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Hydrodynamics with spacetime-dependent scattering length
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Hydrodynamics provides a concise but powerful description of long-time and long-distance physics of corre-
lated systems out of thermodynamic equilibrium. Here we construct hydrodynamic equations for nonrelativistic
particles with a spacetime-dependent scattering length and show that it enters constitutive relations uniquely so
as to represent the fluid expansion and contraction in both normal and superfluid phases. As a consequence, we
find that a leading dissipative correction to the contact density due to the spacetime-dependent scattering length
is proportional to the bulk viscosity (ζ2 in the superfluid phase). Also, when the scattering length is slowly varied
over time in a uniform system, the entropy density is found to be produced even without fluid flows in proportion
to the bulk viscosity, which may be useful as a novel probe to measure the bulk viscosity in ultracold-atom
experiments.
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I. INTRODUCTION

Ultracold atoms provide versatile platforms to investigate
various aspects of correlated systems both in and out of ther-
modynamic equilibrium [1–5]. Here the quantum statistics of
particles is controlled by the choice of atomic isotopes and
dimensionality of space by the application of optical lattices
[3]. In addition, an interparticle interaction is not only tunable
in its magnitude and sign with the magnetic field via Feshbach
resonances [6], but also variable over space and time at will to
a reasonable extent [7–9]. While such a spacetime-dependent
scattering length has been proposed to realize a number of
intriguing phenomena [10–20], it may also be useful as a
novel probe of target systems.

The purpose of this paper is to shed light on possible roles
of the spacetime-dependent scattering length by employing a
hydrodynamic description of correlated systems with contact
interactions. To this end, we first derive a set of operator
identities involving conserved charge and current densities
in Sec. II by allowing the scattering length to be spacetime
dependent. Hydrodynamic constitutive relations are then con-
structed for normal fluids in Sec. III and for superfluids in
Sec. IV by imposing the second law of thermodynamics. Here
the spacetime-dependent scattering length proves to enter
uniquely so as to represent the fluid expansion and contraction
and thus be coupled with the bulk viscosities. We finally
conclude this paper in Sec. V with possible implications of our
findings for ultracold-atom physics. Some of our outcomes
are also confirmed microscopically in the Appendix without
relying on the hydrodynamics.

In what follows, we will set h̄ = kB = 1 and employ
shorthand notations (x) = (t, x) for spacetime coordinates
and φ∂

↔
μψ ≡ [φ(∂μψ ) − (∂μφ)ψ]/2 with μ = t or i. Space

indices are represented by i = 1, 2, . . . , d and spin in-
dices by σ = 1, 2, . . . , N . Unless otherwise specified, im-
plicit sums over repeated indices are assumed as well as
for [vi]2 ≡ vivi .

II. QUANTUM FIELD THEORY

A. Hamiltonian and equation of motion

Let us consider nonrelativistic bosons or fermions with N

spin components in an arbitrary spatial dimension d, whose
Hamiltonian is provided by

Ĥ (t ) =
∫

dd x
[
Diψ̂

†
σ (x)Diψ̂σ (x)

2m
− At (x)ψ̂†

σ (x)ψ̂σ (x)

+ λ(x)

2m
ψ̂†

σ (x)ψ̂†
τ (x)ψ̂τ (x)ψ̂σ (x)

]
. (1)

Here Dμ ≡ ∂μ − iAμ(x) is the covariant derivative and an
external gauge field Aμ(x) is introduced for generality, whose
temporal component is nothing short of a trapping potential
and spatial components are produced in noninertial frames
of reference. In addition, λ(x) is a spacetime-dependent bare
coupling for the U(N )-symmetric contact interaction. In the
dimensional regularization, it is related to the scattering length
a(x) via

λ(x) = (d − 2)�d−1a
d−2(x), (2)

where �d−1 ≡ (4π )d/2/2�(2 − d/2) = 2, 2π, 4π coincides
with the surface area of the unit (d − 1)-sphere for d =
1, 2, 3.1

The annihilation operator ψ̂σ (x) satisfies the equal-time
commutation or anticommutation relation

[ψ̂σ (t, x), ψ̂†
τ (t, y)]± = δστ δ

d (x − y) (3)

1The two-body scattering T matrix in the center-of-mass

frame is provided by T −1(E) = m

λ
− ∫

dd p
(2π )d

m

mE− p2+i0+ = m

λ
−

mκd−2

(d−2)�d−1
|κ≡√−mE−i0+ , where the integral is analytically continued to

an arbitrary d after evaluated for 0 < d < 2. Therefore, the scattering
length in Eq. (2) is defined so that the two-body bound state existing
for a constant a > 0 has its binding energy at E = −1/ma2. See also
Ref. [21] for a different convention.
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and its time evolution is governed by the Heisenberg equation
of motion

i∂t ψ̂σ (x) = [ψ̂σ (x), Ĥ (t )]

=
[
− �

2m
− At (x) + λ(x)

m
ψ̂†

τ (x)ψ̂τ (x)

]
ψ̂σ (x).

(4)

Here � ≡ DiDi is the Laplacian and the resulting Heisenberg
equation is formally invariant under the local gauge transfor-
mation of

ψ̂σ (x) → eiχ (x)ψ̂σ (x), (5a)

Aμ(x) → Aμ(x) + ∂μχ (x). (5b)

B. Continuity equations

Because of the gauge and spacetime-translational sym-
metries, the mass, momentum, and energy are intrinsically
conserved up to external contributions of Aμ(x) and a(x) with
spacetime dependences. The corresponding continuity equa-
tions follow straightforwardly from the Heisenberg equation
(4), which involve the mass and momentum densities for each
spin component (no implicit sums over σ )

M̂σ (x) ≡ mψ̂†
σ (x)ψ̂σ (x), (6)

P̂σ i (x) ≡ −iψ̂†
σ (x)

↔
Diψ̂σ (x), (7)

as well as their totals M̂(x) ≡ ∑
σ M̂σ (x) and P̂i (x) ≡∑

σ P̂σ i (x), the energy density without the trapping potential
term

Ĥ(x) ≡ Diψ̂
†
σ (x)Diψ̂σ (x)

2m
+ λ(x)

2m
ψ̂†

σ (x)ψ̂†
τ (x)ψ̂τ (x)ψ̂σ (x),

(8)

the stress tensor

�̂ij (x) ≡ Diψ̂
†
σ (x)Djψ̂σ (x) + Djψ̂

†
σ (x)Diψ̂σ (x)

2m

+ δij

[
λ(x)

2m
ψ̂†

σ (x)ψ̂†
τ (x)ψ̂τ (x)ψ̂σ (x)

− �[ψ̂†
σ (x)ψ̂σ (x)]

4m

]
, (9)

the energy flux

Q̂i (x) ≡ Diψ̂
†
σ (x)�ψ̂σ (x) − �ψ̂†

σ (x)Diψ̂σ (x)

4im2

+ λ(x)

im2
ψ̂†

σ (x)[ψ̂†
τ (x)

↔
Diψ̂τ (x)]ψ̂σ (x), (10)

and the so-called contact density [22]

Ĉ(x) ≡ λ2(x)

2
ψ̂†

σ (x)ψ̂†
τ (x)ψ̂τ (x)ψ̂σ (x). (11)

In terms of the above local operators, the mass continuity
equation is provided by

∂tM̂σ (x) + ∂iP̂σ i (x) = 0, (12)

the momentum continuity equation by

∂t P̂i (x) + ∂j �̂ij (x) =Fit (x)
M̂(x)

m
+ Fij (x)

P̂j (x)

m

− ∂ia(x)

�d−1ad−1(x)

Ĉ(x)

m
, (13)

and the energy continuity equation by

∂tĤ(x) + ∂iQ̂i (x) = Fit (x)
P̂i (x)

m
+ ∂ta(x)

�d−1ad−1(x)

Ĉ(x)

m
,

(14)

where Fμν (x) ≡ ∂μAν (x) − ∂νAμ(x) is the field strength ten-
sor. The continuity equations are all gauge invariant and the
right-hand sides of the momentum and energy continuity
equations represent the external forces and powers supplied
by Aμ(x) and a(x).

In addition, the trace of the stress tensor proves to satisfy

�̂ii (x) = 2Ĥ(x) + Ĉ(x)

m�d−1ad−2(x)
− d

�M̂(x)

4m2
, (15)

which readily follows from the definitions in Eqs. (6)–(11)
with Eq. (2). The resulting operator identity is the non-
relativistic counterpart of the tracelessness condition for
conformality and the second term on the right-hand side
thus provides the measure of conformal symmetry breaking
[23–25]. We also note that the last term of Eq. (15) is
not unique and can even be eliminated by redefining the
stress tensor as �̂ij (x) → �̂ij (x) − d

d−1 (δij� − ∂i∂j )M̂(x)
4m2 ,

with the momentum continuity equation (13) kept intact. Such
an ambiguity at O(∂2) is however irrelevant to our discussion
below as long as hydrodynamics up to first order in derivatives
is concerned [see Eqs. (20) and (44)].

III. HYDRODYNAMICS FOR NORMAL FLUIDS

A. Constitutive relations

When the system is perturbed out of thermodynamic equi-
librium, its long-time and long-distance physics is governed
by hydrodynamics founded on mass, momentum, and energy
conservation laws as well as on local thermodynamic equi-
librium.2 The corresponding continuity equations follow from
our operator identities in Eqs. (12)–(14) just by replacing each
local operator therein with its expectation value denoted by
O(x) ≡ Tr[Ô(x)ρ̂]. Here the density matrix ρ̂ is arbitrary
but independent of time because we work in the Heisenberg
picture.

Hydrodynamics furthermore expresses the expectation
values of the conserved charge and current densities in
Eqs. (6)–(10) in terms of the local thermodynamic variables
and the fluid flow velocity vi (x). The constitutive relations for
normal fluids read

Pσ i (x) = Mσ (x)vi (x) (16)

2In order for the thermodynamic limit to exist in the system of
bosons, their interaction must be repulsive, which is possible for
contact interactions only in one spatial dimension.
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for the momentum densities,

H(x) = E (x) + M(x)

2
[vi (x)]2 (17)

for the energy density,

�ij (x) = p(x)δij + M(x)vi (x)vj (x) + πij (x), (18)

for the stress tensor, and

Qi (x) = [H(x) + p(x)]vi (x) + qi (x) (19)

for the energy flux [26]. Here E (x) is the internal energy
density and p(x) is the pressure, while πij (x)[=πji (x)] and
qi (x) ∼ O(∂ ) are the dissipative corrections to the stress
tensor and the energy flux, respectively.

In addition, by substituting the constitutive relations for the
energy density and the stress tensor in Eqs. (17) and (18) into
the expectation value of the operator identity in Eq. (15), we
obtain

C(x)

m�d−1ad−2(x)
= d ·p(x) − 2E (x) + πii (x) + O(∂2)

(20)

up to first order in derivatives.3 Therefore, the contact density
in local thermodynamic equilibrium is to be identified as

Ceq(x)

m�d−1ad−2(x)
≡ d ·p(x) − 2E (x), (21)

which is the local extension of the thermodynamic identity
known as the pressure relation [27–30]. Here the equilibrium
contact density Ceq(x) is locally specified by Mσ (x), E (x),
and a(x) via the thermodynamic equation of state and should
be distinguished from the genuine contact density C(x) ≡
Tr[Ĉ(x)ρ̂] not necessarily in local thermodynamic equilib-
rium. Its constitutive relation is thus found to be

C(x) = Ceq(x) + m�d−1a
d−2(x)πii (x) + O(∂2), (22)

where the dissipative correction coincides with that to the
stress tensor.

B. Entropy production

The entropy density is provided by

T (x)S (x) = p(x) − μσ (x)Mσ (x) + E (x), (23)

where T (x) is the temperature and μσ (x) is the mass chemical
potential for each spin component. When S (x) is regarded as
a local function of Mσ (x), E (x), and a(x), it actually depends
only on a−d (x) multiplied by a dimensionless function of
ad (x)Mσ (x)/m and mad+2(x)E (x). Consequently, the par-
tial derivative of S (x) with respect to a(x) leads to

a(x)
∂S (x)

∂a(x)
= −d ·S (x) + d ·Mσ (x)

∂S (x)

∂Mσ (x)

+ (d + 2)E (x)
∂S (x)

∂E (x)
= −d ·p(x) − 2E (x)

T (x)
, (24)

3Here and below, a dot emphasizing a product (d ·O) is inserted
after the spatial dimension d to avoid confusion with a differential
(dO).

so that together with Eq. (21) we obtain

T (x)
∂S (x)

∂a(x)
= − Ceq(x)

m�d−1ad−1(x)
. (25)

This is the local extension of the thermodynamic identity
known as the adiabatic relation [27–30] and the total differ-
ential of S (x) is now provided by

T (x)dS (x) = −μσ (x)dMσ (x) + dE (x)

− Ceq(x)

m�d−1ad−1(x)
da(x). (26)

It is then straightforward to show that the above thermo-
dynamic identities combined with the continuity equations
(12)–(14) and the constitutive relations in Sec. III A lead to
the entropy production equation

∂tS (x) + ∂i

[
S (x)vi (x) + q ′

i (x)

T (x)

]
= �(x)

T (x)
, (27)

with the dissipation function provided by

�(x) = −q ′
i (x)

∂iT (x)

T (x)
− πij (x)∂ivj (x)

+ πii (x)[∂t ln a(x) + vk (x)∂k ln a(x)] + O(∂3).
(28)

Here q ′
i (x) ≡ qi (x) − πij (x)vj (x) is the heat flux to be and

we introduce the traceless part of the viscous stress tensor
by π ′

ij (x) ≡ πij (x) − δijπkk (x)/d. In order for the entropy
production rate to be non-negative, the dissipative corrections
up to first order in derivatives must be in the forms of

q ′
i (x) = −κ (x)∂iT (x) + O(∂2), (29)

π ′
ij (x) = −η(x)Vij (x) + O(∂2), (30)

πii (x) = −d · ζ (x)Va (x) + O(∂2), (31)

where

Vij (x) ≡ ∂ivj (x) + ∂jvi (x) − δij

2

d
∂kvk (x) (32)

is the usual shear strain rate but

Va (x) ≡ ∂kvk (x) − d · [∂t ln a(x) + vk (x)∂k ln a(x)] (33)

is the bulk strain rate modified by the spacetime-dependent
scattering length. Therefore, the dissipation function is found
to be

�(x) = κ (x)
[∂iT (x)]2

T (x)
+ η(x)

2
[Vij (x)]2

+ ζ (x)[Va (x)]2 + O(∂3), (34)

where the second law of thermodynamics is satisfied by
imposing non-negativity on the thermal conductivity κ (x),
the shear viscosity η(x), and the bulk viscosity ζ (x). These
transport coefficients depend on space and time because they
are locally specified by Mσ (x), E (x), and a(x).

063634-3



KEISUKE FUJII AND YUSUKE NISHIDA PHYSICAL REVIEW A 98, 063634 (2018)

We thus find that the spacetime-dependent scattering
length enters the dissipation function partially as

�(x) ∼ ζ (x)

a2(x)
[∂ta(x)]2 ∼ ζ (x)a2(x)

[
∂t

1

a(x)

]2

. (35)

In order for such a term to be nondivergent, the bulk viscosity
must vanish at the slowest as

ζ (x) ∼ a2(x) for a(x) → 0 (36)

and

ζ (x) ∼ 1

a2(x)
for a(x) → ∞, (37)

assuming that the hydrodynamics is applicable there. In par-
ticular, the latter behavior proves to be consistent with the
vanishing bulk viscosity of the unitary Fermi gas in a normal
phase [25,31,32].

IV. HYDRODYNAMICS FOR SUPERFLUIDS

A. Superfluid velocity

The hydrodynamic equations for superfluids can also be
constructed in a parallel way. While the continuity equations
remain the same because they follow from the operator iden-
tities in Eqs. (12)–(14), the constitutive relations must be
modified by the presence of the superfluid velocity ui (x) ≡
[∂iθ (x) − Ai (x)]/m. Here θ (x) is the condensate phase nor-
malized so as to transform as θ (x) → θ (x) + χ (x) under the
local gauge transformation in Eq. (5) so that ui (x) is gauge
invariant. Its time evolution is governed by

∂tui (x) + ∂i

[
[uj (x)]2

2
+ ν(x)

]
= Fit (x)

m
, (38)

which follows from the fact that mν(x) ≡ −[∂tθ (x) −
At (x)] − m[uj (x)]2/2 is a scalar field invariant under the
Galilean transformation [33]. The currently unknown poten-
tial ν(x) ≡ μ̄(x) + μ′(x) is decomposed into the thermody-
namic part μ̄(x) and the dissipative correction μ′(x) ∼ O(∂ ),
both of which will be identified later in Sec. IV C.

B. Constitutive relations

In terms of the local thermodynamic variables, the normal
fluid velocity vi (x), and the superfluid velocity ui (x), the
constitutive relations for the conserved charge and current
densities in Eqs. (6)–(10) read

Mσ (x) = M(n)
σ (x) + M(s)

σ (x) (39)

for the mass densities,

Pσ i (x) = M(n)
σ (x)vi (x) + M(s)

σ (x)ui (x) (40)

for the momentum densities,

H(x) = E (x) + Pi (x)ui (x) − M(x)

2
[ui (x)]2 (41)

for the energy density,

�ij (x) = p(x)δij + M(n)(x)vi (x)vj (x)

+ M(s)(x)ui (x)uj (x) + πij (x), (42)

for the stress tensor, and

Qi (x) = [H(x) + p(x)]vi (x)

−
[
μσ (x)M(s)

σ (x) + M(s)(x)

2
[uj (x)]2

]

× wi (x) + qi (x) (43)

for the energy flux [26]. Here M(n)(x) ≡ ∑
σ M(n)

σ (x) and
M(s)(x) ≡ ∑

σ M(s)
σ (x) are the normal fluid component and

the superfluid component of the total mass density, respec-
tively, and wi (x) ≡ vi (x) − ui (x) is their relative velocity.

In addition, by substituting the constitutive relations for the
energy density and the stress tensor in Eqs. (41) and (42) into
the expectation value of the operator identity in Eq. (15), we
obtain

C(x)

m�d−1ad−2(x)
= d ·p(x) − 2E (x) + M(n)(x)[wi (x)]2

+ πii (x) + O(∂2) (44)

up to first order in derivatives. Therefore, the contact density
in local thermodynamic equilibrium is to be identified as

Ceq(x)

m�d−1ad−2(x)
≡ d · p(x) − 2E (x) + M(n)(x)[wi (x)]2,

(45)

which is the local pressure relation for the two-fluid hydrody-
namics. Here the equilibrium contact density Ceq(x) is locally
specified by Mσ (x), E (x), M(n)(x)wi (x), and a(x) via the
thermodynamic equation of state and should be distinguished
from the genuine contact density C(x) ≡ Tr[Ĉ(x)ρ̂] not nec-
essarily in local thermodynamic equilibrium. Its constitutive
relation is thus found to be

C(x) = Ceq(x) + m�d−1a
d−2(x)πii (x) + O(∂2), (46)

where the dissipative correction coincides with that to the
stress tensor.

C. Entropy production

The entropy density is provided by [26]

T (x)S (x) = p(x) − μσ (x)Mσ (x) + E (x)

− M(n)(x)[wi (x)]2. (47)

When S (x) is regarded as a local function of Mσ (x), E (x),
M(n)(x)wi (x), and a(x), it actually depends only on a−d (x)
multiplied by a dimensionless function of ad (x)Mσ (x)/m,
mad+2(x)E (x), and ad+1(x)M(n)(x)wi (x). Consequently, the
partial derivative of S (x) with respect to a(x) leads to

a(x)
∂S (x)

∂a(x)

= −d ·S (x) + d ·Mσ (x)
∂S (x)

∂Mσ (x)
+ (d + 2)E (x)

∂S (x)

∂E (x)

+ (d + 1)M(n)(x)wi (x)
∂S (x)

∂[M(n)(x)wi (x)]

= −d ·p(x) − 2E (x) + M(n)(x)[wi (x)]2

T (x)
, (48)
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so that together with Eq. (45) we obtain

T (x)
∂S (x)

∂a(x)
= − Ceq(x)

m�d−1ad−1(x)
. (49)

This is the local adiabatic relation for the two-fluid hydrody-
namics and the total differential of S (x) is now provided by

T (x)dS (x) = −μσ (x)dMσ (x) + dE (x)

− wi (x)d[M(n)(x)wi (x)]

− Ceq(x)

m�d−1ad−1(x)
da(x). (50)

It is then straightforward to show that the above thermo-
dynamic identities combined with the continuity equations
(12)–(14), Eq. (38) and ∂iuj (x) − ∂jui (x) = −Fij (x)/m for
the superfluid velocity, and the constitutive relations in Sec.
IV B lead to the entropy production equation

∂tS (x) + ∂i

[
S (x)vi (x) + q ′

i (x)

T (x)

]
= �(x)

T (x)
, (51)

with the dissipation function provided by

�(x) = [
M(s)

σ (x)∂iμσ (x) − M(s)(x)∂iμ̄(x)
]
wi (x)

− q ′
i (x)

∂iT (x)

T (x)
− πij (x)∂ivj (x)

+ πii (x)[∂t ln a(x) + vk (x)∂k ln a(x)
]

+ μ′(x)∂i[M(s)(x)wi (x)] + O(∂3). (52)

Here q ′
i (x) ≡ qi (x) − πij (x)vj (x) + μ′(x)M(s)(x)wi (x) is

the heat flux to be and we introduce the traceless part of
the viscous stress tensor by π ′

ij (x) ≡ πij (x) − δijπkk (x)/d.
In order for the entropy production rate to be non-negative,
M(s)

σ (x)/M(s)(x) must be constant over space so that

μ̄(x) = M(s)
σ (x)

M(s)(x)
μσ (x) (53)

is the mass chemical potential average weighted by the pro-
portion of each spin component in the superfluid mass density.
In addition, the dissipative corrections up to first order in
derivatives must be in the forms of

q ′
i (x) = −κ (x)∂iT (x) + O(∂2), (54)

π ′
ij (x) = −η(x)Vij (x) + O(∂2), (55)

πii (x) = −d · ζ1(x)∂i[M(s)(x)wi (x)]

− d · ζ2(x)Va (x) + O(∂2), (56)

μ′(x) = ζ3(x)∂i[M(s)(x)wi (x)] + ζ4(x)Va (x) + O(∂2),
(57)

where Vij (x) and Va (x) are the shear and bulk strain rates
defined in Eqs. (32) and (33), respectively, and ζ1(x) = ζ4(x)
follows from the Onsager reciprocal relations. Therefore, the

dissipation function is found to be

�(x) = κ (x)
[∂iT (x)]2

T (x)
+ η(x)

2
[Vij (x)]2

+ 2ζ1(x)Va (x)∂i[M(s)(x)wi (x)] + ζ2(x)[Va (x)]2

+ ζ3(x)[∂i[M(s)(x)wi (x)]]2 + O(∂3), (58)

where the second law of thermodynamics is satisfied by
imposing κ (x), η(x), ζ2(x), ζ3(x) � 0, and ζ2(x)ζ3(x) �
[ζ1(x)]2. These transport coefficients depend on space and
time because they are locally specified by Mσ (x), E (x),
M(n)(x)wi (x), and a(x).

We thus find that the spacetime-dependent scattering
length enters the dissipation function partially as

�(x) ∼ ζ1(x)

a(x)
[∂ta(x)] + ζ2(x)

a2(x)
[∂ta(x)]2

∼ ζ1(x)a(x)

[
∂t

1

a(x)

]
+ ζ2(x)a2(x)

[
∂t

1

a(x)

]2

. (59)

In order for such terms to be nondivergent, the bulk viscosities
must vanish at the slowest as

ζ1(x) ∼ a(x), ζ2(x) ∼ a2(x) for a(x) → 0 (60)

and

ζ1(x) ∼ 1

a(x)
, ζ2(x) ∼ 1

a2(x)
for a(x) → ∞, (61)

assuming that the hydrodynamics is applicable there. In par-
ticular, the latter behaviors prove to be consistent with the van-
ishing bulk viscosities of the unitary Fermi gas in a superfluid
phase [31,34,35].

V. CONCLUSION

The hydrodynamic equations consist of the continuity
equations and the constitutive relations, which together with
the equation of state and the transport coefficients provide a
closed set of equations to govern long-time and long-distance
physics of the correlated system out of thermodynamic equi-
librium. In this paper, we constructed the hydrodynamic
equations with the spacetime-dependent scattering length and
showed that it enters not only the momentum and energy con-
tinuity equations as the external sources [Eqs. (13) and (14)],
but also the constitutive relations via the modified bulk strain
rate [Eq. (33)] in both normal and superfluid phases. While the
modified bulk strain rate is uniquely identified by imposing
the second law of thermodynamics, the resulting formula is
intuitively understandable, i.e., the expansion (contraction) of
fluid volume at a rate ∂kvk (x) is equivalent to the contraction
(expansion) of scattering length at a rate ∂kvk (x)/d because no
other reference scales exist in contact interactions. In addition,
∂t ln a(x) must be the material derivative accompanied by
vk (x)∂k ln a(x) to ensure the Galilean invariance. As a conse-
quence, the spacetime-dependent scattering length is naturally
coupled with the bulk viscosities.

It is also worthwhile to remark that our formula in Eq. (33)
is consistent with the conformal invariance in curved space
[31,33,36]. Even though the conformal invariance is explicitly
broken by the presence of a nonzero and finite scattering

063634-5



KEISUKE FUJII AND YUSUKE NISHIDA PHYSICAL REVIEW A 98, 063634 (2018)

length, it is formally recovered by regarding the scattering
length as a spacetime-dependent spurion field with conformal
dimension �a = −1/2. The bulk strain rate that transforms as
a scalar field under the nonrelativistic diffeomorphism,

∇kv
k (x) + ∂t ln

√
g(x), (62)

was found to be incompatible with the conformal invariance
because its conformal transformation involves an undesired
term of (d/2)β̈(t ) [31].4 However, such a term can be elimi-
nated by modifying the bulk strain rate as

∇kv
k (x) + ∂t ln

√
g(x) − d · [∂t ln a(x) + vk (x)∂k ln a(x)],

(63)

which is the unique combination allowed by the diffeomor-
phism and conformal invariance in the viscous stress tensor
with nonvanishing bulk viscosity coefficients. In flat space,
Eq. (33) is readily obtained.

Finally, physical implications are to be extracted from our
findings. As we already showed in Eqs. (37) and (61), the van-
ishing bulk viscosities can be reproduced for the unitary Fermi
gas in both normal and superfluid phases [25,31,32,34,35]. In
addition, let us consider for simplicity a uniform system where
the fluid is at rest but the scattering length is slowly varied over
time. According to Eqs. (22) and (46) (see also the Appendix),
the dissipative correction to the contact density proves to be
proportional to the bulk viscosity,

C(t ) = Ceq(t ) + m�d−1d
2 · ζ (t )ad−3(t )ȧ(t ) + O(ȧ2), (64)

which combined with Eq. (14) leads to the energy density
produced at the rate of

Ḣ(t ) = Ceq(t )

m�d−1ad−1(t )
ȧ(t ) + d2 · ζ (t )

a2(t )
ȧ2(t ) + O(ȧ3).

(65)

Similarly, according to Eqs. (34) and (58), the entropy density
proves to be produced even without fluid flows at the rate of

T (t )Ṡ(t ) = d2 · ζ (t )

a2(t )
ȧ2(t ) + O(ȧ3), (66)

where ζ (x) in the normal phase is replaced with ζ2(x) in the
superfluid phase. Therefore, we find that the leading (sublead-
ing) contribution to the entropy (energy) density production
due to the time-dependent scattering length is proportional to
the bulk viscosity, which may be useful as a novel probe to
measure the bulk viscosity in ultracold-atom experiments.
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APPENDIX: MICROSCOPIC DERIVATION
OF EQS. (64)–(66)

While Eqs. (64)–(66) were derived on the ground of hy-
drodynamics, they can also be confirmed microscopically by
employing linear response theory. Let us consider a uniform
system in the rest frame, Aμ(x) → 0, which is perturbed by
a time-dependent scattering length varied slightly from its
constant value as

a(t ) = a0 + δa(t ). (A1)

Consequently, the Hamiltonian and contact operators in the
Schrödinger picture vary as

Ĥ (t ) ≡
∫

dd x Ĥ(x) = Ĥ0 + Ĉ0

m�d−1a
d−1
0

δa(t ), (A2)

Ĉ(t ) ≡
∫

dd x Ĉ(x) = Ĉ0 + ∂Ĉ0

∂a0
δa(t ) (A3)

and the density matrix as

ρ̂(t ) = ρ̂0 + δρ̂(t ), (A4)

where ρ̂0 ≡ e−Ĥ0/T /Tr[e−Ĥ0/T ] is the equilibrium density ma-
trix and

δρ̂(t ) = − i

m�d−1a
d−1
0

∫
dt ′e−iĤ0(t−t ′ )[Ĉ0, ρ̂0]eiĤ0(t−t ′ )

× θ (t − t ′)δa(t ′) (A5)

up to first order in the perturbation. The expectation value of
the contact operator is thus provided by

C(t ) ≡ Tr[Ĉ(t )ρ̂(t )]

= Tr[Ĉ0ρ̂0] + Tr

[
∂Ĉ0

∂a0
ρ̂0

]
δa(t )

+ Tr[Ĉ0δρ̂(t )] + O(δ2a), (A6)

where the third term is expressed as

Tr[Ĉ0δρ̂(t )] = − i

m�d−1a
d−1
0

∫
dt ′Tr[[Ĉ0(t ), Ĉ0(t ′)]ρ̂0]

× θ (t − t ′)δa(t ′) (A7)

in terms of the unperturbed contact operator Ĉ0(t ) ≡
eiĤ0t Ĉ0e

−iĤ0t in the interaction picture.
On the other hand, by setting a(x) → a0 in Eq. (15) and in-

tegrating it over space, the operator identity in the interaction
picture follows as

∫
dd x �̂0

ii (t, x) = 2Ĥ0 + Ĉ0(t )

m�d−1a
d−2
0

, (A8)

so that we obtain

Tr[Ĉ0δρ̂(t )] = − im�d−1a
d−3
0

∫
dd x

∫
dd x′

∫
dt ′

× Tr
[[

�̂0
ii (t, x), �̂0

jj (t ′, x′)
]
ρ̂0

]

× θ (t − t ′)δa(t ′). (A9)
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Its Fourier transformation, the Kubo formula for the bulk
viscosity in terms of the stress-stress response function [37],

ζ0 ≡ lim
ω→0

∫
dd x

∫
dt

eiωt − 1

d2 ·ω
× Tr

[[
�̂0

ii (t, x), �̂0
jj (0, 0)

]
ρ̂0

]
θ (t ), (A10)

and then the inverse Fourier transformation lead to

Tr[Ĉ0δρ̂(t )] = − im�d−1a
d−3
0

∫
dd x

∫
dd x′

∫
dt ′

× Tr[[�̂0
ii (t, x), �̂0

jj (t ′, x′)]ρ̂0]θ (t − t ′)δa(t )

+ V m�d−1a
d−3
0 d2 · ζ0 δȧ(t ) + O(δä)

=Tr

[
Ĉ0

∂ρ̂0

∂a0

]
δa(t ) + V m�d−1d

2 · ζ0 ad−3
0 δȧ(t )

+ O(δä). (A11)

Therefore, the contact in Eq. (A6) proves to be

C(t ) = Tr[Ĉ0ρ̂0] + Tr

[
∂Ĉ0

∂a0
ρ̂0

]
δa(t ) + Tr

[
Ĉ0

∂ρ̂0

∂a0

]
δa(t )

+ V m�d−1d
2 · ζ0 ad−3

0 δȧ(t ) + O(δ2a, δä)

= Ceq[a(t )] + V m�d−1d
2 · ζ0 ad−3(t )ȧ(t )

+ O(δ2a, δä), (A12)

where V is the volume and Ceq[a0] ≡ Tr[Ĉ0ρ̂0] is the contact
for the constant scattering length a0 in thermodynamic equi-
librium.

Finally, the expectation value of the energy continuity
equation (14) integrated over space leads to the energy pro-
duction at the rate of

Ḣ (t ) = C(t )

m�d−1ad−1(t )
ȧ(t )

= Ceq[a(t )]

m�d−1ad−1(t )
ȧ(t ) + V

d2 · ζ0

a2(t )
ȧ2(t ) + O(δ3ȧ, δ2...

a ),

(A13)

where the former equality is also known as the dynamic sweep
theorem [27–30]. The entropy production at the rate of

T Ṡ(t ) = Ḣ (t ) − Ceq[a(t )]

m�d−1ad−1(t )
ȧ(t )

= V
d2 · ζ0

a2(t )
ȧ2(t ) + O(δ3ȧ, δ2...

a ) (A14)

then follows from the thermodynamic identity combined with
the adiabatic relation [27–30]. We thus find that Eqs. (A12),
(A13), and (A14) divided by the volume reproduce Eqs. (64),
(65), and (66), respectively, from a microscopic perspective
without relying on the hydrodynamics.
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