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We study the dynamics of an impurity embedded in a trapped Bose-Einstein condensate, i.e., the Bose polaron
problem. This problem is treated by recalling open quantum systems techniques: the impurity corresponds to
a particle performing quantum Brownian motion, while the excitation modes of the gas play the role of the
environment. It is crucial that the model considers a parabolic trapping potential to resemble the experimental
conditions. Thus, we detail here how the formal derivation changes due to the gas trap, in comparison to the
homogeneous gas. More importantly, we elucidate all aspects in which the gas trap plays a relevant role, with an
emphasis on the enhancement of the non-Markovian character of the dynamics. We first find that the presence of
a gas trap leads to a new form of the bath-impurity coupling constant and a larger degree in the super-Ohmicity
of the spectral density. We then solve the quantum Langevin equation to derive the position and momentum
variances of the impurity, where the former is a measurable quantity. For the particular case of an untrapped
impurity, the asymptotic behavior of this quantity is found to be motion superdiffusive. When the impurity
is trapped, we find position squeezing, casting the system suitable for implementing quantum metrology and
sensing protocols. We detail how both superdiffusion and squeezing can be enhanced or inhibited by tuning the
Bose-Einstein condensate trap frequency. Compared to the homogeneous gas case, the form of the bath-impurity
coupling constant changes, and this is manifested as a different dependence of the system dynamics on the past
history. To quantify this, we introduce several techniques to compare the different amount of memory effects
arising in the homogeneous and inhomogeneous gas. We find that it is higher in the second case. This analysis
paves the way to the study of non-Markovianity in ultracold gases, and the possibility to exploit such a property
in the realization of new quantum devices.
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I. INTRODUCTION

Quantum gases have sparked theoretical and experimental
scientific interest in recent years. They are an excellent test
bed for many-body theory, and are particularly useful to
investigate strongly coupled and correlated regimes, offering
thus an interesting, sometimes even hard to reach alternative
to condensed matter systems [1,2]. The current work concerns
the physics of an impurity in a Bose-Einstein condensate
(BEC), intensively studied in the context of polaron physics
in strongly interacting Fermi [3–9] or Bose gases [10–42],
as well as in solid state physics [43–45] and mathematical
physics [46–50].

We study the dynamics of the impurity within a BEC
with an open quantum systems approach; namely we focus
on the behavior of the former treating the latter as a mere
source of noise and dissipation. Very similar methods have
been used recently to study a bright soliton in a superfluid
in [51], a dark soliton in a BEC coupled to a noninteracting
Fermi gas in [52], the interaction between the components of
a moving superfluid and the related collective modes [53], and
an impurity in a Luttinger liquid in [15,19], or in a double-well
potential [54,55]. Particularly, in [38], the dynamics of an
impurity weakly interacting with a homogeneous untrapped
BEC [45,56] were investigated by means of a paradigmatic
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model of an open quantum system, the quantum Brownian
motion (QBM) model. This model describes a particle that
interacts with a thermal bath, made up by a huge number of
harmonic oscillators, satisfying bosonic statistics [57–65]. In
this framework, the impurity plays the role of the quantum
Brownian particle and the bath is the set of excitation modes
of the BEC.

In the present paper, we extend the “QBM point of view”
developed in [38] to the situation where the BEC is trapped.
We emphasize that it is of paramount importance to consider
the scenario of a trapped BEC, as this way our model ap-
proaches the usual experimental setup. In this case the gas
results in being inhomogeneous in space; namely its density is
space-dependent. In particular, we consider a one-dimensional
BEC trapped in a harmonic potential, yielding a parabolic
density profile, i.e., the Thomas-Fermi (TF) profile. Such a
system has been already studied in [66–68] in which the
analytical form of the spectrum of the Bogoliubov excitations
has been derived. We exploit this result to show that the
Hamiltonian of the system may be written as that of the
QBM model, where the impurity-bath interaction exhibits a
nonlinear dependence on the position of the former. Neverthe-
less, we find that for realistic experimental conditions indeed
this reduces to the usual one of the QBM model, linearly
dependent on the position.

From the QBM Hamiltonian, we derive the quan-
tum Langevin equation describing the out-of-equilibrium
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dynamics of the impurity. The effect of the BEC then is
manifested through the corresponding noise and damping
terms present in this dynamical equation. We solve the afore-
mentioned equation and find the position and momentum vari-
ances for two distinct cases, (i) for an untrapped impurity and
(ii) for a trapped impurity, where in this case we are referring
to the impurity trap. In both of these cases, the gas remains
confined in a harmonic potential. In the untrapped case, the
impurity does not reach equilibrium and shows a superdiffu-
sive behavior at long times. In the trapped case, the impurity
reaches equilibrium in the long-time limit, and therefore the
position and momentum variances reach stationary values.
Interestingly, in this limit we find genuine position squeezing
at low temperatures, which can be enhanced with the coupling
strength. The distinguishing difference from the homogeneous
gas case is that this coupling strength is now also a function
of the gas trap frequency. As a result, we find that both the
superdiffusion coefficient and the squeezing degree can be
tuned with the BEC trap frequency, and we study this in
detail. We emphasize that both squeezing and superdiffusion
effects may be detected experimentally since they concern the
position variance which constitutes a measurable quantity, as
shown in [14].

Furthermore, the different form of the impurity-bath cou-
pling constant leads to a new form of the spectral density
(SD). This is a fundamental object in the open quantum sys-
tems framework, since it encodes all the relevant information
concerning the effect of the environment on the impurity dy-
namics, once the degrees of freedom of the former are traced
away. In particular we find that, although in both cases the
SD shows a super-Ohmic form (J ∼ ωα, α > 1), the super-
Ohmic degree is higher when the medium is inhomogeneous,
i.e., αInh > αHom. This suggests that the amount of memory
effects carried out by the impurity dynamics is larger in
the present situation. A large part of the paper is devoted
to evaluating in a quantitative manner the non-Markovian
properties of the system. This kind of analysis is motivated by
the recent efforts to understand the thermodynamical meaning
of quantum non-Markovianity, and the attempts to employ
such a feature as a resource to devise new protocols for quan-
tum technologies (see for instance [69]). In this context, the
quantitative description of non-Markovianity for the polaron
physics has never been examined properly: the only exception,
to the best of our knowledge, is represented by [55], although
they consider an impurity embedded in a symmetric double
well whose dynamics is treated by means of the spin-boson
model, rather than the QBM one. Apart from the specific
application to ultracold gases, it is important to note that the
study of non-Markovianity for the QBM model has only been
performed in [70] where a measure based on the distance
from the corresponding Lindblad map has been introduced,
and in [71] which relies on a set of approximations that are
not suitable to approach the polaron dynamics. We consider a
number of techniques to investigate, in a formal manner, the
non-Markovian character of the system. In all of these cases
we find that for the inhomogeneous gas the non-Markovian
degree is higher than in the homogeneous BEC.

The paper is organized as follows. In Sec. II we derive the
Hamiltonian of an impurity in a trapped BEC in the form of
the QBM model. In Sec. III, we write the quantum Langevin

equation, derive the form of the SD, and find a general
solution of the equation. In Sec. IV we solve this equation for
the untrapped (Sec. IV A) and trapped (Sec. IV B) impurity.
In Sec. V we explore the non-Markovianity properties of the
system employing (i) the measure introduced in [71], (ii)
the two-point correlation function, (iii) the distance with the
Ohmic process, and (iv) the evaluation of the backflow of en-
ergy according the criterion presented in [72]. In Appendix A
we discuss the validity of the linear approximation for the
interacting Hamiltonian between the impurity and the BEC. In
Appendix B we give a detailed discussion on the differences
we found between the homogeneous and inhomogeneous
BEC cases.

II. HAMILTONIAN

We consider an impurity with mass mI embedded in a
Bose-Einstein condensate with N atoms of mass mB. The
system is described by the following Hamiltonian:

H = HI + HB + HBB + HIB, (1)

with

HI = p2

2mI
+ U (r), (2a)

HB =
∫

d3rB �†(rB)

[
p2

B

2mB
+ V (rB)

]
�(rB), (2b)

HBB = gB

∫
d3rB �†(rB)�†(rB)�(rB)�(rB), (2c)

HIB = gIB

∫
drB�†(rB)�(rB)δ(r − rB)

= gIB�†(r)�(r), (2d)

where r and rB denote the position operator of the impurity
and the bosons, respectively. We assume contact interactions
among the bosons and between the impurity and the bosons,
with strength given by the coupling constants gB and gIB,
respectively [see Eqs. (2c) and (2d)]. The impurity is trapped
in a potential U (r) = mI�

2r2

2 . In this paper we discuss both
the untrapped (� = 0) and trapped cases (� > 0). The bosons
are trapped in a harmonic potential; namely the potential in
Eq. (2c) takes the form

V (rB) =
3∑

i=1

mBω2
i

(
r

(i)
B

)2

2
. (3)

This is the crucial difference from the analysis in Ref. [38],
where the homogeneous BEC was discussed. The fact that the
BEC is trapped gives rise to important consequences, both in
the analytical derivation and in the results, as we will discuss
throughout the rest of the paper.

In this section we express the Hamiltonian (1) in the form
of the QBM model. We first write the field operator as the sum
of the condensate state and the above-condensate part,

� = �0 + � ′, �0 ≡ 〈�〉. (4)

We replace Eq. (4) in the Hamiltonian (1) and make the
BEC assumption, i.e., that the condensate density greatly
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exceeds that of the above-condensate particles. In particular
this amounts to omitting the terms proportional to (� ′)3 and
(� ′)4 in the resulting expressions. As shown in [66], one
obtains

HBB + HB = H0 +
∫

d3rB� ′†H (sp)
B � ′ + gB

2

[
4|�0|2� ′†� ′

+ �2
0� ′†� ′†] + gB

2
(�∗

0 )2� ′� ′, (5)

with

H0 =
∫

d3rB�
†
0 (rB)

[
H

(sp)
B + gB

2
|�0(rB)|2

]
�0(rB), (6)

and

H
(sp)
B ≡ p2

B

2mB
+ V (rB) (7)

is the single-particle gas Hamiltonian [see Eq. (2b)]. Note that
in Eqs. (5) and (6) we omitted the explicit dependence on rB

to make the notation lighter. Proceeding in a similar manner
with the impurity-gas interaction, Eq. (2d), one gets

HIB = gIB[�†
0 (r) + � ′†(r)][�0(r) + �(r)]

= gIB[|�0(r)|2 + � ′†(r)�0(r) + � ′(r)�†
0 (r)], (8)

where the term proportional to the square power of the above-
condensate state has been neglected.

In the QBM Hamiltonian, the environment is modeled as a
set of uncoupled oscillators. To establish the analogy between
the QBM Hamiltonian and that of the impurity immersed in a
BEC, we diagonalize the part of the gas Hamiltonian, Eq. (5),
to express it as a set of uncoupled modes. With the Bogoliubov
transformation

� ′(rB) =
∑

ν

[uν (rB)bν − v∗
ν (rB)b†ν], (9)

one gets to the diagonalized Hamiltonian

HB + HBB = H0 +
∑

ν

Eνb
†
νbν, (10)

where Eν is the energy of the Bogoliubov excitations, which
constitute the oscillating modes of the environment dressing
the impurity, and b† (b) the related creation (annihilation) op-
erators of these modes. Under the Bogoliubov transformations
in Eq. (9) the interaction Hamiltonian, Eq. (2d), reads

HIB = gIB

[√
n0(r)

∑
ν

[u∗
ν (r) − v∗

ν (r)]b†ν + c.c.

]

≡ gIB

[√
n0(r)

∑
ν

f(ν,−)b
†
ν + c.c.

]
, (11)

where we put �0 ≈ √
n0.

To obtain the complete form of the Hamiltonian we need
the expressions of the functions uν and vν introduced in
Eq. (9), as well as of the energy modes in Eq. (10). An im-
portant difference from the homogeneous case is that, for the
trapped BEC, they have to be obtained as the eigenvectors and
eigenvalues of the matrix associated with the Bogoliubov–de

Gennes (BdG) equations

H
(sp)
B uν + gBn0(2uν − vν ) = (μ + Eν )uν, (12a)

H
(sp)
B uν + gBn0(2uν − vν ) = (μ − Eν )uν. (12b)

The solutions of the BdG equations satisfy the orthogonal-
ity condition ∫

dr(uνu
∗
ν ′ − vνv

∗
ν ) = δνν ′ . (13)

In general, the solution of the BdG equations (12) does not
constitute a simple problem, and often requires the employ-
ment of numerical methods. For a BEC confined in one
dimension and in the TF limit, one can solve them analytically
as shown in [68]. In the current work we focus exactly on
the aforementioned situation, namely a gas confined in one
dimension with a TF density profile

n0(x) = μ

gB

(
1 − x2

R2

)
, R =

√
2μ/mBω2

B, (14)

where ωB is the trapping frequency in the direction x [see
Eq. (3)]. Here, R is the TF radius and the chemical potential
is

μ =
(

3

4
√

2
gBNωB

√
mB

)2/3

. (15)

Then, the solution of the BdG equations (12) gives the follow-
ing spectrum:

Ej = h̄ωB

√
j (j + 1) ≡ h̄ωj , (16)

with corresponding Bogoliubov modes

f(j,−) =
√

j + 1/2

R

√√√√2μ

Ej

[
1 −

(
x

R

)2
]
Lj (x/R), (17)

where Lj (z) represent the Legendre polynomials and j is the
integer quantum number labeling the spectrum.

Finally, we replace the expressions of the Bogoliubov
modes, Eq. (17) in Eq. (11) to get the Hamiltonian of an
impurity embedded in a BEC in 1D with a TF density profile,

H = HI + HE + Hint, (18)

with

HE =
∑

j

Ejb
†
j bj (19)

and

Hint =
∑

j

gIB

√
n0(x)f(j,−)(x)(bj + b

†
j )

≡
∑

j

Fj (x)(bj + b
†
j ). (20)

The Hamiltonian (18) is analogous to that of the QBM
model, where one identifies the system Hamiltonian as HI,
the environment set of oscillators as HE, and the interaction
between system and environment as Hint. Notably, in our case,
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the latter presents a nonlinear dependence on the position
impurity. There are a number of existing techniques aimed at
dealing with the QBM model with this kind of nonlinearity.
For instance, one could recall the master equation treatment in
the Born-Markov regime in [73] or in the Lindblad framework
[74]. Beyond these approximations, one could also deal with
this problem considering the nonlinear Heisenberg equation
obtained by such a nonlinear interacting Hamiltonian, as in
[75]. In this case one deals with a generalized Langevin
equation with a state-dependent damping and a multiplicative
noise. Moreover, there is the procedure presented in [50]
relying on quantum stochastic calculation, valid for the small
impurity mass limit.

The problem in applying all these methods in our case lies
in the fact that the interaction Hamiltonian (20) presents a
dependence on the position that is different for a different j

index; i.e., the impurity-bath coupling has a different form as
a function of the impurity’s position for bosons of different
eigenmodes. To overcome this difficulty, we restrict ourselves
to the regime constrained by the condition x/R 
 1; that is,
we study the dynamics of the impurity in the middle of the
trap. Here, it is possible to expand the interaction term in
Eq. (20) at the first order in x/R:

HI =
∑

j

h̄gjx(bj + b
†
j ), (21)

in which

gj = gIBμ

h̄π3/2

[
1 + 2j

h̄ωBgBR3

] 1
2 �

[
1
2 (1−j )

]
�

[
1
2 (1+j )

]
sin (πj )

[j (j + 1)]1/4 .

(22)

This linear approximation above is discussed in Appendix A.
There we show that assuming that we are in the linear ap-
proximation regime is appropriate for realistic values of the
system parameters. The interaction Hamiltonian above shows
a linear dependence on the positions of both the impurity and
the oscillators of the bath. This is exactly the situation of
the QBM model. Note that contrary to the homogeneous gas,
the coupling in this case is not to the momentum degree of
freedom of the bath’s harmonic oscillators but rather to their
positions. This however does not imply a qualitative change
with respect to the homogeneous case, because the bath
variables only play a role in the environmental self-correlation
functions, which remain the same as those presented
in [38].

The substantial change with respect to the homogeneous
medium is the new structure of the bath-impurity coupling
constant in Eq. (22). Such a quantity exhibits a different
dependence on the system parameters in comparison to that
derived in the homogeneous case (see Eq. (42) of [38]). In
particular, we obtain now a dependence on the frequency
of the gas trap, that may be tuned in order to modify the
properties of the impurity. In the rest of the paper we shall
discuss the effects of the new form of the bath-impurity
coupling constant. We will see for instance that the differ-
ent dependence on the bath index j alters the number of
memory effects defining the non-Markovian properties of the
system.

III. QUANTUM LANGEVIN EQUATION

After expressing the Hamiltonian of the system in the form
of the QBM one, we are now in the position to provide a
careful quantitative description of the motion of the impurity
using an open quantum systems approach. First, we write the
Heisenberg equations

ẋ(t ) = i

h̄
[H, x(t )], ṗ(t ) = i

h̄
[H,p(t )], (23)

ḃk (t ) = i

h̄
[H, bk (t )], ḃ

†
k (t ) = i

h̄
[H, b

†
k (t )]. (24)

These equations may be combined according the procedure
presented in [38,58] to derive an equation for the position
impurity in the Heisenberg picture,

ẍ(t ) + �2x(t ) + ∂

∂t

∫ t

0
�(t − s)x(s)ds = B(t )

mI
. (25)

Such an equation is formally identical to the Langevin one
derived in the context of classical Brownian motion, and com-
pletely rules the temporal evolution of the impurity motion.
At this level, the influence of the environment is contained in
the term on the right-hand side,

B(t ) =
∑

j

h̄gj (b†j e
−iωj t + bj e

+iωj t ), (26)

which plays the role of the stochastic noise, and in the
damping kernel

�(τ ) = 1

mI

∫ ∞

0

J (ω)

ω
cos(ωτ )dω, (27)

where we introduced the spectral density (SD), defined as

J (ω) =
∑
k �=0

h̄g2
k δ(ω − ωk ). (28)

The SD completely determines the form of the damping
kernel. This is also true for the noise term, since it fulfills the
relation

〈{B(s), B(σ )}〉 = 2h̄ν(s − σ ), (29)

in which

ν(τ ) =
∫ ∞

0
J (ω) coth

(
h̄ω

2kBT

)
cos (ωτ )dω (30)

is the noise kernel.
Therefore, the influence of the environment on the impurity

motion is completely determined once the form of the SD is
determined. From Eq. (28), we see that the SD is determined
by the coupling constant whose form is given in Eq. (22).
Replacing this quantity in Eq. (28) and turning the discrete
sum in j into a continuous variable integral, one gets

J (ω) = 2g2
IBμ2

gBR3(h̄ωB)2

(
ω

ωB

)4

θ (ω − ωB)

≡ mIγ
ω4

�3
θ (ω − �), (31)
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with

γ = 2gB

mIωBR3

(
ημ

h̄ωB

)2

, η = gIB

gB
, � = ωB. (32)

In Eq. (31), θ (ω − �) is the Heaviside step function, repre-
senting an ultraviolet cutoff that has been put ad hoc in order
to regularize the divergent character of the SD at high fre-
quency. This, however, does not play any role in the dynamics
of the system at long times, as neither the presence nor the
form of the cutoff affects the dynamics of the impurity at long
times. This can be shown by recalling the Tauberian theorem
[76,77].

Therefore, in the middle of the trap (x 
 R) and at long
times (ω 
 ωB) we obtain a super-Ohmic SD. This form
of the SD implies the presence of memory effects in the
dynamics of the system. In fact, only if the damping kernel
reduces to a Dirac delta, Eq. (25) acquires a local-in-time
structure, making the evolution of the impurity’s position
independent of its past history. Indeed, by replacing the
SD (31) in the definition of the damping kernel, Eq. (27),
one gets

�(t ) = γ
[
6 + 3

(
ω2

Bt2 − 2
)

cos (ωBt )
]

t4ω3
B

+ γωBt[(ωBt )2 − 6] sin (ωBt )

t4ω3
B

. (33)

The form of the damping kernel presented above shows that
Eq. (25) is non-local-in-time and the dynamics of the impurity
carries a certain amount of memory effects. We underline
here an important difference from the case in which the BEC
is untrapped: in that situation the SD is proportional to the
third power of the frequency [38], while now it goes as the
fourth one. We conclude that the presence of the trap for
the gas increases the super-Ohmic degree and changes the
details of the derivation to be developed below, in comparison
with the homogeneous case. In Appendix B we show that
the difference in one power of ω between the SD for a
homogeneous and inhomogeneous BEC parallels the different
behavior of the density of states in both cases. Apart from the
technical details of the calculations, the higher super-Ohmic
degree alters the amount of memory effects characterizing
the system dynamics. The difference between this aspect in
the homogeneous and inhomogeneous case will be treated
in the last part of the work. This is a consequence of the dif-
ferent structure of the coupling constant presented in Eq. (22)
and, in particular, of its dependence on the bath index j . The
new form of the coupling constant does not affect only the
analytical profile of the SD in the frequency domain, but also
its prefactor γ , termed the damping constant, which is related
to the timescale of the dissipation process. This new form of
the damping constant depends on the frequency of the trap of
the gas, and interestingly this may be tuned in order to modify
the qualitative properties of the solution of Eq. (25), as we will
show in the next part of the paper.

The solution of Eq. (25) is

x(t ) = G1(t )x(0) + G2(t )ẋ(0) + 1

mI

∫ t

0
G2(t − s)B(s)ds,

(34)

where the functions G1 and G2 are defined through their
Laplace transforms

Lz[G1(t )] = z + Lz[�(t )]

z2 + �2 + zLz[�(t )]
, (35)

Lz[G2(t )] = 1

z2 + �2 + zLz[�(t )]
, (36)

and satisfy

G1(0) = 1, Ġ1(0) = 0, (37)

G2(0) = 0, Ġ2(0) = 1. (38)

The Laplace transform of the damping kernel is what carries
out the properties of the environment in the solution of the
position impurity equation. Recalling the definition of the
damping kernel we find

Lz[�(t )] = 1

mI

∫ ∞

0
dte−zt cos(ωt )

∫ ∞

0
dωJ (ω)/ω

= zγ

ω3
B

∫ ωB

0
dω

ω3

ω2 + z2
, (39)

where we used the expression of the SD in Eq. (31) and the
formula for the Laplace transform of the cosine∫ ∞

0
e−zt cos(ωt )dt = z

ω2 + z2
. (40)

The integral (39) may be calculated straightforwardly noting
that ∫ ωB

0

ω3

ω2 + z2
dω =

∫ ωB

0
ω

(
1 − z2

ω2 + z2

)
dω

= 1

2

[
ω2

B + z2 ln

(
z2

z2 + ω2

)]
. (41)

In the end, replacing Eq. (41) into Eq. (39), we obtain

Lz[�(t )] = zγ

2ω3
B

(
ω2

B + z2 ln

[
z2

z2 + ω2
B

])
. (42)

Such a quantity completely fixes the kernels in Eqs. (35) and
(36) and thus the temporal evolution of the impurity position
in the Heisenberg picture. The problem of deriving an explicit
expression for it reduces now to the inversion of the Laplace
transform in Eqs. (35) and (36).

IV. POSITION VARIANCE

The motion of the impurity is described by the second-
order stochastic equation of the Langevin type (25). We
proceed now to solve this equation in order to evaluate the
position variance, which constitutes a measurable quantity
[14]. For this goal we distinguish two situations: the case
where there is no trap for the impurity [� = 0 in Eq. (2a)],
and that in which there is a harmonic trap (� > 0). We remark
once more that in both situations the gas is harmonically
trapped, i.e., ωB > 0.
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FIG. 1. Time dependence of the function G2, defined through its
Laplace transform in Eq. (36). The thick lines represent the numer-
ical calculation with the Zakian algorithm, while the corresponding
continuous thin ones refer to the expression in Eq. (47), valid in the
long-time limit.

A. Untrapped impurity

In Sec. III we showed that the problem of solving Eq. (25)
reduces to that of inverting the Laplace transforms (35) and
(36). The former may be inverted immediately since, when
� = 0, it takes the form

Lz[G1(t )] = 1/z, (43)

and so

G1(t ) = 1. (44)

This result holds regardless of the properties of the environ-
ment, namely for any SD, and in fact corresponds to that
derived in the homogeneous gas.

The situation is different for Eq. (36), where the properties
of the environment play a crucial role since they enter through
the damping kernel. Here, one cannot perform the inversion
of the Laplace transform analytically due the presence of
the logarithm [see Eq. (42)]. Therefore, we recall the Zakian
numerical method, discussed in [78]. Such a method relies on
the fact that the inverse Laplace transform f (t ) of a function
F (z) is approximated as

f̃ (t ) = 2

t

N∑
j=1

Re[kjF (αj/t )], (45)

with αj and kj constants that can be either complex or real.
The expression of G2 as a function of time is presented in

Fig. 1. The kernel shows an oscillating behavior that diverges
linearly in the long-time regime. Such a long-time limit cor-
responds to Re[z] 
 ωB, where the logarithm in the Laplace
transform of the damping kernel, i.e., the second term on the
right-hand side of Eq. (42), is negligible. If we keep only the
linear term in z within such an equation it is possible to find
an explicit analytical expression for the Laplace transform
of G2,

Lz[G2(t )] = 1

z2
(
1 + γ

2ωB

) , (46)

that can be easily inverted,

G2 = t

1 + γ

2ωB

≡ t

α̃
. (47)

This expression represents the long-time behavior of G2 and
is plotted in Fig. 1 for different values of the damping (dashed
lines). The figure shows the agreement between the numerical
solution and the long-time analytical one.

The knowledge of G1 and G2 fixes the structure of the
impurity position operator, providing a description of the
motion of the particle. The expression for G2 in Eq. (47)
induces a ballistic term in the time evolution of the impurity
position. This means that the impurity runs away from its
initial position. Such a behavior can be characterized in a
quantitative manner by means of the position variance. Actu-
ally, rather than the position variance we employ a physically
equivalent object called mean-squared displacement (MSD),
defined as

MSD(t ) = 〈[x(t ) − x(0)]2〉, (48)

which provides the deviation between the position at time t

and the initial one. In the long-time limit it is possible to write

MSD(t ) =
(

t

α̃

)2

〈ẋ(0)2〉 + 1

2(α̃mI )2

∫ t

0
ds

∫ t

0
dσ (t − s)

× (t − σ )〈{B(s), B(σ )}〉, (49)

where we considered a factorizing initial state ρ(t ) = ρS(0) ⊗
ρB. The initial conditions of the impurity and bath oscillators
are then uncorrelated. Then, averages of the form 〈ẋ(0)B(s)〉
vanish. The integral in the second line of Eq. (49) can be
solved recalling the expression for the two-time correlation
function of the noise term (29) and that for the noise kernel
(30). Here, the hyperbolic cotangent can be approximated in
two limits: (i) in the zero-temperature limit, where it can be
approximated to one, and (ii) in the high-temperature limit,
where it can be approximated to the inverse of its argument.
In these two limits we have, respectively,

MSD(LT)(t ) =
[
〈ẋ(0)2〉 + h̄γ

3mI

]
(t/α̃)2, (50)

MSD(HT)(t ) =
[
〈ẋ(0)2〉 + kBT γ

mIωB

]
(t/α̃)2. (51)

In both cases, the MSD is proportional to the square of time.
This is a consequence of the super-Ohmic form of the SD,
and can be considered as a witness of memory effects. The
dependence on time is the same as for the homogeneous
case. This is due to the fact that, in the long-time limit, the
damping kernel and hence G2 approach the same function.
Most importantly, for a trapped BEC the diffusion coefficients
exhibit a different dependence on the system parameters. This
is very relevant for the experimental validation of the current
theory. In Fig. 2 we plot the superdiffusion coefficient

D(LT) = h̄γ

3mIα̃
(52)

related to the MSD in the low-temperature limit. Such a
coefficient can be interpreted as the average of the square
of the speed with which the impurity runs away. The picture
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FIG. 2. Superdiffusion coefficient in Eq. (52) as a function of the
interaction strength for different values of the gas trap frequency. We
present the results for an impurity of Yb embedded in a Rb gas of
N = 50 000 atoms with coupling strength gB = 10−38 J m. In this

context the units of frequency are ωc = mIg
2
B

h̄3 , while the units of the

length are lc = h̄2

mIgB
.

shows that the quantity in Eq. (52) decreases as the interaction
strength grows. This implies that the gas acts as a damper
on the motion of the impurity. Surprisingly, the value of
the superdiffusion coefficients takes larger values as the gas
trap frequency grows. One has to note that as ωB grows, the
density of the gas increases as well, and therefore the number
of collisions yielding the Brownian motion also grows. The
study of the superdiffusion coefficient at high temperature
shows the same behavior.

B. Harmonically trapped impurity

We now study the dynamics of the impurity when it is
externally trapped; i.e., we look into the case in which � > 0.
In this case the inversion of the Laplace transforms constitutes
a difficult task and it is not immediate to get an analytical
explicit expression even at long time. We proceed by employ-
ing the numerical Zakian method introduced above. In Fig. 3
we show the functions G1 and G2, where one can observe
an oscillating behavior in both cases, which gets damped for
long times. This damping of the oscillation implies that the
contribution of the initial condition vanishes in the long-time
limit. Also, this damping implies that the impurity reaches an
equilibrium state where it sits on average on the center of the
trap, and its position and momentum variances are indepen-
dent of time. Thus, in the long-time limit, the variances can be
represented by

〈x2〉 = h̄

2π

∫ +ωB

−ωB

dω coth (h̄ω/2kBT )χ̃ ′′(ω), (53)

〈p2〉 = h̄m2
I

2π

∫ +ωB

−ωB

ω2dω coth (h̄ω/2kBT )χ̃ ′′(ω), (54)

where

χ̃ ′′(ω) = 1

mI

ζ (ω)ω

[ωζ (ω)]2 + [�2 − ω2 + ωθ (ω)]2
(55)
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FIG. 3. Time dependence of the function G1 (top) and G2 (bot-
tom), defined through the Laplace transforms in Eqs. (35) and (36),
respectively. The plots refer to an impurity of Yb in a trap with a
frequency � = 2π × 200 Hz, embedded in a Rb gas of N = 5000
atoms with trap frequency ωB = 2π × 800 Hz and coupling strength
gB = 0.5 × 10−37 J m.

is the response function, and

ζ (ω) = Re{Lz̃[�(t )]}, θ (ω) = Im{Lz̃[�(t )]}, (56)

with z̃ = −iω + 0+. The expression in Eq. (53) can be ob-
tained directly by the solution of the Heisenberg equations
in Eq. (34), according the procedure presented in [38], and
corresponds to the contribution provided by the stochastic
noise.

We next study the dependence of the position and momen-
tum variances, Eqs. (53) and (54), on the system parameters,
such as temperature and coupling strength. These parameters
can be tuned in experiments. To this end, we recall the
dimensionless variables

δx =
√

2mI�〈x2〉
h̄

, δp =
√

2〈p2〉
mIh̄�

, (57)

in terms of which the Heisenberg principle reads as δxδp � 1.
Note that the evaluation of the variances in Eq. (57) relies on
the calculation of the integrals (53) and (54). Similar integrals
also appear in [38], where they have been solved analytically
by recalling the residue theorem. For this goal, one needs to
cast the denominator in Eq. (55) in a polynomial form and so
expand the Laplace transform of the damping kernel in Taylor
powers. It is possible to show that in the inhomogeneous case,
even by performing such an expansion in z/ωB a logarithm
survives, and the denominator in Eq. (55) cannot be reduced to
a polynomial. Accordingly the integrals (53) and (54) cannot
be solved analytically and one has to proceed numerically.
Note also that such a numerical evaluation deserves to be per-
formed carefully since the response function (55) is strongly
narrowed around ω ≈ � and this affects the convergence of
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FIG. 4. Temperature dependence of the ratio δp/δp between the
variances introduced in Eq. (57). The plot refers to an impurity of
Yb in a trap with a frequency � = 2π × 50 Hz, embedded in a Rb
gas of N = 5000 atoms with trap frequency ωB = 2π × 500 Hz and
coupling strength gB = 0.6 × 10−38 J m.

the integral. One has therefore to properly tune the number
of recursive subdivisions and the number of effective digits of
precision should be sought in the final result.

In Fig. 4 we study the behavior of the ratio δx/δp as a
function of the temperature for different values of the coupling
strength. This gives the eccentricity of the uncertainty ellipse.
Such an ellipse takes the form of a circle at high temperature,
i.e., δx ≈ δp, for different values of the coupling strength.
Precisely, it approaches the circular Gibbs-Boltzmann dis-
tribution with δx = δp ∼ √

T . At low temperature, instead,
the uncertainties ellipse exhibits position squeezing (δx < δp),
which is enhanced as the coupling strength increases. In
particular, exploring lower values of the temperature the im-
purity experiences genuine position squeezing; i.e., we detect
δx < 1, as shown in Fig. 5. The position variance approaches
a value smaller than that associated with the Heisenberg
principle. This implies that, in this regime, the particle shows
less quantum fluctuations in space than in momentum. In
plain words, the particle is so localized in space that its
position can be measured with an uncertainty which is smaller
than that fixed by the Heisenberg principle. This effect is
enhanced by increasing the value of the coupling strength,

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

FIG. 5. Temperature dependence of the position variance intro-
duced in Eq. (57), for different values of the coupling strength.
The plot refers to an impurity of Yb in a trap with a frequency
� = 2π × 200 Hz, embedded in a Rb gas of N = 5000 atoms with
trap frequency ωB = 2π × 800 Hz and coupling strength gB = 0.5 ×
10−37 J m. The red dot-dashed line represents the function

√
2T ,

related to the equipartition theorem.
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FIG. 6. Position variance introduced in Eq. (57) as a function of
the coupling strength, for different values of the gas trap frequency,
in the low temperature regime. The plot refers to an impurity of Yb
in a trap with a frequency � = 2π × 200 Hz, embedded in a Rb
gas of N = 5000 atoms with trap frequency ωB = 2π × 800 Hz and
coupling strength gB = 0.5 × 10−37 J m.

while remaining in the regime of low temperatures. Note that
in the opposite limit, namely at high temperature, the position
variance follows the behavior predicted by the equipartition
theorem, in agreement with the fact that the uncertainties
ellipse approaches the Gibbs-Boltzmann distribution. We un-
derline that in all the situations that we described Heisenberg
uncertainty principle is fulfilled at any time and for each value
of the system parameters, even when the particle experiences
genuine position squeezing. This may be checked quickly
by evaluating the product between position and momentum
variances.

In comparison with the squeezing predicted for the homo-
geneous gas, for the inhomogeneous case, one has an extra de-
pendence on the additional parameter, the trapping frequency.
This sets the possibility of using the BEC trapping frequency
to enhance or inhibit the squeezing. In Fig. 6 we present the
position variance as a function of the coupling for several
values of the gas trap frequency, in the low-temperature
regime. At weak coupling the gas trap does not play any role
and the position variance is approximately equal to one, in
agreement with the fact that the impurity approaches the free
harmonic oscillator dynamics, collapsing in the ground state
(δx = δp = 1) in the zero-temperature limit. As the coupling
grows the position variance gets sensitive to the trap of the
BEC and we see that genuine position squeezing is enhanced
as the BEC trap frequency is made tighter. Of course, the
dependence on the gas trap frequency is negligible at high
temperature, since in this regime the equilibrium correlation
functions become independent of the coupling. This may be
seen in Fig. 7 where we note that as the temperature grows
the position variance approaches a constant value (constant
with respect of the frequency) equal to that predicted by
the equipartition theorem, in agreement with the behavior
presented in Fig. 5.

In principle one should recover the results obtained for a
homogeneous gas by considering the limit in which ωB →
0. This however cannot be seen at the level of the position
variance plotted in Figs. 6 and 7. The study of such a limit
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FIG. 7. Position variance in Eq. (57) as a function of the gas
trap frequency at several different values of the temperature. The
plot refers to an impurity of Yb in a trap with a frequency � =
2π × 200 Hz, embedded in a Rb gas of N = 5000 atoms with trap
frequency ωB = 2π × 800 Hz and coupling strength gB = 0.5 ×
10−37 J m.

shows several complications that deserve to be commented.
We present this discussion in Appendix B.

Part of the importance of both squeezing and superdiffu-
sion lies in the fact that they may be detected in experiments,
since the position variance is a measurable quantity, as shown
in [14]. Nevertheless, the physical system considered in such
an experiment does not fulfill some of the assumptions un-
derlying our theory. First of all one has to note that the TF
approximation is not satisfied in [14]. A second important
difference with the experiment in [14] is the initial condition
we considered. We assume an initially separated impurity at
rest, while in that experimental setup the laser beam trap-
ping the impurity gives rise to a different initial condition
(see [15]).

V. NON-MARKOVIAN CHARACTER
OF THE POLARON DYNAMICS

In Sec. III we showed that the inhomogeneous character of
the medium alters the analytical form of the SD, and so the
dependence on the past history of the system dynamics. This
is manifested as a different amount of memory effects, namely
of the degree of non-Markovianity of the system. The purpose
of the present section is to evaluate in a quantitative manner
the difference of this non-Markovian degree between the cases
of a homogeneous and an inhomogeneous gas. Note that the
study of non-Markovianity in various physical systems and
the possibility to tune it by manipulating the related parame-
ters recently attracted a lot of attention, due to the possibility
to exploit non-Markovianity as a resource for quantum proto-
cols. We quote for instance the important work undertaken
in [79] where a scheme to control non-Markovianity was
implemented in an optomechanical-photonic system, and the
related, more recent, work in [80] where the same problem
was investigated for an electronic spin diamond. In the context
of ultracold gases, and in particular of the Bose polaron, an
important contribution is represented by the work [55]. Here
the authors consider the special case in which the impurity
is trapped in a double potential and model such a system
by means of the pure-dephasing spin-boson model. We treat,
instead, the impurity physics in the QBM framework: this is
the fundamental difference between our work and [55].

6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

FIG. 8. Non-Markovianity measure in Eq. (58), as a function of
the cutoff frequency, associated with a quartic SD (red-solid line)
and a cubic (blue-dashed line) one, corresponding respectively to an
inhomogeneous and a homogeneous gas.

For this goal we select several different techniques, re-
lying on (i) backflow of information (Sec. V A), (ii) two-
point correlation functions (Sec. V B), (iii) Ohmic distance
(Sec. V C), and (iv) backflow of energy. All these meth-
ods show that non-Markovianity is higher when the gas is
inhomogeneous.

A. Backflow of information

We start by quantifying non-Markovianity by means of
a measure that associates such a property with the flow of
information directed from the environment to the central
system, here represented by the impurity, as explained in
[81]. Such an information backflow may be evaluated taking
into account the distinguishability of two initial states: the
information coming from the environment allows us to better
distinguish these states. The calculation of this distance is
not so complicated for discrete-variable models, while for
continuous-variable ones, such as QBM, particular attention
is required. In particular, for the QBM model, the form of the
non-Markovianity measure based on backflow of information
has been presented in [71], where it was shown that under a
particular hypothesis it reads as

NP =
∫

�<0
�(t )dt, �(t ) =

∫ t

0
ν(s) cos(�s)ds, (58)

where ν(τ ) represents the noise kernel in Eq. (30).
In Fig. 8 we present the measure (58) for the quartic SD in

Eq. (31) related to an inhomogeneous gas and that derived in
[38] for a homogeneous medium showing a cubic dependence
on the frequency. Note that in Fig. 8 we considered the
expression of the noise kernel in the high-temperature regime,
namely by approximating the hyperbolic cotangent in Eq. (30)
as the inverse of its argument. The same qualitative behavior is
recovered also in the opposite limit, i.e., when T → 0 and the
cotangent is approximated to one. The figure shows that the
non-Markovianity degree estimated according the definition
in Eq. (8) is higher in the inhomogeneous case for any value of
the cutoff frequency �. Such a result holds for any value
of the temperature and the damping constant, since the ratio
of the measure computed in the two cases does not depend on
these variables.
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B. Two-point correlation function

The result presented in Fig. 8 indicates that the non-
Markovian degree is higher in the inhomogeneous case. Nev-
ertheless, one may argue that the measure (58) refers to a map
in the pseudo-Lindblad form. This is not the case examined
in the present paper where the polaron dynamics is described
by means of Eq. (25). This may be interpreted as a stochas-
tic equation, whose solution is Gaussian and stationary. A
stochastic process is termed Gaussian if its joint probability
distribution is defined by a normal one. In this case, such
a feature follows from the fact that the Hamiltonian (18)
endowed by the interaction term in Eq. (21) has a quadratic
form. A process is stationary if the joint probability distri-
bution manifests an analytical form that is invariant under
temporal translations. Such a property can be derived for the
present system from the solution in Eq. (34), recalling that
also B(t ) is stationary. Under these hypothesis it has been
proven that a stochastic process is Markovian only if it is in the
Ornstein-Uhlenbeck form; namely its correlation functions
decay exponentially in time. This statement constitutes a
particular form of the Doob theorem [58,82]. Accordingly, in
order to provide a clear-cut proof of the non-Markovianity
of the system dynamics one has to evaluate the two-point
correlation function

f (t, τ ) ≡ 〈x(t )x(t + τ )〉, τ > 0. (59)

The quantity in Eq. (59) may be computed starting with
the equations of motion in Eqs. (23) and (24) that have to
be solved now assuming t as the initial time of the system
dynamics. The solution of the bath modes equation (24) takes
the form

bk (t + τ ) = bk (t )e−iωkτ + gk

2

∫ t+τ

t

ds exp[+iωk (τ − s)]x(s).

(60)

Accordingly the equations for the impurity variables become

∂x(t + τ )

∂τ
= p(t + τ )

mI
(61)

and

∂p(t + τ )

∂τ
= − mI�

2x(t + τ ) + B(τ, t )

− m
∂

∂τ

∫ t+τ

t

�(τ − s)x(s)ds, (62)

with

B(t, τ ) =
∑

j

h̄gj [b†j (t )e−iωj τ + bj (t )e+iωj τ ]. (63)

It is very interesting to note that when the initial condition is
translated to a time larger than zero, a dependence on the past
history also enters through the noise term. We are interested
in the correlation function in Eq. (59) so one may proceed by
multiplying both sides of Eq. (61) by x(t ) and then taking the
average value. Thus, deriving both sides with respect of τ and

using Eq. (62) one obtains

fττ (t, τ ) + �2f (t, τ ) + ∂

∂τ

∫ t+τ

t

�(τ − s)f (t, s)ds

= 〈x(t )B(t, τ )〉
mI

, (64)

where fττ represents the second-order derivative of f with
respect to τ . The term on the right-hand side may be treated by
recalling Eq. (34), and assuming that the global bath-impurity
state is separable. It follows as

〈x(t )B(t, τ )〉 = 1

mI

∫ t

0
dσG2(t − σ )〈B(0, σ )B(t, τ )〉.

(65)

Thus, one can proceed by applying the Laplace transform with
respect of the variable τ . It becomes

f (t, τ ) = G1(τ )〈x2(t )〉 + G2(τ )〈x(t )ẋ(t )〉

+ 1

m2
I

∫ t+τ

t

∫ t

0
dsdσG2(t − σ )

× G2(τ − s)〈B(σ )B(s)〉. (66)

Note that we take B(t, τ ) ≈ B(0, τ ) ≡ B(τ ) because we con-
sider the environment to be large enough in order to assume
that its state is constant in time. The functions G1 and G2 are
those introduced in Eqs. (35) and (36), where the variable z is
now the frequency associated with τ . The average value in the
third term on the right-hand side in Eq. (66) corresponds to

〈B(σ )B(s)〉 = 〈B(σ − s)B(0)〉 = ν(σ − s) − iη(σ − s),

(67)

where ν(t ) is the noise kernel (30) and

η(t ) =
∫ ∞

0
dωJ (ω) sin (ωt ) (68)

is the dissipation kernel.
The expressions of the noise and damping kernel, together

with those of G1 and G2, determine the analytical structure
of the two-point correlation function. To obtain the final ex-
pression of this, one needs the explicit form of G1 and G2 and
so has to invert the Laplace transforms in Eqs. (35) and (36).
Such a problem has already been treated in Sec. IV for both a
trapped (� > 0) and untrapped (� = 0) impurity. In the first
situation it has been shown that the Laplace transforms have
to be inverted numerically. In this manner, anyway, it is not
possible to derive an explicit expression for them. To reduce
such a problem to an analytically feasible one, we can expand
the Laplace transform of the damping kernel appearing in the
denominators of Eqs. (35) and (36) to the first order in z/�,
obtaining two expressions that may be inverted analytically.
This gives the following form for the Green’s functions,

G1(t ) = cos

(
�√
α̃

t

)
, G2(t ) = 1√

α̃�
sin

(
�√
α̃

t

)
. (69)

The oscillating functions above do not reproduce the behavior
presented in Fig. 3. The exact temporal dependence of G1 and
G2 obtained by means of the Zakian numerical method shows

063630-10



NON-MARKOVIAN POLARON DYNAMICS IN A TRAPPED … PHYSICAL REVIEW A 98, 063630 (2018)

10 20 30 40

−0.5

0.5

10 20 30 40

−1.0

−0.5

0.5

1.0

FIG. 9. Time dependence of G1 (up) and G2 (down) calculated
for the quartic SD in Eq. (31) related to an inhomogeneous gas (solid
red line) and a cubic one derived in [38] for a homogeneous medium
(dashed blue line). The plot has been realized for �/� = 10 and
γ /� = 7.

at very long time a damping and a time-dependent renormal-
ization of the frequency. So, the regime of validity of the result
in Eq. (69) has to be discussed carefully. These expressions
have been obtained by considering an expansion in z/� at
the first order and thus they describe a long-time regime
that quantitatively means �t � 1. Note that Fig. 3 refers
to �/� = ωB/� = 4; accordingly any time �t � �/� =
0.25, for instance �t = 10�/� = 2.5, may be considered as
a “long” one in such a specific situation. Here, it is possible to
check that the functions (69) match the oscillating nondamped
behavior in Fig. 3 for �t � 20.

The oscillating behavior in Eq. (69) would be enough to
state that even in the presence of a trap the system dynamics
is non-Markovian since no exponential decays occur. One
could try to compute the whole correlation function for the
sake of completeness, but the approximated expressions in
Eq. (69) do not ensure the convergence of the integrals in
the third term on the right-hand side of Eq. (66). Of course,
this is an unphysical effect which vanishes if one considers
more accurate expressions for G1 and G2 that include also
the damping. One should expand the Laplace transform of
the damping kernel beyond the first order, but this leads to
a logarithmic dependence on z that forbids the inversion of
the Laplace transforms in an analytical manner.

The first two terms on the right-hand side in Eq. (66) play
an important role in the analysis of the memory effect because
they rule the decay of the initial position and velocity. We can
study its form in the homogeneous and inhomogeneous case
in order to establish in which situation the non-Markovian
degree is higher. The approximated expressions (69) are not
suitable for this task; thus we compare the exact numerical
result, as shown in Fig. 9. Here it is possible to see that both
G1 and G2 calculated in the homogeneous case decay faster

5 10 15 20
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FIG. 10. Time dependence of the function G2, defined through
its Laplace transform in Eq. (36). The thick lines represent the result
obtained in the inhomogeneous case, while the thin ones refer the
homogeneous medium.

than those obtained in the inhomogeneous one. This suggests
that the effect of the past history on the system dynamics
vanishes faster if the medium is inhomogeneous.

We treat now the same problem in the case where � = 0
(untrapped impurity).In this case the function G1 is identically
equal to 1, while G2 shows the ballistic form presented in
Eq. (47). Such a ballistic behavior is enough to state that even
when � = 0 we recover a non-Markovian dynamics since no
exponential decays occur. Still, we can compare the form of
G2 in the homogeneous and inhomogeneous case to establish
which dynamics is “less Markovian.” In Fig. 10 we see that
for each value of the damping constant γ , and at any time,
the value of G2 is higher in the inhomogeneous case. This
means that the dependence on the initial condition, i.e., the
past history of the system, is stronger and thus we find again
that the inhomogeneous case is the “less Markovian.”

The situation in which the impurity is untrapped is very
interesting because one may exploit the long-time analytical
expression for G2 in Eq. (47) to derive the whole correlation
expression. This, to the best of our knowledge, constitutes an
original calculation. For this goal one may decompose the
hyperbolic cotangent appearing in the noise kernel as a sum
over the Matsubara frequencies νn = 2πkBT n/h̄,

coth

(
h̄ω

2kBT

)
= 2kBT

h̄

(
1

ω
+ 2

∞∑
n=1

ω

ω2 + ν2
n

)
. (70)

Replacing this expression into Eq. (30) one gets

ν(t ) = ν (HT)(t ) + ν (LT)(t ), (71)

with

ν (HT)(t ) = 2kBT

h̄

∫ ∞

0
dω

J (ω)

ω
cos (ωt ), (72)

ν (LT)(t ) = 2kBT

h̄

∞∑
n=1

∫ ∞

0
dωJ (ω)

ω

ω2 + ν2
n

cos (ωt ) (73)

ruling respectively the high-temperature regime and the low-
temperature one. Therefore, recalling Eq. (47), the two-point
correlation function (59) takes the form

〈x(t )x(t + τ )〉 = 〈x2(t )〉 + τ

α̃
〈x(t )ẋ(t )〉 + Iη+I (HT)

ν +I (LT)
ν ,

(74)
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in which

Iη = 1

m2
I α̃

∫ ∞

0
dωJ (ω)

∫ t

0
dσ (t − σ )

×
∫ t+τ

t

ds(τ − s) sin [ω(σ − s)] (75)

and

I (HT)
ν = 2kBT

h̄m2
I α̃

∫ ∞

0
dω

J (ω)

ω
Ĩν (ω), (76)

I (LT)
ν = 2kBT

h̄m2
I α̃

∞∑
n=1

∫ ∞

0
dω

J (ω)ω

ω2 + ν2
n

Ĩν (ω), (77)

with

Ĩν (ω) =
∫ t

0
dσ (t − σ )

∫ t+τ

t

ds(τ − s) cos [ω(σ − s)].

(78)

In particular we will focus on the situation in which T = 0. In
this case Eq. (77) takes the form

I (0)
ν = 1

m2
I α̃

∫ ∞

0
dωJ (ω)Ĩν (ω). (79)

Although the ballistic form of G2 would be enough to prove
the fact that the correlation function does not decay exponen-
tially, we derive for the sake of completeness the expression
of all the terms. This, to the best of our knowledge, has never
been investigated before for the present case.

In the long-time limit we have

Ĩη(ω) = γ t

2mIα̃2�3

[
�2 + 2

τ 2
+ 2�2 cos (�t )

]

+ γ t4�2

mIα̃2

cos [�(t + τ )]

�3(t + τ )3

+ γ t

mIα̃2�3τ 2
[cos (�τ ) + �τ sin (�τ )], (80)

Ĩ (HT )
ν (ω) = 2kBT γ t

mIα̃2�3τ (t + τ )2 [cos (�t ) − 1]

+ 2kBT γ t�τ

mIα̃2�3τ (t + τ )2 [sin [(t + τ )] − sin (�t )],

(81)

Ĩ (0)
ν (ω) = γ t

�3

[
sin (�τ )

τ 2
− �

τ
cos (�τ )

]

+ γ t

�

[
t3 sin [�(t + τ )]

(t + τ )3 − sin (�t )

]
. (82)

The equations above show a ballistic dependence on time,
in agreement with the fact that the impurity is untrapped.
This particular temporal behavior definitely proves that the
correlation function does not decay exponentially and, in the
end, the process is not Markovian. Note that, in principle,
one should recover the expressions for the MSD derived in
Sec. IV A by taking the limit in which t → 0. This does
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FIG. 11. Non-Markovianity measure in Eq. (83), associated with
SD in Eq. (31), as a function of the temperature for different values
of the damping constant. The plot refers to �/� = 10.

not follow by the equations above because they refer to the
long-time limit, i.e., �t � 1.

C. J distance

In order to study in detail the comparison between the
amount of memory effects occurring in an inhomogeneous
and a homogeneous gas we introduce a quantifier strictly
related to the class of equations with the form shown in
Eq. (25):

N (J) =
∣∣∣∣∣
〈
x2

J

〉 − 〈
x2

Ohm

〉
〈
x2

J

〉 + 〈
x2

Ohm

〉
∣∣∣∣∣, (83)

where 〈x2
J 〉 and 〈x2

Ohm〉 constitute the position variance cal-
culated respectively with a given SD, J , and the Ohmic one,
i.e., that exhibiting a linear dependence on frequency in the
limit in which such a variable is much smaller than �. It is
very important to point out that the quantity in Eq. (83) does
not measure the distance from a generic Markovian process,
but from a particular one, given by the Langevin equation
(25) with an Ohmic spectral density. Nevertheless one has to
note, recalling Eq. (27), that the only form of the SD leading
to a completely local-in-time Langevin equation (resulting
from a Dirac delta damping kernel) is the Ohmic one. Then,
the measure in Eq. (83) quantifies the difference between the
position variance calculated for the present system and that
obtained by means of the Markovian form of Eq. (25): when
N tends to zero the distance from such a Markovian process
is minimum, while it is maximum when N is close to one.
Of course, because of its definition, the measure does not take
any value outside [0,1].

The quantity in Eq. (83) is shown in Fig. 11. We point
out that the difference with the Markovian Ohmic process
grows in the zero-temperature limit, while it vanishes as the
temperature increases. This is in agreement with the fact
that in the high-temperature regime the particle approaches
a Gibbs-Boltzmann state and its variance follows the behavior
predicted by the equipartition theorem, as shown in Fig. 5;
i.e., they do not depend on the coupling and thus on the SD.
Accordingly the difference between two position variances
computed with any pair of different SDs tends to zero. We also
note that N (4) vanishes as the damping constant decreases,
in agreement with the fact that when this parameter goes to
zero, the physics of the system become coupling-independent.
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FIG. 12. Ratio between the non-Markovianity measure in
Eq. (83) calculated for the SD associated with the homogeneous case
(see Eq. (41) in [38]) and that in Eq. (31). The plot expresses a tem-
perature dependence, for different values of the damping constant,
and refers to �/� = 10.

Finally, we note that the dynamics of an impurity in a trapped
BEC approach those of a Markovian system at high tempera-
ture and weak coupling.

In Fig. 12 we aim to compare the value of the measure for
the inhomogeneous case with that of the homogeneous one,
at a given value of the temperature and damping constant. We
see that the distance is higher for the former, and the differ-
ence grows at low temperature and as the coupling increases.

D. Backflow of energy

We conclude the discussion concerning the non-Markovian
degree of the polaron dynamics by considering a further
criterion based on the backflow of energy. In [72] it has been
shown that there is a correlation between the non-Markovian
character of the dynamics and the emergence of a backflow
of energy, namely a flow of energy directed from the environ-
ment to the central system. The evaluation of the backflow of
energy for the super-Ohmic SDs model has, to the best of our
knowledge, never been explored. This is the purpose of the
present subsection. We evaluate therefore

�ε =
∫

∂tE>0

∂E(t )

∂t
dt, E(t ) = 〈p2(t )〉

2mI
, (84)

where the expression for the impurity momentum can be
obtained by deriving the position operator in the Heisenberg
picture in Eq. (34) with respect to time. We perform this
calculation in the case in which the impurity is untrapped,
since we may exploit the long-time analytical expression for
G2 in Eq. (47). In addition, in the context of the energy
backflow analysis the untrapped case is more interesting
because it allows us to get rid of the energy flux due to the
oscillations related to the impurity trap and permits us to
focus only on those associated with the interaction with the
bath. In Fig. 13 we plotted the quantity in Eq. (84) in both
the homogeneous and inhomogeneous case. It shows that the
flow of energy coming from an inhomogeneous environment
is always larger than that coming form a homogeneous one.
The picture is plotted for the low-temperature regime but
we find the same qualitative behavior in the opposite limit.
It is also interesting to note that both in the homogeneous
and inhomogeneous case, �ε grows as the cutoff frequency
increases. This admits a microscopic interpretation: when the
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FIG. 13. Backflow of energy in Eq. (84) as a function of the
cutoff frequency calculated for an inhomogeneous gas (red solid line)
and a homogeneous one (blue dashed line).

cutoff frequency increases the number of bath modes coupled
to the impurity grows, so the flux of energy is bigger.

VI. CONCLUSIONS AND PERSPECTIVES

We presented a study of the dynamics of an impurity in an
inhomogeneous Bose-Einstein condensate. Such a problem
is treated in the framework of open quantum systems, as
it can be brought formally to the form of the quantum
Brownian motion model. The main motivation to do this lies
in the possibility to analyze in detail the out-of-equilibrium
dynamics of the impurity. The inhomogeneous character of
the BEC, due to the presence of an external confining trap,
strongly modifies the properties of the impurity-bath coupling.
In general, such an interaction shows a nonlinear dependence
on the position of the central particle. One could treat the
corresponding dynamics by recalling the theory developed
in [75], where the Heisenberg equations for the QBM with
a nonlinear coupling have been derived. Nevertheless, these
results cannot be applied straightforwardly, since in the
present case, we have a different analytical dependence on
the position for each value of k. We approximate thus this
interaction by a linear function, provided that the analysis is
restricted to the middle of the trap. Under this assumption, one
reproduces formally the situation of the traditional quantum
Brownian motion model. This approximation results in being
totally appropriate for the regime parameters we considered,
as discussed in Appendix A.

We derive the Langevin equation for the impurity position
in the Heisenberg picture and we calculate the spectral den-
sity. Here we detect an important difference from the study
presented in [38] for a homogeneous gas: the inhomogeneity
of the medium results in a higher super-Ohmic degree, sug-
gesting that the amount of memory effects carried out by the
impurity is greater.

Such an issue has been treated in a quantitative manner
in Sec. V. We employed four different criteria to evaluate
non-Markovianity and all of these indicated that the number of
memory effects increases when the gas is confined in a trap.
The higher non-Markovianity degree for an inhomogeneous
medium represents the main qualitative change with respect
to the homogeneous case studied in [38]. Non-Markovianity
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attracted a lot of interest during the last years [55,72,79,83,84]
especially in view of the possibility to exploit it as a resource
for quantum devices. For instance in [85] it has been proved
that quantum key distribution protocols in non-Markovian
channels provide alternative ways of protecting the communi-
cation which cannot be implemented in the usual Markovian
channels.

Nevertheless, the results we presented only constitute a
first step for a quantitative analysis of the control of memory
effects in polaron dynamics. For this goal there are also other
techniques that one could recall, such as that in [86], where the
effect of the cutoff in the memory effects is elucidated. In our
comparison between the memory effects in the homogeneous
and inhomogeneous BEC we focused in the degree of the
super-Ohmicity of the spectral density. A study on the effect
of the cutoff is interesting but falls beyond the scope of the
present paper.

If we embed the impurity particle in a harmonic poten-
tial the position and momentum variances in the long-time
limit reach a stationary value. That is, the particle reaches
equilibrium in the long-time limit, with quantum fluctuations
independent of time. We study its behavior once this equilib-
rium is reached as a function of the parameters that may be
tuned in experiments, such as temperature and gas-impurity
coupling strength. At low-temperatures and by increasing the
value of the coupling we find that the particle experiences
genuine position squeezing, i.e., δx < 1. This corresponds
to high spatial localization; i.e., the quantum fluctuations in
space are smaller than those in momentum in terms of the
uncertainty ellipse. Very importantly, we show that the spatial
squeezing can be controlled with the BEC trap frequency;
in particular it is enhanced as this frequency is increased.
Genuine position squeezing can be detected in experiments,
as the position variance represents a measurable quantity. The
fact that the squeezing can be controlled with the BEC trap
frequency has important implications for the verification of
these effects in current experiments.

In general, the application of the quantum Brownian mo-
tion to this realistic system opens the possibility to look, in
the concrete case of the Bose polaron, for the large number
of effects detected at an abstract level for the general model.
For instance, one could try to propose an experiment with
ultracold gases to study the Zeno effect predicted in [87].
Moreover, it is possible to study in the context of the Bose
polaron the emergence of classical objectivity, which has been
studied for open quantum systems in [88,89].
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APPENDIX A: VALIDITY OF THE LINEAR
APPROXIMATION FOR THE DYNAMICS

IN THE MIDDLE OF THE GAS TRAP

The results presented for both a trapped and an untrapped
impurity have been derived by approximating the interaction
Hamiltonian in Eq. (20) as a linear function of the position
impurity. Such a linear expansion is valid in the middle of the
trap, i.e., when

x 
 R. (A1)

In this Appendix, we study the validity of the condition
(A1) as the parameters of the system vary. For this goal we
distinguish the situation where the impurity is trapped (� >

0) and that in which it is untrapped (� = 0).
For the trapped impurity, in general, the condition in

Eq. (A1) may be expressed as

x ≈ 〈x〉 + δx = �x 
 R, (A2)

where �x is the Gaussian deviation of the position from its
average value. At low temperatures such a condition is usually
fulfilled because the position variance of the impurity achieves
very low values, since the particle experiences squeezing. In
order to evaluate Eq. (A2) we recall the values acquired by
the dimensionless variance δx . For instance, for the system
parameters used in Fig. 5, it becomes

δx 
 (R/aHO) � 11, (A3)

where aHO = √
h̄/mI� is the impurity harmonic oscillator

length.
At high temperatures instead, the position variance ap-

proaches the behavior predicted by the equipartition theorem,
i.e.,

δx ≈
√

2kBT

mI�2
. (A4)

Accordingly, the condition in Eq. (A2) induces the maximum
acceptable temperature

Tcrit = mI�
2R2/kB. (A5)

In particular, for the values of the physical quantities em-
ployed in Fig. 5,

kBTcrit

mI�2a2
HO

� 122. (A6)

We now study the validity condition in Eq. (A2) for an
untrapped impurity. In this case it may be expressed as

MSD(t ) 
 R2, (A7)

inducing a constraint on the time and on the interaction
strength. Precisely, replacing Eq. (50) in Eq. (A7), we obtain,
in the particular case in which 〈ẋ2(0)〉 = 0, the linear approx-
imation when � = 0 is valid provided

1

3α̃2

(
h̄γ (η)

mI

)(
t

R

)2


 1. (A8)
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FIG. 14. Validity condition in Eq. (A8) for an untrapped impurity
of Yb in a gas made up by N = 5000 atoms of K with a coupling
strength gB = 0.5 × 10−37 J m, trapped in a harmonic potential with
ωB = 2π × 800 Hz.

The left-hand side of Eq. (A8) is plotted in Fig. 14 as a
function of the interaction strength and the time. The area
on the right of the black dashed line is forbidden because the
quantity we plotted becomes larger than one. The validity con-
dition in the high-temperature regime is formally equivalent,
apart from a factor kBT/h̄ωB multiplying the left-hand side,
inducing a constraint also on the temperature.

APPENDIX B: ZERO-TRAP FREQUENCY LIMIT

The results obtained in this paper regard an impurity em-
bedded in a trapped BEC. Precisely we consider a harmonic
confining potential, characterized by a frequency ωB.

A valid question is whether by taking the limit in which the
BEC trapping frequency goes to zero we recover the results
presented in [38] for a homogeneous gas. We point out that the
values of the position variance calculated in the two different
situations do not match as ωB tends to zero. However, it is
possible to note that this kind of pathology goes beyond our
treatment since it already occurs at the level of the Bogoliubov
spectrum. In fact our results rely on Eq. (16), derived in
[66,67]. Here, we do not recover the traditional spectrum for
a homogeneous gas, by sending ωB → 0.

The impossibility to switch continuously from the inhomo-
geneous case to the homogeneous one may also be understood
in terms of the density of the bath states

ρ(ω) =
∑

i

δ(ωi − ω), (B1)

where ω is the frequency of the Bogoliubov modes in the
continuous limit. By recalling Eq. (16) we get the expression
of the density of states associated with an inhomogeneous gas:

ρ (Inh) = 2ω/ω2
B. (B2)

In a similar way we derive that for a homogeneous gas we
have

ρ (Hom) = V

2πc
, (B3)

where c is the speed of sound and V the volume in which
is confined the homogeneous medium. The density of bath

states shows two different expressions in the homogeneous
and inhomogeneous case (it is interesting to note that their
ratio is proportional to that between the corresponding SDs,
i.e., ρ (Inh)/ρ (Hom) ∼ ω). Hence, we approach a very similar
situation to that of 2D ideal gas, where the different form of
the density of states arising in the presence of a trap does not
exhibit a continuous crossover to the case without a trap [68]
(e.g., in the trapped case there is actually condensation while
in the homogeneous case not).

In order to match the physics of the homogeneous case in
the zero-trap frequency we could properly study the scaling
of the several quantities involved in the physics of the system.
Precisely one may aim to get the linear branch of the Bogoli-
ubov spectrum of the homogeneous gas by taking in Eq. (16)
both the limit ωB → 0 and j → ∞, keeping constant their
product ωBj = ck. Nevertheless, although one reproduces the
same spectrum, such a procedure does not work for the rela-
tive eigenstates (17), and thus for the interaction Hamiltonian
(21). From the formal point of view this is due to the difficulty
of obtaining plane waves from the Legendre polynomials in
the zero-trap frequency. In fact the same problem emerges
already for the physics of a single particle: once one solves
the Schrödinger equation for the harmonic oscillator, it is not
possible to recover the eigenstates of the free particle (plane
waves) just by sending the frequency to zero.

Finally, the possibility of performing the zero-trap fre-
quency limit is also affected by the limits of the Thomas-
Fermi regime, on which our analysis is based. First of all,
the Thomas-Fermi density profile (14) constitutes the solution
of the Gross-Pitaevskii in the limit in which we drop out the
kinetic term. In this context the zero-trap frequency limit is
equivalent to sending to zero the potential energy, resulting in
a system with zero energy, which is meaningless. Note in fact
that the density (14), as well as the spectrum (16), goes to zero
in this limit; namely we are turning off the bath.

Furthermore, the Thomas-Fermi approximation holds
when the physics of the gas is ruled by the trapping confine-
ment rather than the interparticle interaction. In the zero-trap
frequency limit we have a situation strongly governed by
the interaction and so the Thomas-Fermi approximation fails.
According to this, it is possible to evaluate the threshold trap
frequency below which our analysis is no longer faithful. This
task has been realized in [68] where the parameter

α = mBgBaHO

h̄2 , aHO = h̄

mBωB
, (B4)

was introduced. The Thomas-Fermi approximation is ensured
if the condition

N � α2 (B5)

is fulfilled; otherwise the medium passes to the strong-
coupling regime (see Fig. 5 in [68]). In this way one may infer
the trap frequency threshold. We see, however, that in the limit
in which such a frequency goes to zero the condition in (B5)
fails.
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