used in Figs. 3 and 4. At this time, there are
four zeros (the blue dots), all of which are vortices. The kink in the
line of phase discontinuity in the top left is indicative of a vortex-
antivortex creation event happening in the near future. A local phase
maximum can be seen nearby, which will become another vortex-
antivortex pair.
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FIG. 8. Trajectories of the zeros of �10,4(x, y; t ) from Fig. 7.
Note that Fig. 7 is the middle layer of this diagram. (The figure has
been rotated with respect to the orientation of Fig. 7 to make the
hairpin structures clear.) Notice that there are four vortices and no
antivortices at t = 0, then two vortex-antivortex pairs are created at
t ≈ 0.6, which preserves the total winding (or topological charge) of
+4. See Supplemental Material [49] for a video of this system.

V. TOPOLOGICAL FEATURES OF
DEFECT-LINE INTERACTIONS

If vortices of both signs can be supported, there are
topological conservation laws associated with the vortices,
antivortices, maxima, minima, and saddle points of the phase
of the determinantal polynomial and its associated polynomial
wave function [41,57]. In our (2+1)-dimensional framework,
all of the previously mentioned topological defects are zero
dimensional, tracing out one-dimensional defect lines in 2 + 1
dimensions. We henceforth use the term defect lines to refer
collectively to the 1D trajectories in 2 + 1 dimensions, of the
phase vortices, antivortices, maxima, minima, and saddles.
The term nodal lines refers to the subset of the defect lines,
associated with vortices and antivortices (which are the points
at which the wave function vanishes). We do not consider
domain walls, namely, jumps of π radians in the phase of the
wave function in a given xy plane of constant t , since these
can be viewed as an unstable special case of the 1D nodal line
associated with vortices and antivortices, embedded in 2 + 1
dimensions, having part of the said nodal line lying within the
particular xy plane.

A. Topological conservation laws

We follow Dirac [7]—who considered the special case of
defect lines, namely, nodal lines, associated with vortices and
antivortices—in assuming only the continuity in spatial and
temporal variables of the polynomial wave function, together

with its single valuedness. We also follow Maxwell [58] who,
in a seminal paper contributing to the development of what
is now known as Morse theory [59], considered the comple-
mentary case of maxima, minima, and saddle points. Based
on the assumption of a single-valued continuous complex
polynomial wave function, one can obtain the following topo-
logical conservation laws, irrespective of the particular laws
governing the spatiotemporal evolution of the wave function:

(i) Vortices and antivortices may only be created in m =
±1 pairs, with total winding number always conserved as t

evolves, and only m = ±1 dislocations [i.e., a unit winding
number, as defined in Eq. (9)] being topologically stable.
In the (2+1)-dimensional space with coordinates (x, y, t ),
the associated vortex cores and antivortex cores trace out
continuous 1D nodal lines that may neither begin nor end at
any finite (x, y, t ) coordinate, and hence they may either form
closed (and possibly knotted) loops or extend to spatial and/or
temporal infinity [7,12].

(ii) The system of 1D nodal lines (where the wave function
vanishes), as described above, has a complement in the system
of continuous 1D lines associated with saddle points, maxima,
and minima in the phase of the complex wave function
[41,57]. These defect lines, which are not nodal lines (i.e.,
the wave function does not vanish at these points), may also
only form closed continuous loops or extend to spatial and/or
temporal infinity. The topological properties of this network
of non-nodal defect lines may be determined by applying
Morse theory [59] to the manifold of xyt points corresponding
to all permissible (x, y, ts ) coordinates, for some fixed time
ts , with the points corresponding to (vortical) nodal lines
being removed. These defect lines have the property that if
a saddle line reverses direction in t , it will be transformed
to either a local phase maximum or a local phase minimum
line. Similarly, if a local phase maximum or a local phase
minimum line reverses direction in t , it will be transformed to
a saddle line [58,60]. Note that these saddle-extrema creation
and annihilation events can also be seen analytically—we
discuss a canonical example in Appendix C.

(iii) The previously mentioned two classes of defect line—
namely, the nodal lines associated with phase vortices and
phase antivortices, and the defect lines associated with phase
maxima, phase minima, and phase saddles—are coupled to
one another [12,41,57]. This coupling occurs due to the fact
that at (x, y, t ) points where a nodal line reverses direction,
a maximum-minimum–saddle defect line must pass through
the same point. If the nodal line and the non-nodal defect line,
respectively, occupy the future and the past of the vertex, the
defect line will be a maximum-minimum pair. Any deforma-
tion of the temporal sense of the non-nodal defect line, e.g.,
by reversing the temporal sense of either or both defect lines
emanating from the point, transforms the maxima and minima
(i.e., phase extrema) into saddles.

In the above topological conservation laws, reference has
been made to vortices, antivortices, local maxima and minima,
and saddle points. As previously discussed, both vortices and
antivortices correspond to topological defects in the phase of
the complex wave function, associated with a nonvanishing
value for m in Eq. (9). However, the value of m is zero
for the phase maximum, the phase minimum, and the saddle
point; this is a direct consequence of the fact that the phase
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is smooth, continuous, and single valued at phase maxima,
phase minima, and phase saddles. The topological character
of these three nonvortical defects is associated with a second
measure [i.e., in addition to that in Eq. (9)], associated with a
nonvanishing value for the integer n defined by [41,57]

1

2π

∮
�

dθ = n. (55)

Here, for any fixed t , θ (x, y; t ) is the angle that ∇�(x, y; t )
makes with respect to the positive-x axis, with the gradient
operator ∇ being with respect to the x and y coordinates;
� is a small simple smooth closed curve in the xy plane
which encloses a (critical) xy point at which ∇�(x, y; t )
vanishes. We then have (m, n) = (1, 1) for a phase vortex,
(m, n) = (−1, 1) for a phase antivortex, (m, n) = (0, 1) for
both phase maxima and phase minima, and (m, n) = (0,−1)
for phase saddles [57]. Points where (m, n) �= (0, 0) can be
used to classify all phase defects considered in this paper;
the ambiguity between phase maxima and phase minima is
resolvable via the sign of the phase Laplacian at xy points
where (m, n) = (0, 1). Exceptions to these rules correspond
to a set with measure zero and will not be considered here.

The nomenclature for the quantities m and n is not univer-
sally agreed upon. We will use the term topological charge
for m and the term topological index for n, which is the
convention used, e.g., in Schouten [61].

The consequence of the discussion so far is that the two
topological quantities [41],

w =
∑

m, (topological charge) (56)

χ =
∑

n, (topological index) (57)

are both conserved by continuous deformation of the phase
surface. The topological conservation laws (i)–(iii) listed
above are consequences of the invariance of w and χ , both
globally and locally at any interaction. As an important aside,
we denote the sum over the topological indices by χ since,
by the Poincaré-Hopf theorem [62], this sum is equal to the
Euler characteristic for the manifold, which is a conserved
topological quantity.

B. Primitive vertices in defect-line graphs

These observations lead immediately to the question of
primitive vertices, namely, the idea that all topological re-
actions of defect lines are ultimately reducible to reactions
involving a small number of such lines. Conservation of
both total topological charge w and total topological index
χ , at a given space-time vertex where multiple defect lines
converge, implies that one can classify the set of all possible
vertices into a set of equivalence classes, here termed “(w,χ )
events.” There is an infinite hierarchy of such topological
reactions. Figure 9 shows the processes corresponding to
w,χ ∈ {−2,−1, 0, 1, 2}. This figure adopts the defect-line
coloring used throughout the paper, but adds an arrow to
the nodal-line trajectories to distinguish a vortex (blue or
black arrow pointing from past to future) from an antivortex
(blue or black arrow pointing from future to past). Note the
crossing symmetries evident in this figure, which can be used

FIG. 9. All minimal interactions with w, χ ∈ {−2, −1, 0, 1, 2}
between the topological features of arg(�) = �. The time arrow runs
from bottom to top. The colors match those of the nodal-line figures:
vortices and antivortices are marked with arrows in blue (black),
saddles are magenta (gray) lines, and maxima and minima (extrema)
are yellow (light gray) lines.

to deform certain entries into one another: e.g., reversing the
time sense in which a nodal line evolves converts vortices
into antivortices, and vice versa, and reversing the time sense
in which a saddle moves converts it into a maximum or a
minimum, and vice versa.

If one is considering a given space-time volume and its
associated defect-line network, for an ensemble of random
matrices at t = 0 and a specified evolution law, then ensemble
averaging will in general induce a statistical weight (prob-
ability of occurrence) for each of the minimal interactions
in Fig. 9. We conjecture that this probability of occurrence
will typically decrease with increasing magnitude of the topo-
logical charge and topological index. This point will not be
further explored in the present paper, but we do note here that
particular processes will be more likely to occur than others,
consistent with the fact that some but not all were observed in
the numerical experiments presented here. We also note that
this table of point interactions could be augmented by a table
of possible defect-line topologies, although with the exception
of the trefoil nodal-line knot (which we discuss below), the
question of defect-line knots will not be further considered
here.

C. Some defect-line topological reactions

We can study the interactions in Fig. 9 using the matrix
model given by Eq. (10). For example, using a single 4 × 4
matrix for M0, we plot the zeros of �4,4(x, y; t ) in Fig. 10,
�4,0 in Fig. 11, and �4,3 in Fig. 12. In the same figures, we
have also plotted the zeros of ∇�, the gradient of the phase
of the respective wave functions [63]. The magenta (gray)
and yellow (light gray) lines in these figures represent all
possible zeros of ∇�: maxima (yellow), minima (yellow), and
saddle points (magenta). We clearly see that vortex-antivortex
creation and annihilation events are mediated by interactions
with zeros of the phase gradient.

In Fig. 11(a), we find significant complexity and identify
three different interactions that were tabulated in Fig. 9:
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FIG. 10. The blue (black) lines are the eigenvalues of a 4 × 4
matrix [i.e., the zeros of �4,4(x, y; t )], which are seen to be all
vortices. The magenta (gray) lines are the zeros of ∇�, all of which
are saddles.

(a) w = 0, χ = 0: one instance of vortex-antivortex–
saddle creation and then one instance of the reverse interaction
(annihilation);

(b) w = 0, χ = 0: three instances of extremum-saddle cre-
ation and one annihilation;

(c) w = 0, χ = 2: one instance of extremum annihilation
leading to vortex-antivortex creation.

Figure 11(a) is represented as a planar graph in Fig. 11(b).
There are only four defect lines: AA′, BB ′, CC ′, and DD′.
The (antivortical) nodal line AA′ passing through point 1
experiences no topological reaction. The second initial vortex
passing through point 2 has a much more complex evolution.
An extremum-saddle pair is created at point 3 [60], with the
saddle persisting through to point 4. Two saddles together with
a vortex-antivortex pair are created at point 5; one of these
saddles annihilates (at 6) with the extremum created at 3; the
vortex created at 5 persists until point 7; the other saddle plus
the antivortex (from point 5) then annihilate (at 8) both the
initial vortex (that passed through 2) together with the saddle
arising from the saddle-extremum creation at point 9. The
extremum created at 9 meets with another extremum arising
from the extremum-saddle creation event at 10, to generate a
vortex-antivortex pair at 11. So the net topological reaction for
the vortex at point 2 is

v → v + v + v∗ + s + s, (58)

which is identical to the reaction 0 → v + v∗ + s + s in Nye
et al. [41] if a v is canceled from both sides. Here, v denotes a
vortex and v∗ denotes an antivortex.

Figure 10 appears to have no interactions, and so we
may suspect that systems with only one species of particle
(eigenvalues or vortices in this case) have no interactions.

t

A

A’ B B’

C

C’ D’D

•1

•8

•
9

•
10

•
11

•
7

•2

•
4

•
3

•6

•
5

(a)

(b)

FIG. 11. (a) Same matrix as Fig. 10, but with �4,0(x, y; t ),
giving vortex-antivortex pairs. Blue (black) lines are the vortices-
antivortices (zeros of �), magenta (gray) lines are the saddles of
�, and yellow (light gray) lines are the maxima and minima of
�. See Supplemental Material [49] for a video of this system. (b)
Representation of the same topological reaction using a planar graph.

However, in light of our table of interactions, we reconsider
Fig. 4 above, where the highlighted eigenvalue interactions
are perhaps examples of (w,χ ) = (2, 2) in Fig. 9. The plot in
Fig. 12 does not exhibit any new interactions, but is clearly
seen to contain features of both the one-species and two-
species systems.

D. Defect-line knots

Although we have not yet found a realization using the
determinantal formalism, we can identify another interaction
in Fig. 9 using the wave function given by [14, Eq. (17)],
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FIG. 12. Same matrix as Fig. 10, but with ξ = 3. Blue (black)
lines are the vortices and antivortices (zeros of �), magenta (gray)
lines are the saddles of �, and yellow (light gray) lines are the
maxima and minima of �.

which we have plotted in Fig. 13. As pointed out in that
paper, which plotted only the nodal lines, the nodal lines
of zeros of the wave function form a trefoil knot in (2+1)-
dimensional space (cf. the earlier paper by Leach et al. [64],

FIG. 13. Defect-line knot, plotting the defect lines of the wave
function given in [14, Eq. (17)]. The closed blue (black) nodal line,
which forms a trefoil knot, traces the zeros of the wave function
(which are the same points as plotted in Fig. 5 of [14]), the magenta
(gray) points are the saddles of the phase, and the yellow (light gray)
points are maxima and minima of the phase.

and references therein). However, we can now see additional
structure associated with a “scaffolding” of phase extrema
and saddles. We see that at each of the vortex-antivortex
creation and annihilation events we obtain the interaction with
(w,χ ) = (0, 1) of Fig. 9: the collision of a vortex-antivortex
pair and a phase saddle to create a phase extremum (or the
reverse process). The possibility of such knotted nodal lines
has been previously considered by Freund [65], as well as
being achieved in experiment using visible light [64] and
water [66], all of this work having parallels with Kelvin’s
defunct yet fruitful model of atoms as knotted vortex rings
[67]. One can think of nodal-line knots, such as that shown
in Fig. 13, as a “topology of topologies” insofar as they
constitute topologically nontrivial constructs comprised of
one-dimensional manifolds which are themselves topological
in origin (cf. Mawson et al. [68]).

E. Defect-line bubbles

Return to the (w,χ ) = (0, 0) cell in Fig. 9. All such defect
complexes can be excited out of the topological vacuum ∅—
i.e., the topologically trivial uniform phase background—and
then decay back to ∅. The set of all such complexes, in their
creation and subsequent decay, comprise an infinite set of
topological-vacuum fluctuations containing no external lines.

For an example of such a defect-line bubble, consider the
polynomial wave function

�(x, y; t ) = (x + iy − X0)(x − iy − X0)[1 − i(x + y)],
(59)

where X0 = √
T 2 − t2, T > 0. In Fig. 14, we see that this

wave function has a locally flat (although tilted) phase surface
for t < −T , at which point a vortex-antivortex pair is created

FIG. 14. Topological-vacuum fluctuation (vacuum diagram),
namely, a defect-line complex containing no external lines. This is
obtained as a plot of the zeros of �(x, y ) [blue (black)] and ∇�(x, y )
[magenta (gray)] from Eq. (59), with T = 1, −1.1 � t � 1.1.
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and the phase surface becomes discontinuous. This creation
is simultaneous with the creation of a pair of phase saddles
[41,57] corresponding to position (0,0) of Fig. 9. The vortex-
antivortex pair and the phase saddles all annihilate at t = T ,
with the phase surface returning to local flatness.

Such localized defect-line structures containing no external
lines, being topologically allowed, would be expected to
occur with nonvanishing probability in ensembles of random
polynomial fields generated, e.g., by suitable random-matrix
ensembles. The possibility even exists for defect-line bubbles
to be knotted or braided. All of this is in line with the familiar
precept that “. . . any process which is not forbidden by a
conservation law actually does take place” [69].

In analogy to particle physics, one could consider such
structures as polarizing the (topological) vacuum [70] since
external lines may have their trajectories (and indeed their
topologies) influenced by such localized defect-line struc-
tures. For example, return to Fig. 11(b) and consider vertex 5.
The two magenta (gray) lines and two blue (black) lines nu-
cleated at vertex 5 are a topological-vacuum fluctuation since
they are precisely what is seen at t = −1 in Fig. 14. However,
unlike the case in Fig. 14, the four defect lines nucleated at
point 5 in Fig. 11(b) do not all mutually annihilate, but rather
couple to external lines such as the one between vertices 2
and 8. The x < 0 space-time volume of Fig. 12 gives another
example of a topological-vacuum fluctuation, nucleated from
∅, with the resulting defect-line network persisting until the
final time shown (t = 3).

VI. ALGEBRAIC STRUCTURE: DEFECT-LINE
INTERACTIONS AND DEFECT-COMPLEX SUPER

MULTIPLETS

We can think of the topological quantities (vortices v,
antivortices v∗, saddles s, and extrema e) as defining vectors
in the m, n plane plotted in Fig. 15. This representation allows
us to see that every vector has an additive inverse, e.g., −v∗ =
v + 2s. In fact, the topological rules discussed above define
the commutative defect group

D = 〈v, v∗, s, e | v + v∗ = 2e, e + s = 0〉, (60)

m

n

s

e vv∗
1

−1 1

−1

FIG. 15. Vector representation of the topological charge (m) and
topological (Poincaré) index (n) of each zero in � (the v and v∗)
and those in ∇� (the e and s). The vortices and antivortices (v and
v∗) are in blue (black), the saddles (s) are in magenta (gray), and the
extrema (e) are yellow (light gray).

where v, v∗, s, e are the group generators, the group opera-
tion is vector addition, and the relations between the group
elements are given by v + v∗ = 2e, e + s = 0.

The existence of an algebraic structure leads to an obvious
parallel with the hadron-spectroscopy Eightfold Way of Gell-
Mann and Ne’eman [71] and the associated quark model
[72]. One may form an infinite hierarchy of all possible
topologically allowed defect complexes such as v + v, v +
v∗, v + v + s, etc. Each such complex is an element of the
group D and may be labeled by the triplet [w,χ, P ], where
w is the net topological charge of the defect complex, χ is
its net topological index, and P is the number of elementary
defects (chosen from the set {v, v∗, e, s}) in the complex.
Each topologically allowed defect complex may decay to one
or more defect complexes, in any topological reaction that
conserves both net topological charge and net topological
index. Whether such a topologically allowed process is en-
ergetically possible will depend on the particular Hamiltonian
used to evolve the system. More precisely, depending on the
energetics, some defect complexes will be stable and others
will be unstable. Some defect complexes are more “natural”
than others, e.g., (i) as noted by Maxwell [58], a saddle
will often naturally occur between two maxima; (ii) the first
loop rule of Freund [57] gives another natural association
of saddles with extrema; (iii) the enlarged sign principle of
Freund [57] gives a natural association of alternating-sign
point vortices. The P = 1 defect complexes are always topo-
logically stable since they have no lower-P complexes to
decay to.

This parallel with hadron spectroscopy is evident when
comparing Fig. 16 to baryon super multiplets in the quark
model of hadrons [70]. Figure 16 sketches the set of all defect
complexes consisting of single defects [P = 1 quartet, Fig.
16(a)], defect pairs [P = 2 decuplet, Fig. 16(b)], and defect
triplets [P = 3 20-plet, Fig. 16(c)]. These are the sets of
all elements of D using 1,2, and 3 generators, respectively.
Stacking these defect complexes in a hierarchy of ascending
P generates the supermultiplet analog of baryon supermulti-
plets, with the P axis denoting the number of defects in the
complex. Some examples of such defect complexes and their
reactions include the v + v + v + v structure on the right of
Figs. 3 and 4, the v + s + v complex on the right of Fig. 10,
the topological reaction (v + s + s + v) → (v + s + v) + s

on the left of Fig. 10, and the creation and subsequent annihi-
lation of the s + v + v∗ + s defect complex in Fig. 14. Further
examples of defect complexes in 2 + 1 dimensions include
Onsager vortex clusters [45], (v + v∗) dipoles in BECs [48],
(2v + 2v∗) quadrupoles in BECs [48], paired Skyrmions in
thin-film ferromagnets [73], and oscillon aggregates (e + e +
· · · ) in sinusoidally driven granular layers [4]. Note also the
interesting linguistic coincidence, that the s used to label
saddles in Fig. 16 directly parallels the use of s to label strange
quarks in the baryon supermultiplets [70]. This whimsical
connection with baryon strangeness motivates an alternative
term for the vertical axis of Fig. 16, which may be spoken of
as “saddleness.”

Combining the possible interaction vertices tabulated in
Fig. 9 with the defect complexes listed in Fig. 16, one
could also classify all possible inelastic processes in which
the number and/or nature of one or more defect complexes
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FIG. 16. All possible [w, χ, P ] defect complexes from the group
D with P � 3, arranged according to ascending P : (a) P = 1
quartet; (b) P = 2 decuplet; (c) P = 3 20-plet. Defect complexes
with one species of defect are in black, those with two species of
defect are in magenta (gray), and those with three species of defect
are in yellow (light gray). (Note that we have suppressed the “+”
signs of the complexes in the figure to save space.)

changes as a result of their mutual interaction. For instance,
we see in Fig. 16(b) that e + e = v + v∗, which gives us the
corresponding interaction with (w,χ ) = (0, 2) of Fig. 9.

FIG. 17. Using Eq. (50). Blue (black): �2,0(x, y ) = 0. Yellow
(light gray): ∇�2,0(x, y ) = 0, where the stationary point is a max-
imum or a minimum. The green (gray) line is a representation of a
virtual particle, and the color matches that of the quaternionic zeros
in Fig. 18 as this virtual particle is (in some sense) a shadow of those
zeros.

VII. VORTEX-ANTIVORTEX FUNDAMENTAL
PROCESSES AND QUATERNIONIC SOLUTIONS

We can see from Secs. III and IV that a key feature of
systems given by Eqs. (50) and (51) is the vortex-antivortex
creation and annihilation events. Locally, these can be de-
scribed by a 2 × 2 system,

�2,0(x, y; t ) = det

([
a b

c d

]
−

[
λ 0
0 λ∗

])
= |λ|2 − aλ∗ − dλ + ad − bc

= x2 + y2 − (a + d )x + (a − d )iy

+ ad − bc. (61)

We plot an example of such a system in Fig. 17.
Setting this determinant equal to zero and taking the real

and imaginary parts (assuming x, y ∈ R) gives us a pair of
coupled equations for x and y. As we assumed, we are seeking
solutions x, y ∈ R such that we obtain the N = 2 case of
Eq. (47), and we then have a vortex-antivortex pair. However,
this need not always yield a pair of equations that is solvable
over the real numbers. As a trivial example, take a = c =
1, b = −2, d = 2 to give the solutions x = (3 ± i

√
7)/2, y =

0. From a purely algebraic perspective, the real and imaginary
parts of Eq. (61) result in two real functions of x and y, one
linear and one quadratic, so we should not be surprised that in
general we do not have real solutions.

We know from Fig. 9 that the annihilation of a vortex-
antivortex pair should be accompanied by the simultaneous
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annihilation of two saddles or the creation of two maxima. (In
Appendix D, we show that in the 2 × 2 case, it must be the
latter.) One way to understand this process is to analyze the
pair of equations that result by taking the real and imaginary
parts of �2,0(x, y; t ) (recalling that we assume x, y ∈ R). We
obtain a quadratic and a linear equation,

0 = x2 + y2 − [Re(a) + Re(d )]x + [Im(d ) − Im(a)]y

+ Re(a) Re(d ) − Im(a) Im(d ) + Im(b) Im(c)

− Re(b) Re(c), (62)

0 = [Re(a) − Re(d )]y − [Im(a) + Im(d )]x + Re(a) Im(d )

+ Im(a) Re(d ) − Re(b) Im(c) − Im(b) Re(c). (63)

This is equivalent to looking for the intersection between
an ellipse and a line, which we depict schematically in Fig. 21
of Appendix D. However, when there is no intersection be-
tween the curves, this does not mean that there is no zero
but it indicates that taking real and imaginary parts is not a
well-defined operation in this context, and suggests that the
solutions are not in the complex plane. Indeed, we can view
our solutions as existing in a four-dimensional space C × C.
This is analogous to the situation for complex polynomials
in a single complex variable—not all roots are real, however
they are all complex (the complex numbers are the splitting
field for complex polynomials). In our case, the complex plane
only contains some of our solutions, with the rest being in
a four-dimensional space, within which the complex plane
is embedded. In light of the discussions above about the
determinant in Sec. III A having a quaternionic structure, it
is not surprising that we are only looking at a 2D subspace of
a larger 4D space of solutions.

We can access these solutions by explicitly embedding
our matrix in quaternion space using the representation in
Eq. (B2); however, for our purposes, it is more straightfor-
ward to work in the traditional quaternion representation and
calculate the determinant

det

([
aq bq

cq dq

]
−

[
λq 0
0 λ̂q

])
, (64)

where aq = Re(a) + i Im(a) + 0j + 0k, and similarly for
bq, cq, dq and λq = x + iy + jz + kw, λ̂q = x − iy + jz −
kw. [Note that λ̂q is not the usual quaternion conjugate—
we can think of it as a form of Eq. (B2), where the two
complex numbers α, β are in different copies of C. In terms
of the Cayley-Dickson [74] construction of the quaternions,
we write λq = (x + iy)1 + (z + iw)j and λ̂q = (x − iy)1 +
(z − iw)j ; so we take a plane isomorphic to C and to every
real and imaginary part we attach another independent copy
of C.] In Appendix E, we write this determinant explicitly
and we find the four expressions in Eqs. (E2)–(E5), which,
respectively, correspond to the real, i, j , and k components of
Eq. (64), which we set all equal to zero. With this structure,
we find that our example above (a = c = 1, b = −2, d = 2)
yields the two zeros ( 3

2 , 0,±
√

7
2 , 0) ∈ R4.

We find that two roots (x1, y1), (x2, y2) ∈
R2 can collide and produce two new solutions
(x3, y3, z3, w3), (x4, y4, z4, w4) ∈ R4. This results in
the exchange of a topologically stable complex (a

FIG. 18. Solving for quaternionic zeros λ = x + iy + jz + kw

of Eq. (64) with the matrix that was used to generate Fig. 17. The blue
(black) lines in this one-loop diagram correspond to solutions where
z = w = 0, which are the blue (black) solutions plotted in Fig. 17.
The green (gray) lines correspond to the solutions with z �= 0 and
w �= 0, which correspond to the yellow (light gray) points in Fig. 17.
The z, w components come in ± pairs so the quaternionic solutions
give the points (|x + iy|, |z + iw|, t ) and (|x + iy|, −|z + iw|, t ).

vortex-antivortex pair) with an intermediate state (a
maximum and a minimum) that rapidly coalesce to yield
a vortex-antivortex pair once again. The two-component
intermediate state, besides being a consequence of the
previously discussed topological conservation laws, is seen
to be directly connected with the fact that the quaternionic
roots are observed to always have j, k components in
± pairs, that is, z1 = −z2 and w1 = −w2. We depict these
four-dimensional solutions in Fig. 18, which is the counterpart
to Fig. 17.

Figures 17 and 18 represent the topological reaction

v + v∗ → I → v + v∗, (65)

where I may be interpreted as a transient intermediate state
[75] associated with the annihilation of zeros in the space
of complex solutions. In light of the preceding paragraphs,
this may be viewed as scattering of the vortex-antivortex
complex zeros into a transiently excited zero associated with
the quaternionic degrees of freedom (see especially Fig. 18).

These observations motivate investigation of the lifetime
tmax of the intermediate state evident in Figs. 17 and 18.
Accordingly, an ensemble of 2 × 2 Ginibre matrices of the
form given by Eq. (1) was generated, each element of each
matrix having a real and an imaginary component chosen
from a Gaussian distribution with standard deviation σ . For
each σ , 5000 random matrices were generated, each of which
was used as the matrix M0 in Eq. (10), with the resulting
time-dependent matrix M(t ) being used to generate a determi-
nantal wave function using Eq. (50). When the intermediate
quaternionic-transient state in Figs. 17 and 18 occurred, its
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FIG. 19. tmax(σ ) is the mean of the lifetimes tmax of the
quaternionic-zero transients sketched in Figs. 17 and 18. For each σ ,
an ensemble of 5000 instances was generated, of 2 × 2 matrices with
entries having real and imaginary parts independently and identically
distributed as a normal distribution of mean zero and standard devia-
tion σ . The line of best fit is given by tmax = 0.027 266 + 1.636 42σ .

lifetime tmax was recorded. The mean of this lifetime, denoted
by tmax(σ ), was then calculated for a range of σ values in
the range 0 � σ � 20 via an ensemble average for the 5000
random matrices generated for each σ . The simulated results
are shown in Fig. 19.

From the straight-line fit, one obtains

tmax(σ ) (1.6 σ )−1 ≈ 1.0. (66)

This strengthens the analogy drawn between the intermediate
quaternionic states and virtual particles since Eq. (66) is iden-
tical in form to the usual time-energy uncertainty-principle
estimate for the mean lifetime of a virtual particle, if σ−1 is
interpreted as an energy scale, and natural units are employed.
We note, in this context, that σ is the only natural scale present
in the model and that, on dimensional grounds, it must have
the units of a reciprocal energy. Note also that in the limit
as the energy scale σ−1 becomes sufficiently large, the green
loop in Fig. 18 may be considered to contract to a point,
and hence the topological reaction v + v∗ → v + v∗ may be
considered as approaching a contact interaction in this limit.

VIII. DISCUSSION

An immediate avenue for future work is to more thor-
oughly investigate the utilization of ensemble averaging, over
the set of random matrices belonging to a particular class,
in the formalism utilized in the present paper. An obvious
example is to take the modeling at the end of the previous sec-
tion and work with higher-dimensional matrices (e.g., Gini-
bre matrices with N � 2). One could choose an evolution
law consistent with a given (2+1)-dimensional classical field
theory, such as the (2+1)-dimensional Goldstone model [51],
the (2+1)-dimensional Gross-Pitaevskii equation [43], (2+1)-
dimensional linear theories with arbitrary propagators [14],
etc. From a numerical perspective, the ensemble of starting
matrices (which may have equal statistical weights, but not
necessarily) would then generate a series of defect-line topo-
logical reactions in the interaction region of Fig. 1, which,

upon time evolution, could be sorted into equivalence classes.
A measure could then be associated with each equivalence
class of topological reaction, which would be rather analogous
to a set of Feynman diagrams exploring all possible paths
[76] for all interactions permitted for a specified system. The
associated measure would be equal to a probability of occur-
rence for each particular topological reaction, which could
be numerically tabulated via an appropriate histogram, as the
topologically distinct reactions are sorted. Related quantities
such as scattering cross sections and lifetimes of particular
transient defect complexes could then be readily computed.
The scattering cross sections could be computed both for col-
lisions between defect complexes in vacuo and for scattering
of one defect complex from an introduced scattering potential.
In addition to the indicated numerical study, the questions
outlined in the present paragraph could be addressed from an
analytical perspective.

The quaternionic transients, and their connection to an
associated energy-lifetime uncertainty principle, are a fasci-
nating outcome of the present study. The 2 × 2 cases studied
in Sec. VII (with one vortex and one antivortex) provide ex-
amples of “fundamental processes” in these vortex-antivortex
systems. The fact that the x and y coordinates of the zeros of
the wave function do not always have solutions over R moti-
vates the study of quaternionic solutions to the determinantal
equation, as in Eq. (64). Further, we are guaranteed to obtain
solutions in the four-dimensional quaternion space H by the
structure of the real and imaginary parts of the determinantal
equation (a quadratic and a linear function, respectively). The
appearance of quaternionic solutions (H\C) corresponds to
the annihilation of the vortex-antivortex pair, and the cre-
ation of a maximum-minimum pair in the phase of the wave
function.

One interpretation of this event may be that the pair of
zeros exists naturally in the two-dimensional (complex) plane,
and then a collision event scatters them off the plane into
four-dimensional space. However, we conjecture that motion
in these other dimensions is typically transient so the particle
trajectories bring them back together and they then rescatter
onto the two-dimensional plane—in real space, this appears
as annihilation and creation. The associated lifetime-energy
uncertainty principle, given in Eq. (66), is particularly inter-
esting. How general is this result? Can analogous results be
obtained for all unstable defect complexes, thereby generating
a hierarchy of unstable-defect-complex half lives? The above
four-dimensional interpretation seems to naturally lend itself
to quaternionic calculations (as discussed in Sec. VII); so we
may, in some sense, call the virtual particles “quaternionic
quasiparticles.” This provides an intriguing connection to
the quaternionic random matrix ensembles (beyond just the
mathematical formalism of Sec. III A and Appendix B), which
are part of Dyson’s Threefold Way [20], and as such are of
fundamental concern in random-matrix theory. Although we
cannot shed more light on this at the moment, we feel that this
connection is worthy of further study. We also remark, regard-
ing the quaternionic transients, that the initial field generated
by the random matrix can be viewed as a perturbation with
energy scale σ−1, whose subsequent evolution may generate
the quaternionic transient. Some parallels may exist here with
the creation of closed nodal-line loops in the vicinity of
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caustics that spontaneously form in coherent optical [77] and
matter-wave [78] fields.

Next, we return to a point made early in the paper. We
saw in Sec. II that an interacting set of particles can be
implemented by calculating eigenvalues of a time-dependent
matrix. Since the eigenvalues are given by the characteristic
polynomial, this effectively gives another representation of
a system of particles defined as the zeros of a polynomial
wave function, which undergoes (nonlinear) evolution. The
relationship is represented in Fig. 2 and is a manifestation of
the duality between the Heisenberg and Schrödinger pictures.
The lack of bijectivity between the two representations also
naturally leads to a type of gauge freedom, with the number
of degrees of freedom given by the difference between the
number of roots of the polynomial and the number of indepen-
dent entries of the corresponding matrix. This can be encoded
explicitly via matrix conjugation, as in Eq. (19).

The systems formed in this way are, however, somewhat
limited as each eigenvalue represents a vortex, which all
have the same charge, and so they form a gas of mutually
repelling particles. This can be clearly seen in the eigenvalue
joint probability density function, given by Eq. (2). There is,
of course, the possibility of degenerate eigenvalues (having
multiplicity greater than one), but if the matrix is randomly
drawn from a continuous distribution and the matrix update
rule is generic, then such a system exhibiting eigenvalue
creation or annihilation is highly specialized and artificial.
This is confirmed by the simulation shown in Fig. 4, which is
typical of such determinantal systems using Ginibre matrices,
given by Eq. (1).

A natural way to introduce more complex interactions
is to note that polynomials in a complex variable and its
complex conjugate [such as Eq. (53)] produce zeros which
behave like oppositely charged particles. So if some num-
ber of complex-conjugate variables is introduced into the
characteristic polynomial of a random matrix (as we did
in Secs. III and IV), we obtain the same behavior. These
zeros are no longer eigenvalues, but they are still calculated
via a determinantal polynomial. Mathematically, since we no
longer have a polynomial in a single variable, we are no longer
guaranteed to find a full set of solutions in the complex plane
(even degenerate ones). This allowed for the possibility that
these particles and antiparticles will coalesce and annihilate,
or that the wave function may nucleate particles.

These particle-antiparticle interactions change the topolog-
ical landscape of the wave-function phase, yet they arise from
continuous transformations, and so any topological invariants
must be preserved. These invariants are given by Eqs. (56)
and (57), the latter of which is the Euler characteristic. Only
interactions that preserve the invariants are allowed and we
have tabulated some of the lowest-order ones in Fig. 9. Several
of these events were realized in our simulations, although
most are not. We conjecture that the probability of locally
observing a particular interaction decreases as the quantity
|w| + |χ | increases. Indeed, given that we are working with
systems generated by polynomials (having a finite degree),
there is a finite upper bound on |w|, given by the difference
between the number of variables and their complex conjugates
in the determinantal expressions. The topological values of
each of the topological points on the phase surface can be

represented via the vector diagram in Fig. 15, which naturally
leads to the group structure given in Eq. (60). We note that
this group, along with the Poincaré-Hopf theorem, provides
a connection between the topological, analytic, and algebraic
structures of these systems, described by the Euler characteris-
tic, the Poincaré index, and the group in Eq. (60), respectively.

Conservation of the Euler characteristic and Poincaré index
at any primitive vertex implies the crossing symmetry previ-
ously observed in this paper. This refers to the topological de-
formation of one allowed vertex into another allowed vertex.
For example, if a vertex has a magenta (yellow) line connected
to it, the said line may be moved from a past-directed line
to a future-directed line upon changing magenta (yellow) to
yellow (magenta). A similar crossing symmetry holds if past
and future are interchanged in the preceding sentence. We
also saw that blue lines entering or leaving a vertex can be
changed from past pointing to future pointing, or conversely,
provided that the arrow associated with the blue line is main-
tained. These crossing symmetries refer to the time-reversal
operation, but one may also consider the associated deforma-
tions of primitive vertices under other transformations such
as spatial reflection and parity transformations. For example,
under the parity transformation (x, y) → (x,−y), vortices
and antivortices are interchanged, phase maxima and phase
minima are unchanged, and saddles are unchanged modulo a
topologically irrelevant rotation.

As we have already argued, the set of all possible topo-
logical defect-line reactions is ultimately reducible to reac-
tions involving the hierarchy of primitive vertices given in
Fig. 9. In the context of random matrices and their associ-
ated determinantal wave functions, all permissible processes
should be generated via an ensemble of random matrices of
large-enough dimension. This would form another interesting
avenue for future work.

It is also worth commenting on the “topological defects
as particles” theme running throughout the paper. This idea
is well explored in the context of particle physics; see,
e.g., Vilenkin and Shellard [6] and Volovik [2], together
with references therein. Moreover, the theme has already
been justified in the more limited classical-optics context of
the present paper, on the topological grounds that we have
already given. However, two further motivations are worth
mentioning. (i) For (2+1)-dimensional incompressible fric-
tionless fluids, Onsager showed that the resulting complex of
vortices possesses a particlelike Hamiltonian depending only
on the location of the vortex cores [79]. This has subsequently
been developed into the point-vortex model for vortices in
(2+1)-dimensional nonlinear complex order-parameter fields
(see Groszek et al. [53], and references therein), in which
vortex cores are again treated as evolving point particles. (ii)
In situations with symmetry-breaking potentials V such as
[6,51]

V (|�|) = μ(|�|2 − η2)2, μ ∈ R+, η ∈ R, (67)

the wave-function zeros that are trapped in vortex cores
comprise a false vacuum (even in the purely classical-field
setting of the present paper) in the sense that the above
potential is a local maximum when |�| = 0, achieving its
global minimum when |�| = |η|. For such fields, therefore,
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a vortex or an antivortex would be particlelike in the sense
of trapping a certain positive energy associated with the
false vacuum, with such a wave-function zero typically being
embedded in a true-vacuum background for which |�| = |η|.
Such a phenomenon, which is well known [2,6], gives further
impetus for considering the vortex and antivortex cores as
quasiparticles, as has been done in the present paper. From
the same perspective, the phase maxima, phase minima, and
saddles also assume a particlelike identity, not because they
trap false vacuum, but because they are vacuum excitations
(cf., e.g., Sinha et al. [80,81]). Throughout this paragraph,
“vacuum” is taken to be synonymous with “zero-potential
ground-state background field �(x, y, t ) = η exp[iα(x, y, t )]
in which α is any smooth real function of (x, y, t ).”

Finally, we emphasize that all of the results in the present
paper, that depend purely on topological arguments regarding
the continuity and single-valued nature of a complex wave
function in 2 + 1 dimensions, are applicable beyond the par-
ticular model we have developed. Such model-independent
aspects include the set of all allowed defect-line reactions, the
supermultiplet of possible defect complexes, remarks regard-
ing knotted and braided structures in defect-line networks, and
the set of allowed isolated defect-line networks. All of these
concepts are applicable to the previously mentioned (2+1)-
dimensional continuous complex classical fields, whether they
obey linear or nonlinear differential equations (including non-
linear equations admitting spontaneous symmetry breaking),
integral equations, or integrodifferential equations. Moreover,
generalization to defect networks in spinor and tensor fields
is evident if one first computes the admissible topological
defects via calculation of their associated homotopy groups
[6,82] and notes the associated topological conservation laws.

IX. CONCLUSION

We have set up a determinantal correspondence between
(i) random matrices and their associated temporal evolution
rule, and (ii) polynomial wave functions and their associated
Hamiltonian; in contrast to earlier studies, the model that
we developed is entirely deterministic. Particular attention
was paid to the phase defects of the induced wave functions,
namely, the phase maxima and phase minima, together with
phase saddles, phase vortices, and phase antivortices. The
defect line dynamics, induced by temporal evolution of the
random matrix, were considered. Such dynamics involve an
interpenetrating network of defects, in which the nodal lines
interact with lines associated with phase maxima, phase min-
ima, and saddles. Local closed-form analyses were given for
several possible allowed defect-line processes. All possible
defect composites were classified and their associated com-
mutative group structure written down. Low-order multiplets
of defect aggregates were specified, although multiplets of all
orders are immediately implied by our formalism. Allowed

topological reactions of defect-line complexes were consid-
ered, as well as knotted defect-line structures and totally
closed defect-line structures. The role of quaternionic degrees
of freedom, together with their associated transients and an
induced uncertainty principle, was also treated.
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APPENDIX A: PROOF OF VORTEX NATURE
OF EIGENVALUES

We show that the winding number of every zero, for a wave
function that is a polynomial in λ = x + iy, must be positive.
Hence all such zeros are vortices.

A vortex is defined by a positive topological charge. In our
context, where the characteristic equation is treated as a wave
function as in Eq. (6), the sign of the topological charge of any
zero is given by the sign of the Jacobian [57,83–85],

J (x, y) = det

[
∂ Re(�N,N )

∂x

∂ Im(�N,N )
∂x

∂ Re(�N,N )
∂y

∂ Im(�N,N )
∂y

]
, (A1)

when it is evaluated at the zero.

1. N = 2

For the case of a 2 × 2 matrix, with characteristic poly-
nomial χ = (x + iy − λ1)(x + iy − λ2), we can calculate the
Jacobian in Eq. (A1) explicitly,

J (x, y) = [(
x − λr

1

) + (
x − λr

2

)]2 + [(
y − λi

1

) + (
y − λi

2

)]2

> 0, ∀(x, y) ∈ R2, (A2)

where λr
j and λi

j are the real and imaginary parts of λ. Hence
both zeros (eigenvalues) are vortices in this system and, in
fact, they have identical Jacobians,

J
(
λr

1,2, λ
i
1,2

) = (
λr

1 − λr
2

)2 + (
λi

1 − λi
2

)2
. (A3)

2. General N

Note that we can write �N in the form

�N,N (λ) = �N−1,N−1(λ)(λ − λN ). (A4)

Then,

Re(�N,N ) = Re(�N−1,N−1)
(
x − λr

N

) − Im(�N−1,N−1)
(
y − λi

N

)
, (A5)

Im(�N,N ) = Re(�N−1,N−1)
(
y − λi

N

) + Im(�N−1,N−1)
(
x − λr

N

)
, (A6)
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so

∂

∂x
Re(�N,N ) = Re(�N−1,N−1) + (

x − λr
N

) ∂

∂x
Re(�N−1,N−1) − (

y − λi
N

) ∂

∂x
Im(�N−1,N−1), (A7)

∂

∂y
Re(�N,N ) = − Im(�N−1,N−1) − (

y − λi
N

) ∂

∂y
Im(�N−1,N−1) − (

x − λr
N

) ∂

∂y
Re(�N−1,N−1), (A8)

∂

∂x
Im(�N,N ) = Im(�N−1,N−1) + (

y − λi
N

) ∂

∂x
Re(�N−1,N−1) + (

x − λr
N

) ∂

∂x
Im(�N−1,N−1), (A9)

∂

∂y
Im(�N,N ) = Re(�N−1,N−1) + (

x − λr
N

) ∂

∂x
Im(�N−1,N−1) − (

y − λi
N

) ∂

∂x
Re(�N−1,N−1). (A10)

Then we see that substituting in x = λr
N , y = λi

N , the
only terms that survive are Re(�N−1,N−1)(λN ) and
Im(�N−1,N−1)(λN ). Calculating the determinant in Eq. (A2)
gives us

J
(
λr

N, λi
N

) = [Re(�N−1,N−1)(λN )]2

+ [Im(�N−1,N−1)(λN )]2

= |�N−1,N−1(λN )|2. (A11)

Since we could have factored out any of the N factors in
Eq. (A4), we obtain the Jacobian evaluated at any of the zeros,

J
(
λr

j , λ
i
j

) =
N∏
k=1
k �=j

(
λr

j − λr
k

)2 + (
λi

j − λi
k

)2
(A12)

> 0, ∀j, (A13)

and so all zeros have positive winding number. Hence they are
all vortices. Thus the topological charge of �N,N (λ) is +N .

From this proof, we see that any (single-variable) polyno-
mial wave function �N,N (λ) has positive topological charge,
not just characteristic polynomials.

APPENDIX B: QUATERNIONIC ENSEMBLES

Here we review some of the formalism of quaternions as
used in random-matrix theory. We define a quaternion as a
number with four independent real components,

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R, (B1)

with the properties i2 = j 2 = k2 = ijk = −1. If we write q

as a pair of standard complex numbers α = q0 + iq1, β =
q2 + iq3 (where i is the usual imaginary unit), then we have
the equivalent representation,

q =
[

α β

−β∗ α∗

]
, (B2)

in which case the basis elements 1, i, j, k are represented by
I2, iσz, iσy, iσx , respectively, where I2 is the 2 × 2 identity
matrix and σx, σy, σz are the Pauli matrices. We denote by H
the (four-dimensional) span of 1, i, j, k.

In Dyson [20], the three primary universality classes of
random-matrix theory are identified as part of his Threefold
Way: matrices with real, complex, or quaternion entries.
Traditionally, when dealing with quaternionic ensembles, one
looks for solutions to Eq. (4) where M is a 2N × 2N matrix,
where each 2 × 2 block is of the form given by Eq. (B2). This

gives complex-conjugate paired eigenvalues for a complex
representation of a quaternionic matrix.

APPENDIX C: ANALYSIS OF THE COLLISION OF A
PHASE EXTREMUM AND A PHASE SADDLE

We can describe a generic phase surface containing an
extremum and a saddle point with the equation

� = arg(�) = εx − y2 − x3, (C1)

where a saddle point is located at (−√
ε/3, 0) and a local

maximum is at (
√

ε/3, 0). A plot of this function is given in
Fig. 20. Letting ε → 0 has the effect that the stationary points
coalesce and then with ε becoming negative, the stationary
points disappear, which corresponds to what we see in, for
example, Fig. 12 when a magenta (gray) and a yellow (light
gray) thread meet [60].

APPENDIX D: ANALYSIS OF CREATION AND
ANNIHILATION EVENTS

As seen in Eqs. (62) and (63), we obtain a quadratic
function and a linear function for the real and imaginary parts,
respectively, of the phase of the wave function �2,2(x, y; t ).
By suitable topological deformation, we can describe any
interaction of this type in the same way,

�(x, y; ε) = y − ε + i[x2 + (y − 1)2 − 1], (D1)

and so the linear function corresponding to the real part shifts
vertically with changing ε. [Note that for simplicity, we have
made the real part linear and the imaginary part quadratic,
which is opposite to the situation in Eq. (61).]

FIG. 20. A schematic of the phase surface given by Eq. (C1),
showing the saddle point in magenta (gray) and a local maximum in
yellow (light gray) before collision.
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•(0, 1)

•(0, ε>)

•(0, ε<)

Re(Ψ) = y − ε

Im(Ψ) = x2 + (y − 1)2 − 1

FIG. 21. Plots of the real and imaginary parts of Eq. (D1). When
ε = ε>, there are two intersections between the curves, which cor-
respond to a vortex-antivortex pair, marked by small circles. When
ε = ε<, there is no intersection and we obtain a maximum-minimum
pair in the phase.

The wave function vanishes when both real and imaginary
parts are equal to zero, which we plot in Fig. 21. For ε> =
ε > 0, we have y = ε> and x = ± √

2ε> − ε2
>: the two lines

intersect twice and we obtain the locations of our vortex and
antivortex cores, (−√

2ε> − ε2
>, ε>) and (

√
2ε> − ε2

>, ε>),

which are marked by blue circles in Fig. 21. When ε< = ε < 0,
the linear curve lies underneath the quadratic one and there is
no solution to Re(�) = Im(�) = 0. The argument function
and its derivative are given by

arg(�) = arctan

[
x2 + (y − 1)2 − 1

y − ε<

]
, (D2)

∂

∂x
arg(�) = 2x(y − ε<)

(y − ε<)2 + [x2 + (y − 1)2 − 1]2
, (D3)

∂

∂y
arg(�) = 2(y − 1)(y − ε<) − [x2 + (y − 1)2 − 1]

(y − ε<)2 + [x2 + (y − 1)2 − 1]2
,

(D4)

and then
∂

∂x
arg(�) = 0 ⇒ x = 0, (D5)

∂

∂y
arg(�) = 0 ⇒ y = ε< ±

√
ε2
< − 2ε<, (D6)

and, taking ε< → 0−, we find that there are two stationary
points of the phase, (0,

√−2ε<) and (0,−√−2ε<). Taking
second derivatives, we can confirm that the first stationary
point is a minimum and the second is a maximum.

APPENDIX E: DETERMINANT USING A
QUATERNIONIC VARIABLE

Writing out Eq. (64), we have

det

([
a b

c d

]
−

[
x + iy + jz + kw 0

0 x − iy + jz − kw

])
= ad − bc − a(x − iy + jz − kw) − (x + iy + jz + kw)d + (x + iy + jz + kw)(x − iy + jz − kw)

= ad − bc + x2 + y2 − z2 + w2 + 2iwz + 2jxz + 2kyz − ax + aiy − ajz + akw − dx − diy − djz − dkw

= χq. (E1)

Then, the real, i, j , and k components are given by

(χq )r = Re(ad − bc) + x2 + y2 − z2 + w2 − Re(a)x − Im(a)y − Re(d )x + Im(d )y, (E2)

(χq )i = Im(ad − bc) − 2wz − Im(a)x + Re(a)y − Im(d )x − Re(d )y, (E3)

(χq )j = 2xz − Re(a)z − Im(a)w − Re(d )z − Im(d )w, (E4)

(χq )k = 2yz − Im(a)z + Re(a)w + Im(d )z − Re(d )w, (E5)

respectively. Setting these all equal to zero gives a set of four coupled equations in the variables x, y, z,w.
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