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Quantum radiation from a shaken two-level atom in vacuum
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We present a nonrelativistic theory of quantum radiation generated by shaking a two-level atom in vacuum.
Such radiation has the same origin of photon emission in dynamical Casimir effect. By performing a time-
dependent “dressing” transformation to the Hamiltonian, we derive an interaction term that governs the radiation.
In particular, we show that photon pairs can be generated, not only by shaking the position of the atom, but also
by changing the internal states of the atom. As applications of our theory, we calculate the emission rate from an
oscillating atom and the multiphoton state generated in a single-photon scattering process.
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I. INTRODUCTION

In quantum mechanics, fluctuations in vacuum fields can
result in a variety of observable physical phenomena [1]. An
interesting example is the dynamical Casimir effect (DCE)
[2,3], which converts vacuum fluctuations into radiation by
modulating the system with time-dependent parameters. Tra-
ditionally, DCE is studied in macroscopic systems such as a
moving mirror [4] or a cavity with a time-varying length [5],
and DCE by modulation of boundary conditions was observed
in superconducting circuits [6]. At the microscopic level, DCE
occurs when an atom moves nonuniformly in vacuum [7],
and such a problem has also been discussed in the context of
Unruh radiation [8,9]. Apart from moving an atom, we note
that a change of internal states of a rest atom may also distort
the vacuum nonadiabatically and emit photons [10]. This is
understood because the vacuum field can interact differently
with different electronic states.

In this paper we present a microscopic Hamiltonian which
governs the generation of photons when an atom is sub-
jected to time-dependent changes in its external or internal
states. This would provide a microscopic picture of DCE
and other similar parametric amplification processes of the
quantum vacuum. Mathematically, the presence of counter-
rotating terms in atom-field interactions is responsible for the
radiation. In stationary systems these counter-rotating terms
determine how an atom is dressed by virtual photons, and
a useful technique of handling counter-rotating terms is the
“dressing” transformation [11]. Such a transformation can
significantly simplify the description because the Hamiltonian
is represented in a suitable photon-atom dressed basis, in
a way that virtual transitions between dressed states appear
only as higher-order processes. The transformation has been
applied to the studies of quantum Rabi model [12,13], spin-
boson model [14–16], effects of counter-rotating terms on
spontaneous decay [17–19], control of Lamb shift [20], and
quantum Zeno and anti-Zeno effects [21–23]. Here we gen-
eralize this transformation to time-dependent systems and
discover an interaction term directly connected to DCE or
Unruh radiation. By treating this term as a perturbation, we

employ time-dependent perturbation theory to calculate the
two-photon emission rate from an oscillating atom and the
three-photon amplitude generated in a single-photon scatter-
ing process. The multiphoton state in the latter serves as a
basic example of quantum radiation triggered by a change of
internal states during a quantum process.

II. MODEL HAMILTONIAN

We begin with a Hamiltonian of a two-level atom interact-
ing with a quantized electromagnetic field:

H = ωe

2
σz +

∑
k

ωka
†
kak +

∑
k

[g∗
k (t )a†

k + gk (t )ak]σx, (1)

where σz = |e〉〈e| − |g〉〈g| and σx = |e〉〈g| + |g〉〈e| are Pauli
matrices describing the two-level atom with an excited state
|e〉 and a ground state |g〉. The atomic transition frequency
is denoted as ωe, and ak and a

†
k are annihilation and creation

operators associated with the field mode k of frequency ωk .
Note that the mode index k used here is a general label
for a normal mode of the field. For example, in free space,
k corresponds to a wave vector k. The time-dependence of
coupling strengths gk (t ) can be realized by various settings,
for example, changing the position of the atom, and the
specific expression is determined by the form of interaction.
Throughout this paper, we assume that gk (t ) changes slowly
in the time scale of ω−1

e .

A. Time-dependent dressing transformation

We consider a time-dependent unitary operator defined by

T (t ) ≡ exp[σxX(t )], (2)

where

X(t ) ≡
∑

k

[ξ ∗
k (t )a†

k − ξk (t )ak] (3)

with ξk (t )’s being some small time-dependent parameters to
be determined later. Let |ψ (t )〉 ≡ T (t )|�(t )〉 be the state in
the transformed frame, where |�(t )〉 is the state in the original
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frame; then the evolution of |ψ (t )〉 is governed by the trans-
formed Hamiltonian H ′ = T HT † − iT dT †

dt
. In Appendix A,

we show that H ′ up to second order in ξ is given by

H ′ = ωe

2
σz +

∑
k

ωka
†
kak

+
∑

k

σ+ak[(ωe − ωk )ξk + gk − iξ̇k] + H.c.

+
∑

k

σ−ak[(−ωe − ωk )ξk + gk − iξ̇k] + H.c.

+ωe

[∑
k

(ξ ∗
k a

†
k − ξkak )

]2

σz + E(t ), (4)

with ξ̇k = d
dt

ξk . The last term E(t ) ≡ ∑
k[ i

2ξ ∗
k (t )ξ̇k (t ) −

gk (t )ξ ∗
k (t ) + c.c. + ωk|ξk (t )|2] is a time-dependent real num-

ber which only contributes a phase to the overall state and can
be ignored.

The aim of the transformation is to eliminate counter-
rotating terms in the third line of Eq. (4) with a suitable
set of {ξk (t )}. This is done by setting the coefficients of the
counter-rotating terms to vanish, i.e.,

(−ωe − ωk )ξk (t ) + gk (t ) − iξ̇k (t ) = 0, (5)

which has the solution

ξk (t ) = ξk (0)ei(ωk+ωe )t − i

∫ t

0
dt ′gk (t ′)ei(ωk+ωe )(t−t ′ ). (6)

We are free to choose the initial condition ξk (0). If we
choose ξk (0) = gk (0)

ωk+ωe
and make use of the assumption that

gk (t ) varies slowly in the time scale of ω−1
e , then ξk (t ) is

approximated by

ξk (t ) ≈ gk (t )

ωk + ωe

. (7)

The Hamiltonian H ′ then becomes

H ′ = ωe

2
σz +

∑
k

ωka
†
kak +

∑
k

(ηkakσ+ + η∗
ka

†
kσ−)

+ 1

4ωe

∑
j,k

(η∗
j a

†
j − ηjaj )(η∗

ka
†
k − ηkak )σz, (8)

where the new corotating coupling strength ηk (t ) = 2ωeξk (t )
is defined.

The second line of Eq. (8) can be put into normal order,
and this yields a time-dependent c-number multiplying σz

which corresponds to a time-dependent shift of transition
frequency between the two atomic levels. To properly account
for the shift in a natural atom in nonrelativistic theory, one
can impose a frequency cut-off ωc and subtract the relevant
self-energy terms as in the standard treatment of the Lamb
shift problem [24]. For a multilevel atom in three-dimensional
free space with constant gk’s, it has been demonstrated that
the dressing transformation and the mass renormalization
procedure can lead to a standard expression of the Lamb shift
[17,21]. Here, for time-dependent systems, since ηk (t ) follows
gk (t ) adiabatically according to Eq. (7), the renormalized shift
can be interpreted as a generalized (time-dependent) Lamb

shift. For convenience we shall use ω′
e to denote the shifted

transition frequency of the atom.
Finally, the Hamiltonian reads

H ′ = H0 + H1 + σz�, (9)

where

H0 = ω′
e

2
σz +

∑
k

ωka
†
kak, (10)

H1 =
∑

k

(ηkakσ+ + H.c.), (11)

�(t ) = 1

4ωe

∑
j,k

(η∗
j η

∗
ka

†
j a

†
k − η∗

j ηka
†
j ak + H.c.) (12)

are defined. Note that the counter-rotating terms a+
k σ+ and

a−
k σ− have been eliminated without invoking any rotating

wave approximation. The transformation T has taken care
of most of the virtual transitions or dressing effects due to
counter-rotating terms, leaving σz� as a small correction. If
σz� can be ignored, then the ground state is simply |g〉|0〉
(where |0〉 is the vacuum state in the transformed frame). Such
a state in the original frame reads as T †|g〉|0〉, a dressed state
in which the atom and virtual photons are entangled.

We point out that σz� governs the generation of radiation
via the pair creation operators a

†
j a

†
k . Such a term has often

been neglected in stationary systems because it is second
order in g and off resonance. However, when the atom is
subjected to time-dependent modulation, σz� could lead to a
resonant generation of photons. As a remark, we note that our
Hamiltonian is different from the one derived from the atomic
polarizability approach [7]. The theoretical framework pro-
vided here allows us to study the quantum radiation process in
dressed basis and, by keeping track of the internal degrees of
freedom, DCE due to time-dependent perturbation of internal
states can be addressed.

B. Ground state at t = 0

Assuming the coupling strengths gk (t ) start changing only
for positive times t > 0, the ground state defined at t = 0 can
serve as an initial state to study the quantum dynamics. It
should be noted that |g〉|0〉 mentioned above is not the true
ground state of the system because of the presence of the
σz� term. If we take |g〉|0〉 as an initial state, there will be
additional radiative effects due to self-dressing of the system
[25,26], which would obscure the quantum radiation we are
interested in.

We construct the ground state |φ0〉 of H ′ approximately as

|φ0〉 ≈ |g〉|0′〉, (13)

where |0′〉 is the lowest state of the following quadratic field
Hamiltonian HB :

HB ≡
∑

k

ωka
†
kak − �(0). (14)

By perturbation theory up to first order in �, we have

|0′〉 ≈ |0〉 +
∑
kk′

�kk′ (0)

ωk + ωk′
a
†
ka

†
k′ |0〉, (15)
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where

�kk′ (t ) = η∗
k (t )η∗

k′ (t )

4ω′
e(t )

(16)

is defined. Note that |g〉|0′〉 is the ground state of H0 +
σz�(0), and it can be used to approximate the ground state
of the full Hamiltonian H ′ = H0 + σz�(0) + H1 at t = 0
because H1 would bring higher-order corrections only.

It is worth noting that although |φ0〉 contains some photon
pairs, they are virtual photons not contributing to radiation.
This is understood because |φ0〉 is a photon-atom bound state,
and the corresponding photon density is localized around the
atom as a part of the dressing.

III. QUANTUM RADIATION

In this section we treat σz� as a weak perturbation and
examine the evolution of the system. By first-order time-
dependent perturbation theory, the system state |ψ (t )〉 in the
Schrödinger picture is given by

|ψ (t )〉 ≈ U (t )|ψ (0)〉 − i

∫ t

0
dτ U (t − τ )σz

×�(τ )U (τ )|ψ (0)〉, (17)

where U (t ) is the evolution operator generated by H0 + H1,
and the integral containing �(τ ) determines the amplitude
of photons generated during the evolution. We point out that
although the emitted photons described by |ψ (t )〉 are defined
in the transformed frame, they are also photons in the original
frame. This is because �(τ ) is already second order in ξ .
As long as we keep the accuracy to this order consistently,
the inverse transformation T † should be taken as an identity
operator when operating on the second term in Eq. (17).

In the following we examine two cases of photon pro-
duction. The photons generated in these two cases can be
considered as quantum radiation because they originate from
nonadiabatic perturbations to the quantum vacuum as in the
photon emission in DCE or Unruh radiation. To facilitate the
calculation, ηk is assumed to be a broad function of frequency
as the ones given in Eq. (B8) and Eq. (24). In addition, since
the Lamb shifts are typically a tiny fraction of ωe, we shall
approximate ω′

e ≈ ωe as a constant. In this way we can write
U (t ) ≈ e−i(H0+H1 )t with ω′

e replaced by ωe in H0.

A. Shaking the atom’s position

In this case the initial state is assumed to be the ground
state |φ0〉 obtained in Eq. (13), and the atom is shaken so
that its position rA(t ) is a function of time. This leads to a
time-dependent coupling gk (t ), whose explicit form in three-
dimensional free space is given in Appendix B. By using
Eqs. (13) and (15), and keeping terms to first order in �,
Eq. (17) becomes

|ψ (t )〉 ≈ U (t )|φ0〉 + i

∫ t

0
dτ U (t − τ )�(τ )|g〉|0〉. (18)

Note that we have replaced |φ0〉 by |g〉|0〉 in the second term
because the two-photon part in Eq. (15) is first order in �. In
addition, we have used σzU (t )|g〉|0〉 = −|g〉|0〉.

A further approximation can be made by observing that H1

has little effect on the photons in the dressed ground state |φ0〉.
This is because real transitions described by H1 are only sig-
nificant for photons at frequencies within several linewidths
around the atomic transition frequency. However, we note
that, due to our assumption of ηk , photon pairs in |φ0〉 spread
out very broadly in frequency space (over many linewidths),
and the fraction of near resonance photons is very small. Con-
sequently, we can write U (t )|φ0〉 ≈ U0(t )|φ0〉, where U0(t ) ≡
e−iH0t is the free evolution operator. The same argument can
also be applied to the integrand of Eq. (18), where most of
the photons generated by � are of the same far off-resonance
nature, so that it is justified to make the approximation U (t −
τ )�(τ )|g, 0〉 ≈ U0(t − τ )�(τ )|g, 0〉. With these approxima-
tions, the perturbed state becomes

|ψ (t )〉 ≈ U0(t )|φ0〉 − i

∫ t

0
dτ U0(t − τ )�(τ )|g, 0〉

= |g〉|0〉 + |g〉
∑
kk′

Ckk′ (t )a†
ka

†
k′ |0〉, (19)

where

Ckk′ (t ) = �kk′ (0)

ωk + ωk′
e−i(ωk+ωk′ )t

+ i

∫ t

0
dτ �kk′ (τ )e−i(ωk+ωk′ )(t−τ ). (20)

If the couplings, and hence �kk′ , are time independent, then
the freely propagating terms in the first line of Eq. (20) due to
U0(t )|φ0〉 will be exactly cancelled by the lower limit of the
time integral in the second line, and Ckk′ is simply the dressing
given in Eq. (15) without producing any freely propagating
photons.

However, if the couplings are time dependent, then the
propagating terms are no longer canceled, resulting in DCE or
Unruh type radiation. As an example, consider the following
coupling:

ηk (t ) = η0
k + ikmrm(eiωmtη+

k + e−iωmtη−
k ), (21)

where km, rm, η0
k , and η±

k are real, time-independent numbers.
In Appendix B we show that this is the form of coupling taken
by an electromagnetic field interacting with a two-level atom
moving in an externally prescribed nonrelativistic simple har-
monic motion, with frequency ωm = ckm and amplitude rm

under the long-wavelength approximation kmrm � 1. Taking
the continuum limit, the coupling ηk (t ) in Eq. (21) leads to a
two-photon emission rate given by Fermi’s golden rule:

R =π (kmrm)2

4ω2
e

∫
dDk

∫
dDk′ρ(k)ρ(k′)

× (
η+

k η0
k′ + η+

k′ η
0
k

)2
δ(ωk + ωk′ − ωm), (22)

where D is the dimension of k space and ρ(k) is the cor-
responding density of states of the field modes. The sum of
frequencies of the emitted photon pairs concentrates at ωm.

Specializing to D = 3 free space and using the definitions
of η0

k and η±
k in Appendix B, we find that the emission rate is
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given by

R ≈ C(kmrm)2

(
γ

ωe

)(
ωm

ωe

)7

γ, (23)

where γ is the spontaneous decay rate of the atom and C is a
proportionality constant of order about 10−2 [27]. The scaling
dependence of the system parameters in Eq. (23) was also
found in [7] with a different approach.

By Eq. (23), we note that R is extremely small because ωm

and γ are much lower than ωe in general. In particular, since
emitted photons are limited to frequencies below ωm, and the
density of state scales as ρ(k) ∝ k2 (for D = 3), the emission
rate is strongly suppressed when ωm is low. If we consider
the setup in D = 1 space where ρ(k) is uniform, for example,
in a one-dimensional waveguide, then R will scale as ( ωm

ωe
)3

instead of ( ωm

ωe
)7 above.

B. Shaking the atom’s internal state

In this case, gk’s are time independent but the atom is
shaken internally such that there is a time-dependent popu-
lation difference between the two atomic levels. This would
generate radiation through σz in the interaction term σz�.
Such radiation should be distinguished from the usual dipole
radiation interaction, because the latter is governed by atomic
coherence σ+ or σ− instead of σz. A simple way of changing
the atomic population is by absorption and reemission of a
photon. Here we show that a single photon scattering is always
accompanied by emission of multiple photons.

For simplicity, we consider the scattering in a one-
dimensional waveguide of length L (which will be taken to
infinity in the continuum limit) and cross-section area A,
in which the normal modes are labeled by k. A positive
(negative) k corresponds to a right- (left-) propagating mode
of frequency ωk = c|k|. Assuming x = 0 is the position of the
atom, the coupling is given by

ηk = 2ωe

ωe + ωk

√
ωk

2ε0h̄AL
d, (24)

where d is the electric dipole matrix element. We have sup-
pressed the polarization label of the field modes because the
dipole is assumed to be in parallel with one of the orthogonal
polarizations.

At t = 0, there is an incident single-photon wave packet
at a far distance from the atom, such that the atom prepared
in the dressed ground state |φ0〉 would not experience the
incident photon initially. The initial state of the system in the
transformed frame is given by

|ψ (0)〉 = W †|φ0〉, (25)

where W † is a creation operator of the single-photon wave
packet defined by

W † =
∑

k

Wka
†
k. (26)

Here Wk are coefficients determining the shape of the wave
packet. Noting that the dressing transformation T only mod-
ifies the field in the neighborhood of the atom; the transfor-
mation does not affect the initial photon as long as the wave

packet is sufficiently far away from the atom. Mathematically,
this corresponds to the condition [W †, T ] = [W †, T †] = 0,
so that the initial state in the original frame is T †|ψ (0)〉 =
T †W †|φ0〉 = W †T †|φ0〉.

Specifically, let us consider the following Lorentzian pho-
ton wave packet defined by

Wk =
√

γ ′

cL

e−i(k−ke )x0

−i(k − ke ) + γ ′
2c

, (27)

where x = x0 < 0 is the position of the front edge of the
packet on the left of the atom and γ ′ � ωe is a positive real
number characterizing the spectral width of the packet. In
addition, we consider cke = ωe so that the incident photon is
in resonance with the atom and travels to the right. Note that
W † commutes with T and T † as |x0| → ∞.

The perturbed state given by Eq. (17) can be evaluated
approximately. Together with the incident photon, there can
be three freely propagating photons in the final state after
the scattering is completed. The calculation is presented in
Appendix C; we find that the three-photon amplitude in the
long-time limit is approximately given by

|ψ3〉 ≈
∑
jkl

Cjkle
−i(ωjkl− ωe

2 )(t−t0 )a
†
j a

†
ka

†
l |0〉, (28)

where

Cjkl =
√

γ ′γ
2ωe

η∗
j η

∗
kη

∗
l(

i�l − γ

2

)(
i�jkl − γ

2

)(
i�jkl − γ ′

2

) . (29)

Here we have defined �l ≡ ωl − ωe; �jkl ≡ ωj + ωk + ωl −
ωe, and t0 ≡ |x0|

c
is the time needed for the photon wave packet

travel from its initial position to the atom’s.
Equation (29) indicates that Cjkl is significant when the

frequency sum of the three photons is near the atomic tran-
sition frequency ωe, i.e., ωj + ωk + ωl ≈ ωe. Since the nu-
merator η∗

kη
∗
j η

∗
l ∝ √

ωkωjωl , the three-photon amplitude on
the ωj + ωk + ωl ≈ ωe surface is not sensitive to the single-
photon resonance associated with the i�l − γ

2 denominator.
For example, in the case of γ ≈ γ ′ and ωj = ωk , Cjkl ∼
c3/2γ 1/2/ω2

eL
3/2 over the entire range ωl ∈ (γ, ωe − γ ).

IV. CONCLUSION

To conclude, we have developed a Hamiltonian for the
study of DCE or Unruh type radiation at the microscopic level.
Through the time-dependent dressing transformation T , we
are able to identify the interaction term σz� which governs
photon pair generation when modulations are applied to atom-
field couplings or the atom’s internal states. As demonstrated
by the examples in Sec. III, the radiation is extremely weak
in natural systems because the atomic transition frequency
ωe is generally much higher than the spontaneous emission
rate γ and mechanical modulation frequency ωm. However,
recent progress of realizing ultrastrong coupling in artificial
systems could be an important step towards the observation
of such radiation [28,29]. In particular, the value of γ can be
a significant fraction of ωe in waveguide QED [30]. We also
point out that related quantum radiation effects based on vari-
ous modulation schemes [10,29,31–34] and photon scattering
[16,35] in ultrastrong coupling regime have been reported
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recently. In the future, we hope to explore applications of the
time-dependent dressing transformation in ultrastrong cou-
pling problems and quantum radiation with multiple atoms.

APPENDIX A: DERIVATION OF THE TRANSFORMED
HAMILTONIAN

The derivation is similar to that in stationary systems (see,
for example, Ref. [15]); the main difference is the time depen-
dence of ξk (t ) which generates extra terms in the Hamiltonian:

H ′ = T HT † − iT
∂

∂t
T †. (A1)

By T = eσxX = cosh(X)I + sinh(X)σx , we have

T σzT
† = cosh(2X)σz − i sinh(2X)σy. (A2)

We can also consider T as a spin-dependent displacement
operator, with T akT

† = ak − σxξ
∗
k . As such,

T

[∑
k

ωka
†
kak +

∑
k

(g∗
k a

†
k + gkak )σx

]
T †

=
∑

k

ωk (a†
k − σxξk )(ak − σxξ

∗
k )

+
∑

k

[g∗
k (a†

k − σxξk ) + gk (ak − σxξ
∗
k )]σx. (A3)

Next we employ the expansion,

eS ∂

∂t
e−S = −Ṡ − 1

2
[S, Ṡ] − 1

6
[S, [S, Ṡ]] − · · · , (A4)

which gives

T
∂

∂t
T † = − σxẊ − 1

2
[X, Ẋ] − · · ·

= − σx

∑
k

(ξ̇ ∗
k a

†
k − ξ̇kak ) − 1

2

∑
k

(ξ ∗
k ξ̇k − ξkξ̇k

∗
),

(A5)

where ξ̇k = d
dt

ξk . This is exact since the second-order nested
commutator is a c number, causing all higher-order nested
commutators to vanish. The transformed Hamiltonian is there-
fore

H ′ =
∑

k

ωk (a†
k − σxξk )(ak − σxξ

∗
k )

+
∑

k

[g∗
k (a†

k − σxξk ) + gk (ak − σxξ
∗
k )]σx

+ ωe

2

{
cosh

[
2

∑
k

(ξ ∗
k a

†
k − ξkak )

]
σz

− i sinh

[
2

∑
k

(ξ ∗
k a

†
k − ξkak )

]
σy

}

+ iσx

∑
k

(ξ̇ ∗
k a

†
k − ξ̇kak ) + i

2

∑
k

(ξ ∗
k ξ̇k − ξkξ̇

∗
k ). (A6)

We expand cosh(2X) and sinh(2X) in powers of ξ . By keep-
ing terms up to ξ 2, we obtain the form of H ′ given in Eq. (4).
Note that for quantum states near the vacuum considered in

this paper, ξ 3 and higher power terms in the expansion can be
neglected provided that

∑
k |ξk|2 � 1.

APPENDIX B: COUPLING ηk OF A MOVING ATOM IN
FREE SPACE

The interaction between a moving atom and the electro-
magnetic field takes the following form under the dipole
approximation:

Hint = − d · E⊥(rA) + 1

2mA

{pA · [d × B(rA)]

+ [d × B(rA)] · pA}, (B1)

where d is the electric dipole of the atom, E⊥(rA) and B(rA)
are the transverse electric and magnetic fields at the position
of the atom, rA, pA is the canonical momentum of the center
of mass of the atom, and mA is the mass of the atom. The
second term is known as the Röntgen term [36,37], which
arises from the magnetic field interacting with the magnetic
dipole moment due to the motion of the electric dipole.

By expanding the field operators in plane-wave modes in
free space, the interaction Hamiltonian can be written as

Hint =
∑
k,s

[gk,s (t )ak,s + g∗
k,s (t )a†

k,s]σx, (B2)

where

gk,s = χke
ik·rA(t ){d̂ · ε̂k,s + β(t )

· [ε̂k,s (d̂ · k̂) − k̂(d̂ · ε̂k,s )]}, (B3)

with

χk =
√

ωk

2ε0h̄V
d, (B4)

d = 〈e|er|g〉 = dd̂, (B5)

k = kk̂, (B6)

β(t ) = ṙA(t )

c
. (B7)

Here V is the quantization volume and εk,s is the polarization
unit vector of mode k with s polarization. All hatted quantities
are unit vectors.

Next we consider the trajectory of the atom given by
rA(t ) = rm cos ωmt r̂m with rmωm � c in the nonrelativistic
regime. In addition, we assume the long-wavelength condition
krm � 1 for field modes that are effectively involved in the
two-photon emission. This condition is consistent with the
fact that the two photons emitted have their sum of frequencies
around ωm for nonrelativistic motion. Consequently, we take
the approximation eik·rA(t ) ≈ 1 + ik · rA(t ), and obtain

ηk,s (t ) = η0
k,s + ikmrm(eiωmtη+

k,s + e−iωmtη−
k,s ), (B8)

where km = ωm/c, and we have defined the following real
quantities:

η0
k,s ≡ χk

1 + ωk

ωe

2(d̂ · ε̂k,s ), (B9)
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η±
k,s ≡ χk

1 + ωk

ωe

{(
k
km

· r̂m

)
(d̂ · ε̂k,s )

± r̂m · [ε̂k,s (d̂ · k̂) − k̂(d̂ · ε̂k,s )]

}
. (B10)

APPENDIX C: CALCULATION OF THE THREE-PHOTON
AMPLITUDE GENERATED BY SINGLE-PHOTON

SCATTERING

We start with the initial state Eq. (25),

|ψ (0)〉 =
(

1 +
∑
kk′

�kk′

ωkk′
a
†
ka

†
k′

) ∑
k

Wka
†
k|g, 0〉, (C1)

where �kk′ are time independent.
The first-order time-dependent state is given by the second

term in Eq. (17). To evaluate the integral, we note that the
dressed photon pairs have a very broad spectrum, so they
barely interact with the atom through U (t ). Hence we can
approximate their evolution under U (t ) as free, i.e.,

U (t )
∑
kk′

�kk′

ωkk′
a
†
ka

†
k′U

†(t ) ≈
∑
kk′

�kk′

ωkk′
a
†
ka

†
k′e

−i(ωk+ωk′ )t .

(C2)

Hence for the first term in Eq. (17),

U (t )|ψ (0)〉 ≈
(

1 +
∑
kk′

�kk′

ωkk′
a
†
ka

†
k′e

−i(ωk+ωk′ )t

)

× U (t )
∑
k′′

Wk′′a
†
k′′ |g, 0〉. (C3)

As we shall see, the last term in Eq. (C3) does not contribute
to three-photon emission because its propagating part will be
canceled by the second term in Eq. (17).

For the second term in Eq. (17), we focus on the part that
corresponds to three photons in the final state, which is

−i

∫ t

0
dτ U (t − τ )

∑
kk′

�kk′a
†
ka

†
k′σzU (τ )W †|g, 0〉,

where we have dropped the dressing terms in |ψ (0)〉 since
their contributions are of higher order. Next we insert I =

U †(t − τ )U (t − τ ) after a
†
ka

†
k′ and make approximations sim-

ilar to Eq. (C2); this gives

− i

∫ t

0
dτ U (t − τ )

∑
kk′

�kk′a
†
ka

†
k′σzU (τ )W †|g, 0〉

≈ +i

∫ t

0
dτ

∑
kk′

�kk′a
†
ka

†
k′e

−i(ωk+ωk′ )(t−τ )U (t )W †|g, 0〉

− 2i

∫ t

0
dτ

∑
kk′

�kk′a
†
ka

†
k′e

−i(ωk+ωk′ )(t−τ )

× U (t − τ )|e〉〈e|U (τ )W †|g, 0〉, (C4)

where we have replaced σz by 2|e〉〈e| − 1. In the first integral
of Eq. (C4), the lower limit cancels the propagating term
in Eq. (C3), leaving the upper limit as the original dressed
photon pair which is bounded to the atom after the scattering.

The second integral of Eq. (C4) contains the photon pair
production terms dependent on population in the atomic ex-
cited state. It is this integral that determines the three-photon
emission.

To evaluate U (t − τ )|e〉〈e|U (τ )W †|g, 0〉, we note that

U (t )|e〉 = e(−γ−iωe )t/2|e〉

+
∑

k

η∗
ke

−iωet/2

γ

2 − i�k

(
e−i�k t − e−γ t/2

)|g, k〉 (C5)

is the well-known solution to spontaneous atomic decay. In
addition, if we choose Wk to take the Lorentzian form given
by Eq. (27), then the single-photon scattering excited-state
amplitude is

〈e|U (τ )W †|g, 0〉 = 2i
√

γ ′γ
γ − γ ′

(
e− γ

2 τ − e− γ ′
2 τ

)
e−i ωe

2 τ . (C6)

By using Eqs. (C5)- and (C6), and working out the second
integral of Eq. (C4), we obtain the freely propagating three-
photon amplitude given by Eqs. (28)- and (29) in the long-
time limit.
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