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Geometrical optics and geodesics in thin layers
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The propagation of a light ray in a thin layer (film) within geometrical optics is considered. It is assumed that
the ray is captured inside the layer due to reflecting walls or total internal reflection (in the case of a dielectric
layer). It has been found that for a very thin film (the length scale is imposed by the curvature of the surface at a
given point) the equations describing the trajectory of the light beam are reduced to the equation of a geodesic
on the limiting curved surface. There have also been found corrections to the trajectory equation resulting from
the finite thickness of the film. Numerical calculations performed for a couple of exemplary curved layers (cone,
sphere, torus, and catenoid) confirm that for thin layers the light ray which is repeatedly reflected propagates
along the curve close to the geodesic but as the layer thickness increases, these trajectories move away from each
other. Because the trajectory equations are complicated nonlinear differential equations, their solutions show
some chaotic features. Small changes in the initial conditions result in remarkably different trajectories. These
chaotic properties become less significant the thinner the layer under consideration.
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I. INTRODUCTION

Physics played out in thin structures becomes increasingly
important due to the miniaturization in electronics, the ap-
pearance of new materials like graphene, and the intensive
development of nanophysics. In particular the issue of the
propagation of electromagnetic waves trapped in thin films
(layers) is expected to find various possible applications in
optoelectronics, optical communication, or integrated optics
[1–3]. This trapping can be achieved by reflecting walls of
various shapes or in thin dielectric layers possessing some
refractive index due to the phenomenon of the total internal re-
flection as it happens in the so-called open waveguides [4–10].

The propagation of light in such structures is often depicted
within the two-dimensional reduced theory of electromag-
netism [11–14], which is used as a model. It is true that
the electromagnetic modes in a layer to some extent may
be described in that way but certain limitations have been
established which affect the propagation of electromagnetic
waves [14,15].

One should mention also the work by Willatzen [16]
concerned with the propagation of electromagnetic waves
along curved surfaces. It refers, however, to Surface plasmon
polaritons (SPPs) traveling along a metal-dielectric interface,
actually without the layer intersurface space. Contrary to
a typical dielectric layer, where fields are evanescent only
outside of the limiting surfaces, SPPs exponentially decay on
both sides of the interface (either because of the conductor
properties or due to the total internal reflection), leaving only
tangent directions accessible for the free propagation [17].
The surface was assumed to be corrugated and curved only in
the direction of the wave propagation, which narrows down
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the variety of allowed systems. Consequently the solutions
depend only on one tangent variable. Finally, the role of the
curvature was pointed out.

In the present work we concentrate in turn on geometrical
optics. As a rule a light ray traveling in the two-dimensional
curved surface follows a geodesic due to Fermat’s principle.
In a real layer, even very thin, this ray is continuously reflected
between the walls, consequently following a very complicated
path. The aim of this work is to clarify how these two trajec-
tories are related to each other and under what circumstances
the physical one may be treated as a geodesic drawn on the
two-dimensional surface (i.e., one of the walls).

In some special cases the wave equations inferred from
Maxwell’s electromagnetism in thin curved media have been
derived by a limiting procedure [18,19]. As regards the
geometrical optics the property of the rays traveling along
geodesics has been exploited in the so-called geodesic lenses,
where the light propagates in a medium of space-dependent
refractive index [20–22]. However, the problem we tackle
below to our knowledge has not been addressed and it is
commonly taken for granted that the propagation in a thin
layer corresponds to the two-dimensional geodesic [23,24]. It
should also be noted that some experimental results involving
the propagation of real light beams in such circumstances have
been obtained, pointing at the role of the intrinsic curvature of
a given medium [25]. The extrinsic curvature turned out to be
inessential as long as the light is trapped within the layer.

The present paper is organized as follows. In Sec. II the ge-
ometrical problem of a light ray repeatedly reflected between
two curved walls is considered. Assuming that the layer in
between is thin, a differential equation for the trajectory as
projected onto one of the walls is derived and the deviations
from the corresponding geodesics are identified. As expected
these deviations become more significant for thicker layers,
particularly in the regions where the curvature is large.
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The layer in question will be parametrized as r (x1, x2, w),
where the first two parameters serve as Euler’s coordinates on
the surface and the derivative ∂ r/∂w points at the direction
perpendicular to the walls (i.e., w labels different surfaces).
By the appropriate choice of the scale for the parameter w we
can ensure that |∂ r/∂w| = 1.

The metric tensor referred to throughout the paper as gij

is defined on the surface. It is then the two-dimensional
object (i, j = 1, 2) expressed through x1, x2 and of course w

(which is, however, constant on a given surface) and not that
of the three-dimensional (3D) space. The dependence on w

means that gij ’s in general differ on the distinct boundaries.
In order to find the true trajectory, one has to abandon the
surface at least infinitesimally, and therefore not surprisingly
the derivative ∂gij /∂w appears in the formulas.

In this paper we deal with layers of uniform thickness or,
more precisely, of the two limiting surfaces (walls) defined
by the relations r (x1, x2, w) and r (x1, x2, w + δw), where
δw is small and constant while moving along the surfaces.
All layers considered as examples comply with these require-
ments. Surely one can imagine more complicated situations in
which a given layer has different thicknesses at various points.
Then the limiting procedure would be in a sense “local”. Such
situations remain beyond the scope of the present work.

We also assume that the layers, although very thin, are
thick with respect to the wavelengths of the propagating light.
Otherwise the rules of the geometrical optics could not be
applied. The second assumption, which seems reasonable too,
is that the length scales imposed by surface normal curvatures
(e.g., the curvature radii) are large with respect to the layer
thickness. In other words one can say that the layer is rela-
tively “smooth” without sharp warps. Without this assumption
we could not expect the light ray to be trapped within the
dielectric layer since it might happen that at a given point the
angle of incidence could become inferior to the critical angle.

In Sec. III the several particular examples of truly curved
surfaces, both with positive and negative intrinsic curvature,
are dealt with in detail. They are cone, sphere, torus, and
catenoid. The deviations from the geodesics on these surfaces
are presented on the plots found by the numerical solutions of
the trajectory equations.

Throughout the paper, Einstein’s summation convention
over repeated indices is constantly used.

II. THE EQUATION OF THE LIGHT-RAY TRAJECTORY

Let us assume that a light ray travels along the layer and is
reflected by the walls. The key equation for its trajectory is

k̂
′ = k̂ − 2(k̂ · ∂wr (x ′1, x ′2, w + δw))

× ∂wr (x ′1, x ′2, w + δw), (1)

where k̂ and k̂
′
are unit vectors indicating the directions of the

incident and reflected rays. Equation (1) simply constitutes the
statement that the angle of incidence for a ray being reflected
at r (x ′1, x ′2, w + δw) equals the angle of reflection. Upon
multiplying both sides by k′, we can rewrite it in the form

k′ = λ[k − 2(k · ∂wr (x ′1, x ′2, w + δw))

× ∂wr (x ′1, x ′2, w + δw)], (2)

FIG. 1. The path of the light ray reflected by the walls of the layer
defined by r (x1, x2, w) and r (x1, x2, w + δw).

where λ = k′/k is a certain normalization constant since k′
and k can in general be of unequal lengths. This happens if the
surfaces are bent in such a way that the distances between the
subsequent reflection points vary as shown in Fig. 1. Squaring
both sides of this equation, it can be easily verified that

k′2 = λ2[k − 2(k · ∂wr (x ′1, x ′2, w + δw))

× ∂w r (x ′1, x ′2, w + δw)]2 = λ2k2, (3)

where the normalization (8) of the normal vector has been
used.

In order to shorten the notation, we henceforth denote

r = r (x1, x2, w), (4a)

r ′ = r (x ′1, x ′2, w), (4b)

r ′′ = r (x ′′1, x ′′2, w), (4c)

and also

δxi = x ′i − xi, δx ′i = x ′′i − x ′i . (5)

The tangent vectors to the surface r (x1, x2, w) at a given
point correspond to the derivatives with respect to x1 and x2,
as to which the following notation is used:

∂

∂xi
r (x1, x2, w) = ∂i r (x1, x2, w) = ∂i r, (6a)

∂

∂x ′i r (x ′1, x ′2, w) = ∂ ′
i r (x ′1, x ′2, w) = ∂ ′

i r
′, (6b)

and similarly for the higher derivatives. According to the
chosen parametrization spoken of in the Introduction, the
normal vector

∂wr (x1, x2, w) = ∂

∂w
r (x1, x2, w) (7)

is normalized to unity,

∂wr · ∂wr = 1, (8)

and orthogonal to the tangent vectors,

∂i r · ∂wr = 0, i = 1, 2. (9)

As to the higher derivatives with respect to w one can show
that

∂2
wr · ∂w r = 1

2 ∂w(∂wr · ∂wr ) = 0, (10)

thanks to the normalization. Next, using twice the formula for
the derivative of the product of functions, it can be obtained
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that

∂2
w r · ∂i r = ∂w(∂wr · ∂i r ) − ∂wr · ∂w∂i r

= −∂i (∂wr · ∂wr ) + ∂i∂wr · ∂wr

= ∂i∂w r · ∂wr, (11)

where ∂i (∂wr · ∂wr ) = 0 and ∂w(∂wr · ∂i r ) = 0 have been
used again due to the normalization (8) and orthogonality (9),
respectively. This in turn entails

∂2
wr · ∂i r = ∂i∂wr · ∂wr = ∂w(∂i r · ∂w r ) − ∂i r · ∂2

wr

= −∂2
wr · ∂i r, (12)

which implies ∂2
wr · ∂i r = 0. Since the vectors ∂wr and ∂i r

(i = 1, 2) constitute a basis in the three-dimensional space
and the vector ∂2

wr turns out to have the null decomposition
onto them, one can infer that it is simply a null vector.
Consequently also the higher derivatives with respect to w

vanish (for arbitrary x1, x2). Thereby, the parametrization of
the surface r (x1, x2, w) has to linearly depend on w. It also
means that

∂wr (x1, x2, w) = ∂wr (x1, x2, w + δw), (13)

which justifies the notation adopted in Fig. 1. The normal
passing through the point r (x1, x2, w) is the same as that
passing through r (x1, x2, w + δw).

Let us now project the vectorial equation (2) subsequently
onto ∂wr ′ and ∂ ′

i r
′, obtaining the following set, upon exploit-

ing the normalization and orthogonality conditions (8) and (9)
as well as (13):

∂wr ′ · k′ = −λ∂wr ′ · k, (14a)

∂ ′
i r

′ · k′ = λ∂ ′
i r

′ · k, i = 1, 2. (14b)

Eliminating λ, one gets the fundamental equation for the light-
ray trajectory:

(∂ ′
i r

′ · k′) (∂wr ′ · k) + (∂ ′
i r

′ · k) (∂wr ′ · k′) = 0. (15)

From Fig. 1 it is obvious that

k = r (x ′1, x ′2, w + δw) − r (x1, x2, w)

= r (x ′1, x ′2, w + δw) − r ′ + r ′ − r, (16a)

k′ = r (x ′′1, x ′′2, w) − r (x ′1, x ′2, w + δw)

= r ′′ − r ′ + r ′ − r (x ′1, x ′2, w + δw), (16b)

and according to the results (10)–(13) the following expres-
sions can be substituted into Eq. (15) for k and k′:

k = δw ∂wr ′ + r ′ − r, (17a)

k′ = −δw ∂wr ′ + r ′′ − r ′. (17b)

Thanks to the normalization of the normal vector and its
orthogonality to the tangent ones, Eqs. (16) can be rewritten
in the form

δw ∂ ′
i r

′ · (r ′′ − 2r ′ + r ) + [∂ ′
i r

′ · (r ′′ − r ′)] [∂wr ′ · (r ′ − r )]

+ [∂ ′
i r

′ · (r ′ − r )] [∂wr ′ · (r ′′ − r ′)] = 0. (18)

In the case of thin films dealt with in the present paper all
terms of the above equation can be expanded in powers of δw.

From the definitions of r , r ′, and r ′′ (see Fig. 1) it stems, that
the quantities δxi and δx ′i are of the same order too, since
they are proportional to δw. In turn the difference δx ′i − δxi

is right away of order δw2.
For our purposes the terms up to δw4 should be preserved

in Eq. (18). The expansions are performed in the standard way.
First let us concentrate on the expression

r ′′ − 2r ′ + r � δx ′j ∂ ′
j r ′ + 1

2 δx ′j δx ′k ∂ ′
j ∂

′
k r ′

− δxj ∂j r − 1
2 δxj δxk ∂j ∂k r. (19)

The third-order terms are omitted since they cancel in the de-
sired order. No higher ones are needed because of the presence
of the coefficient δw in the first expression of the quantity
(19). Expanding Eq. (19) further in order to get rid of the
primed quantities, we obtain

r ′′ − 2r ′ + r

� (δx ′j − δxj )∂j r + δxj δxk ∂j ∂k r

+ (δx ′j − δxj )δxk ∂j ∂k r + δxj δxkδxl ∂j ∂k∂l r. (20)

The former two terms are of order δw2 and the latter ones
of δw3. As to the expression ∂ ′

i r
′ standing in front of the

quantity (19) in Eq. (18), it is sufficient to keep the first two
terms only:

∂i r ′ � ∂i r + δxj ∂i∂j r. (21)

Combining Eqs. (20) and (21), we can rewrite Eq. (18) as

(δx ′j − δxj )∂i r · ∂j r + δxj δxk∂i r · ∂j ∂k r

= −(δx ′j − δxj )δxk (∂i r · ∂j ∂k r + ∂i∂k r · ∂j r )

−δxj δxkδxl ∂l (∂i r · ∂j ∂k r ) − 1

δw
Vi (x

1, x2, w), (22)

where we have introduced the auxiliary vector

Vi (x
1, x2, w) = [∂ ′

i r
′ · (r ′′ − r ′)][∂wr ′ · (r ′ − r )]

+ [∂ ′
i r

′ · (r ′ − r )][∂wr ′ · (r ′′ − r ′)], (23)

which still has to be expanded up to δw4.
It is well known that the two-dimensional metric tensor is

defined on the surface r (x1, x2, w) (w being constant) as

gij = ∂i r · ∂j r, (24)

and the Christoffel symbols of the first kind may be given the
following form:

�ijk = ∂i r · ∂j ∂k r. (25)

If so, formula (22) can be now rewritten as

gij (δx ′j − δxj ) + �ijkδx
j δxk

= −(�ijk + �jik )(δx ′j − δxj )δxk

−�ijk,lδx
j δxkδxl − 1

δw
Vi (x

1, x2, w), (26)

with (· · · ),l denoting the differentiation with respect to xl .
Now let us pass to the expression for Vi and expand it up

to the desired order. We have to consider term by term the
following factors appearing in Eq. (23). In order to save space
the expansions below are “minimal” in the sense that the terms
of order δw3 that formally should appear in Eqs. (27a) and
(27b) but cancel in the expression for Vi are omitted:
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∂ ′
i r

′ · (r ′ − r ) � δxj ∂i r · ∂j r + δxj δxk
(

1
2 ∂i r · ∂j ∂k r + ∂i∂j r · ∂k r

)
, (27a)

∂ ′
i r

′ · (r ′′ − r ′) � δxj ∂i r · ∂j r + δxj δxk
(

3
2 ∂i r · ∂j ∂k r + ∂i∂j r · ∂k r

) + (δx ′j − δxj ) ∂i r · ∂j r, (27b)

∂wr ′ · (r ′ − r ) � − 1
2 δxiδxj ∂wr · ∂i∂j r + 1

2 δxiδxj δxk
(

1
3 ∂wr · ∂i∂j ∂k r + ∂w∂i r · ∂j ∂k r + ∂w∂i∂j r · ∂k r

)
, (27c)

∂wr ′ · (r ′′ − r ′) � 1
2 δxiδxj ∂w r · ∂i∂j rδxi (δx ′j − δxj )∂wr · ∂i∂j r + δxiδxj δxk

(
1
3 ∂w r · ∂i∂j ∂k r + 1

2 ∂w∂i r · ∂j ∂k r
)
. (27d)

Next, exploiting the transposition symmetry of the expres-
sions like δxiδxj as well as the property that

∂wr · ∂i∂j r = −∂w∂i r · ∂j r, (28)

which stems from the orthogonality of the tangent and normal
vectors, one obtains

Vi (x
1, x2, w) = 1

2 glk,w[gij (δxj (δxk (δx ′l − δxl )

+ δxl (δx ′k − δxk )) − (δx ′j − δxj )δxkδxl )

−�ijnδx
j δxkδxlδxn]. (29)

It should be noted that this expression is of order δw4,
which means that the second-order terms on the left-hand
side (lhs) of Eq. (26) remain intact. Collecting all terms and
multiplying by the inverse metric tensor gij , we find the
following equation for the light-ray trajectory:

δx ′i − δxi + �i
jkδx

j δxk

= −gil[(�ljk + �j lk )(δx ′j − δxj )δxk + �ljk,mδxj δxkδxm]

− 1

2δw
glk,w[δxi (δxk (δx ′l − δxl ) + δxl (δx ′k − δxk ))

− (δx ′i − δxi )δxkδxl − �i
jmδxj δxkδxlδxm]. (30)

Up to the considered order one can replace the expressions
δx ′i − δxi with

δx ′i − δxi �−→ −�i
jkδx

j δxk, (31)

which leads to the final formula,

δx ′i − δxi + �i
jkδx

j δxk

= gil
[
(�lnj + �nlj )�n

km − �ljk,m

]
δxj δxkδxm

+ δw−1glk,w�l
jmδxiδxj δxkδxm, (32)

where �i
jk = gil�ljk are Christoffel symbols of the second

kind.
In order to obtain the differential equations for coordinates

x1, x2 on the surface, one has to observe that δw plays a
double role in our considerations. First, it is connected with
the thickness of the considered layer, and second, it defines
the “infinitesimal” step while passing from xi to xi + δxi .
Therefore, whenever the quantity δxi/δw appears it can be
replaced with dxi/dt , where for stressing this special role the
name of the parameter along the curve has been changed into
t . In turn the quantity (δx ′j − δxj )/(δw)2 is just the second
symmetric derivative, which for a twofold differentiable func-
tion simply equals d2xi/dt2 [26]. In that way one gets the

differential equation for the light-ray trajectory:

d2xi

dt2
+ �i

jk

dxj

dt

dxk

dt
= δw

{
gil

[
(�lnj + �nlj )�n

km

−�ljk,m

dxj

dt

dxk

dt

dxm

dt

]

+ glk,w�l
jm

dxi

dt

dxj

dt

dxk

dt

dxm

dt

}
. (33)

For very thin layers, i.e., for δw → 0, the right-hand side
(rhs) disappears, and the equation of a geodesic is obtained,
as it might be expected:

d2xi

dt2
+ �i

jk

dxj

dt

dxk

dt
= 0. (34)

For more thick layers the expression on the rhs of Eq. (33)
constitutes the correction to the geodesic and modifies the
trajectory. The first term, which contains the third power of
derivatives with respect to the parameter t , comes from the
distinct inclination of the normal vector ∂w r at different points
of reflection and the term with the fourth power of derivatives
is the consequence of the different length of vectors k and k′.

The terms standing on the rhs of Eq. (33) as compared to
�i

jkẋ
j ẋk can be estimated to be of order δg/g and δg′/g′,

where δg (δg′) denotes the change of a given element of
the metric tensor (or its derivative) while moving tangen-
tially along the surface by the distance corresponding to
2δw (strictly speaking it is the distance between the points
(x1, x2, w) and (x ′′1, x ′′2, w) in Fig. 1). This estimate holds
for truly curved surfaces, where all Christoffel symbols cannot
simultaneously vanish. For surfaces without intrinsic curva-
ture, as for instance the cylindrical one, only the second-
derivative term survives, leading to the trivial equation. It
should be emphasized that within the geometrical optics there
is no length scale imposed by the wavelength of the propagat-
ing light. The only such scales refer to the layer thickness and
its normal curvatures so the appearance of the quantities such
as δg/g might have been expected.

III. EXAMPLES

A. Cone

An exemplary cone surface can be described by the relation
r (ρ, φ,w) (w being constant) with

x(ρ, φ,w) = (ρ + w/
√

2) cos φ, (35a)

y(ρ, φ,w) = (ρ + w/
√

2) sin φ, (35b)

z(ρ, φ,w) = ρ − w/
√

2. (35c)
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FIG. 2. The light-ray trajectories (black lines) generated out of Eqs. (42) as compared to the geodesic (gray line) for a thin cone layer. The
exemplary cone surface corresponds to the value w = 0. The subsequent values of δw are 0.01, 0.02, 0.03, and 0.04, for which δw/ρ = 0.005,
0.01, 0.015, and 0.02 if calculated at the starting point of each trajectory. When approaching the cone tip these values increase proportionally
to 1/ρ.

The requirements (8) and (9) are satisfied in the obvious
way. On the conical surface the parameter ρ plays the role of
the coordinate x1 and φ that of x2. It can be easily verified that
the cone equation is satisfied,

x2 + y2 = (z + w
√

2)2, (36)

with the apex at z = −√
2 w. In these coordinates the metric

tensor has the form

gij =
[

2 0

0 (ρ + w/
√

2)2

]
, (37)

and the only nonzero derivatives of its elements are

gφφ,ρ = 2(ρ + w/
√

2), gφφ,w =
√

2 ρ + w. (38)

Now the Christoffel symbols can be easily calculated. The
only nonvanishing ones of the first kind are

�φφρ = �φρφ = ρ + w/
√

2, �ρφφ = −(ρ + w/
√

2),
(39)

and of the second kind are

�
φ
φρ = �

φ
ρφ = (ρ + w/

√
2)−1, �

ρ
φφ = − 1

2 (ρ + w/
√

2).

(40)

In order to explicitly write out Eq. (33) we also need the values
of certain derivatives:

�φφρ,ρ = �φρφ,ρ = 1, �ρφφ,ρ = −1. (41)

This leads to the following trajectory equations:

d2ρ

dt2
− 1

2
(ρ + w/

√
2)

(
dφ

dt

)2

= δw

[
1

2

dρ

dt

(
dφ

dt

)2

+ 2
√

2

(
dρ

dt

)2(
dφ

dt

)2]
, (42a)

d2φ

dt2
+ 2

ρ + w/
√

2

dρ

dt

dφ

dt

= δw

[
2

(ρ + w/
√

2)2

(
dρ

dt

)2
dφ

dt
+ 2

√
2

dρ

dt

(
dφ

dt

)3]
.

(42b)

In Fig. 2 the light-ray trajectories (plotted in black), which
represent the solutions of the full equations (42), are provided
for increasing values of δw. It can be observed that for a thin

layer the light ray follows the geodesic (plotted in gray). For
larger values of the layer thickness the true trajectory slightly
deviates from the geodesic. It especially happens close to the
cone apex, where one of the normal curvatures becomes large.
It is understandable since the right-hand sides of Eq. (42),
which constitute corrections to the geodesic equation, turn
out to be of order δw/ρ (for a path perpendicular to the
symmetry axis) as compared to the second terms on the
left-hand sides, i.e., those in Eq. (34) containing Christoffel
symbols. Therefore, one can conclude that, roughly speaking,
whenever one thinks about the small value of δw, that means
“small as compared to the normal curvature radii.” This is
confirmed by the presented plots because the deviation from
the geodesic manifests mainly for small values of ρ.

For larger values of δw the trajectories become somewhat
chaotic: the small modifications of the parameters of the
incoming ray (the direction of the ray or its inclination with
respect to the surface) result in significantly distinct trajec-
tories. This is the typical behavior for nonlinear differential
equations like Eq. (33). The same observations refer to the
subsequent plots involving other layers.

B. Sphere

The parametrization of the sphere satisfying Eqs. (8) and
(9) is easy to write:

x(θ, φ,w) = (R + w) sin θ cos φ, (43a)

y(θ, φ,w) = (R + w) sin θ sin φ, (43b)

z(θ, φ,w) = (R + w) cos θ, (43c)

where x1 = θ , x2 = φ, and R is the sphere radius. The metric
tensor on the sphere has the standard form, apart from the
presence of w,

gij =
[

(R + w)2 0

0 (R + w)2 sin2 θ

]
, (44)

and performing the simple differentiation one gets

gθθ,w = 2(R + w), gφφ,w = 2(R + w) sin2 θ,

gφφ,θ = (R + w)2 sin 2θ. (45)

From that the known expressions for the Christoffel sym-
bols can be obtained:

�φφθ = �φθφ = −�θφφ = 1
2 (R + w)2 sin 2θ, (46)
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FIG. 3. Same as Fig. 2 but for a thin spherical layer. For the limiting surface R = 1, w = 0 is chosen. The subsequent values of δw are
0.01, 0.03, 0.07, and 0.1, which are simultaneously equal to δw/R.

and also

�
φ
φθ = �

φ
θφ = cot θ, �θ

φφ = − 1
2 sin 2θ, (47)

the others being zero. The only derivatives that come into play
are those over θ :

�φφθ,θ = �φθφ,θ = −�θφφ,θ = (R + w)2 cos 2θ. (48)

The light-ray trajectory equations (33) take the following
form:

d2θ

dt2
− 1

2
sin 2θ

(
dφ

dt

)2

= δw

[
cos 2θ

dθ

dt

(
dφ

dt

)2

+ (R + w)

× sin 2θ

(
dθ

dt

)2(
dφ

dt

)2]
, (49a)

d2φ

dt2
+ 2 cot θ

dθ

dt

dφ

dt

= δw

[
2

sin2 θ

(
dθ

dt

)2
dφ

dt
+ (R + w) sin 2θ

dθ

dt

(
dφ

dt

)3]
.

(49b)

It can be shown that the rhs is smaller with respect to the
lhs by the factor δθ (or similarly δφ), i.e., by the change in
the angle θ after two reflections of the light ray, as shown
in Fig. 1. Naturally it is the quotient of the arclength and
the radius, which obviously is of the order of δw/R. Once
again we come to the conclusion that the thickness of the layer
should be referred to the normal curvature radius.

The deviations of the trajectory from the geodesic, which is
a great circle, are shown in Fig. 3 for subsequently increasing
values of the layer thickness. The incoming ray is chosen
oriented along a “parallel.” As in the case of the cone the
deviations from a geodesic increase with growing δw. Due to

the symmetry no deviations would be observed if the incident
ray were moving along a great circle.

C. Torus

The coordinates describing an exemplary torus may be
chosen to be

x(θ, φ,w) = (R + w sin θ ) cos φ, (50a)

y(θ, φ,w) = (R + w sin θ ) sin φ, (50b)

z(θ, φ,w) = w cos θ, (50c)

where R is a parameter. It is straightforward to verify that
conditions (8) and (9) are fulfilled. As before, the angle θ

corresponds to x1 and φ to x2.
The metric tensor on this surface can be easily calculated:

gij =
[
w2 0

0 (R + w sin θ )2

]
, (51)

and the only nonzero derivatives of its elements are

gφφ,θ = 2w(R + w sin θ ) cos θ, gφφ,w = 2w. (52)

For the Christoffel symbols of the first kind the following
expressions are obtained:

�φφθ = �φθφ = w(R + w sin θ ) cos θ,

�θφφ = −w(R + w sin θ ) cos θ, (53)

with the derivatives

�φφθ,θ = �φθφ,θ = −�θφφ,θ = w2 cos 2θ − Rw sin θ. (54)

The symbols of the second kind are also needed:

�
φ
φθ = �

φ
θφ = w cos θ

R + w sin θ
,

�θ
φφ = − (R + w sin θ ) cos θ

w
. (55)

Now we are in a position to assemble our fundamental
differential equations (33):

d2θ

dt2
− (R + w sin θ ) cos θ

w

(
dφ

dt

)2

= δw

[(
cos 2θ − R sin θ

w

)
dθ

dt

(
dφ

dt

)2

+ 2 cos θ (w sin θ − R)

(
dθ

dt

)2(
dφ

dt

)2]
, (56a)

d2φ

dt2
+ 2w cos θ

R + w sin θ

dθ

dt

dφ

dt
= δw

[
2w

w + R sin θ

(R + w sin θ )2

(
dθ

dt

)2
dφ

dt
+ 2 cos θ (w sin θ − R)

dθ

dt

(
dφ

dt

)3]
. (56b)
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FIG. 4. Same as Fig. 2 but for a thin toroidal layer. For the limiting torus surface, w = 2 and R = 10. The subsequent values of δw are
0.005, 0.01, 0.02, and 0.03.

It can be checked that in order to be allowed to neglect
the right-hand sides, the quantities δw/R and δw/w have to
be tiny, which means that the principal curvature radii should
be large with respect to δw. The resulting trajectories for
various values of δw are shown in Fig. 4. They confirm the
observations made for the cone and sphere: the thicker the
layer, the more the curves depart from the geodesic. When
changing the initial parameters for the light ray their chaotic
character can also be revealed. If the incident ray is oriented
along the curve corresponding to θ = ±π/2 or φ = const, no
deviations are observed.

D. Catenoid

An interesting example constitutes the catenoid, which is
a minimal surface. The appropriate orthogonal coordinates
describing an exemplary catenoid and satisfying the normal-
ization of the normal vector can be found to be [27]

x(u, v,w) =
(
a cosh u − w

cosh u

)
cos v, (57a)

y(u, v,w) =
(
a cosh u − w

cosh u

)
sin v, (57b)

z(u, v,w) = au + w tanh u, (57c)

where a is a parameter for our choice and u = x1 and v = x2.
By calculation of the products of the tangent vectors, the

metric tensor can easily be determined:

gij =

⎡
⎢⎣

(
a cosh u + w

cosh u

)2
0

0
(
a cosh u − w

cosh u

)2

⎤
⎥⎦.

(58)
Its elements depend only on u and w and the derivatives with
respect to these parameters are

guu,u = gvv,u = 2 sinh u

(
a2 cosh u − w2

cosh3 u

)
,

guu,w = 2

(
a + w

cosh2 u

)
,

gvv,w = 2

(
−a + w

cosh2 u

)
. (59)

They allow one to write the nonvanishing Christoffel symbols

�uuu = �vuv = �vvu = −�uvv

=
(

a2 cosh u − w2

cosh3 u

)
sinh u, (60)

and

�u
uu = −�u

vv = 2a sinh 2u

a(1 + cosh 2u) + 2w
− tanh u,

�v
uv = �v

vu = a sinh 2u + 2w tanh u

a(1 + cosh 2u) − 2w
. (61)

For the derivatives of Eq. (60) we get

�uuu,u = �vuv,u = �vvu,u = −�uvv,u

= a2 cosh 2u + w2 cosh 2u − 2

cosh4 u
. (62)

In order to obtain the explicit equations for the trajectory
the above quantities should be now plugged into Eq. (33).
We are not, however, going to write explicitly these lengthy
expressions and limit ourselves to the presentation of the
corresponding curves. They are depicted in Fig. 5. Here the
departure of the black curve from the geodesic manifests itself
more strongly. The visible deviation starts when the light ray
enters the region of maximal narrowing and therefore also the
maximizing one of the principal curvatures (measured there
by 1/a).

IV. SUMMARY

In the present work our concern was the light-ray trajecto-
ries in thin layers. It was assumed that these rays are reflected
by the boundaries (for instance due to the phenomenon of the
total internal reflection in a dielectric layer or by reflecting
walls), which in general are surfaces of nontrivial curvature.
At each point where the ray hits the boundary the usual law
of reflection is satisfied: the incident ray, the reflected ray, and
the normal vector lie in the same plane and the reflection angle
equals the incidence angle. This law is sufficient to reconstruct
the whole trajectory of the ray.

The differential equation of the trajectory, Eq. (33), has
been derived. This is a highly nonlinear equation with the
thickness (measured by δw) as a parameter. It has been shown
that when setting δw → 0, which corresponds to an infinitely
thin layer, the trajectory equation reduces to that of a geodesic
drawn on the boundary surface (in this case both boundaries
merge into one).

When δw increases and the layer has certain non-negligible
thickness, the corrections [i.e., the rhs of Eq. (33)] start
playing a role, leading to the departure of the traveling ray
from the geodesic. This effect becomes stronger as the layer
thickness increases.

The special cases dealt with in Sec. III confirm these obser-
vations. The plots performed for four truly curved layers show
the observable deviation of the trajectory from the geodesic.
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FIG. 5. Same as Fig. 2 but for a thin catenoid layer. For the limiting catenoid surface w = 1, and the scale factor has been chosen to be
a = 2. The subsequent values of δw are 0.0005, 0.001, 0.002, and 0.003, which are simultaneously equal to 2δw/a.

This effect is magnified if the normal curvature connected
with the appropriate path becomes large. The essential param-
eter seems to be δw/R, where R denotes the normal curvature
radius at a given point and for a given curve. However, the
expression standing on the rhs of Eq. (33) and involving
Christoffel symbols cannot be in a simple way expressed by
the principal curvatures. The dependence of the ray trajectory
on curvatures, although obvious, has a rather complicated
nature. The findings of our work stay in general agreement
with experimental results [25].

The outcome of this work is expected to be confirmed
by calculation of the Poynting vector for the wave beam
propagating in a layer, which is, however, mathematically

nontrivial particularly for complicated surfaces. The role of
the wavelength (absent in geometrical optics) would then be
clarified. Our present findings contribute to the discussion
[15,16,28,29] to what extent thin layers may be treated as two-
dimensional structures (thereby, indicating some additional
restrictions), constitute the step toward better understanding
how to manipulate the light in thin films and trying to explain
the role of curvature.

ACKNOWLEDGMENT

I would like to thank Prof. Iwo Białynicki-Birula for the
inspiration and elucidating discussions.

[1] Integrated Optics, edited by T. Tamir (Springer, New York,
1979).

[2] R. G. Hunsperger, Integrated Optics: Theory and Technology
(Springer, Berlin, 1985).

[3] Guided- Wave Optoelectronics, edited by T. Tamir (Springer,
New York, 1990).

[4] R. R. A. Syms and J. R. Cozens, Optical Guided Waves and
Devices (McGraw-Hill, New York, 1992).

[5] C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveg-
uides (Springer, New York, 2008).

[6] C. A. Balanis, Advanced Engineering Electromagnetics (Wiley,
New York, 1989).

[7] J. R. Carson, S. P. Mead, and S. A. Schelkunoff, Bell Syst. Tech.
J. 15, 310 (1936).

[8] W. C. Chew, Waves and Fields in Inhomogeneous Media (Van
Nostrand Reinhold, New York, 1990).

[9] R. E. Collin, Field Theory of Guided Waves (IEEE, New York,
1990).

[10] D. Marcuze, Theory of Dielectric Optical Waveguides (Aca-
demic Press, New York, 1974).

[11] P. Hillion, Pure Appl. Opt. 1, 169 (1992).
[12] I. R. Lapidus, Am. J. Phys. 50, 155 (1982).
[13] B. Zwiebach, A First Course in String Theory (Cambridge

University Press, Cambridge, UK, 2009).
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