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Real-space probe for lattice quasiholes
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We propose a real-space probe that is based on density measurements to extract distinct signatures of
quasihole-like states of bosons experiencing a synthetic magnetic field in a two-dimensional lattice. We
numerically show that certain ratios of the mean square radii of the particle cloud, obtainable through the density
profile, quickly approach the continuum values expected from Laughlin’s ansatz wave functions as the magnetic
flux quanta per unit cell of the lattice decreases, even in a small lattice with few particles. This method can
equally be used in both ultracold atomic and photonic systems.

DOI: 10.1103/PhysRevA.98.063629

I. INTRODUCTION

The interaction of charged particles with a magnetic
field lies at the heart of many interesting phenomena in
condensed-matter physics including the quantum Hall effects
[1,2]. Besides the hallmark conductance quantization, a two-
dimensional electron gas in a magnetic field hosts curious
physics due to the quasihole and quasiparticle excitations
theorized to appear in a fractional quantum Hall (FQH) fluid
[3]. The unusual fractional exchange statistics of these excita-
tions, which are called anyons [4], is believed to have a great
potential for applications in the field of topological quantum
computation [5].

Advances in quantum simulation with ultracold atomic
[6] and photonic systems [7] have encouraged researchers to
look for the FQH physics in analog systems, which provide
a more controllable environment than their electronic coun-
terparts. Integration of strong interparticle interactions with
the recently created synthetic magnetism for neutral particles
[8–14] seems within reach of current experimental capabilities
[15–17], paving the way to realize the FQH physics with
atoms and photons soon.

The possibility of forming periodic structures like optical
lattices in ultracold atomic systems and coupled cavity arrays
in photonic ones has a constructive effect on the experimental
realization of FQH physics. Most importantly, interparticle
interactions can be greatly enhanced due to the confinement
of particles in lattice sites, thereby increasing the energy gap
that protects the ground state from external perturbations.
Motivated by this advantage and the promising methods for
creating synthetic magnetic fields, the lattice version of the
FQH effect has been vigorously investigated for both ultracold
atomic [18–20] and photonic systems [21]. As a parallel
development, fractional Chern insulators (FCIs) with topolog-
ical flat bands, a broader class of systems which do not require
a uniform magnetic field for FQH-like effects to appear in
lattices, have become a subject of intense study in recent
years [22]. Exchange properties of quasihole excitations have
also been examined for both FCIs [23] and other lattice FQH
models constructed to have the quasihole state as the system’s
ground state [24].

So far, several experimental methods involving density
measurements have been put forward for the identification
of FQH-like states both in continuum and in lattices, in-
cluding the observation of a flat density profile suggesting
incompressibility, quasiholes with an estimated size [23], and
fractional density depletion at the quasihole position [25].
Also, we have recently proposed a real-space method for
observing the anyonic statistics of quasiholes in a system of
trapped particles in continuum [26].

In this work, we show how by determining the mean
square radii of various many-particle states through a density
measurement in the lattice one can infer, in an unambigu-
ous manner, whether a small number of interacting particles
exist in a quasihole-like state. By numerically studying the
repulsive Hofstadter–Hubbard model [18] in the presence of
an impurity potential, we found that certain ratios of the
mean square radii of the particle cloud quickly approach
the continuum expectations as the magnetic flux quanta per
unit cell decrease, even in a small lattice. We argue that
the dependence of a global observable like the mean square
radius on the number of particles, in a measurably distinct
way for small systems, can provide useful supplementary
information about the underlying microscopic physics in ad-
dition to other local signatures such as the quasihole size and
fractional density depletion. Moreover, by explicitly showing
the agreement between the continuum expectations and lattice
results for small systems, we provide a reasonable conjecture
that mean-square-radii measurements, originally proposed for
a continuous system [26], can also be utilized to observe
quasihole anyonic statistics in moderate-sized lattices.

To avoid edge effects for the finite system that we study,
and to focus on the bulk properties, we use periodic bound-
ary conditions in our numerical simulations. Such boundary
conditions for two-dimensional lattices might be realized in
cold-atom systems by creating a torus surface using spatially
shaped laser beams [20] and in photonic systems by con-
necting the opposite edges of the finite system possibly with
wave guides. From an experimental point of view, however,
it is easier to impose an overall trapping potential on a finite
lattice, which confines the particles in the center of the system,
than to implement periodic boundary conditions. Provided
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that the number of magnetic flux quanta per particle in a large
enough region away from the system edge is the correct bulk
value, we believe the mean-square-radius approach should
still work in an appropriate limit without being hindered
by the discrete nature and moderate size of the lattice. We
defer the study of this case to a future work. The density
measurements we rely on can be straightforwardly performed
in cold-atom systems via time-of-flight methods [27] or by
using quantum gas microscopes with single-site resolution,
which are particularly suitable for two-dimensional optical
lattices [28], and in the photonic context via standard imaging
techniques that collect scattered light from individual cavities
[11,12].

II. THE MODEL

We start with the noninteracting Hamiltonian for particles
hopping in a square lattice perpendicularly pierced by a
uniform synthetic magnetic field along the z direction:

H0 = −t
∑
〈ij〉

(ei2πφij c
†
i cj + H.c.), (1)

where c
†
i (cj ) creates (annihilates) a boson at site i (j ), H.c. is

the Hermitian conjugate, and t > 0 is the hopping amplitude
between nearest-neighbor sites 〈ij 〉 with coordinates ri and
rj . The hopping phase is given by φij = (1/φ0)

∫ ri

rj
A · dr,

where the integration path is a straight line, φ0 = h/q0 is the
magnetic flux quantum for a synthetic charge q0, and A =
−Byx̂ is the Landau gauge vector potential corresponding to
an effective magnetic field strength of B. The quantities q0 and
B are merely introduced to make the synthetic-real analogy
complete; the experimentally relevant quantity is the phase φij

itself. We also define the magnetic flux quantum per unit cell
of the lattice as φ = Ba2/φ0, where a is the lattice constant.
In this model, the wave function of a particle traversing
a loop around the unit cell acquires the Aharonov–Bohm
phase factor exp(i2πφ). When φ = p/q, with p and q being
relatively prime integers, the single-particle energy band in the
absence of a magnetic field is split into q sub-bands yielding
the fractal Hofstadter butterfly spectrum [29].

We consider repulsive on-site interactions between par-
ticles, modeled by the interaction Hamiltonian HI =
(U/2)

∑
i ni (ni − 1), where ni = c

†
i ci is the number operator

and U > 0. The overall Hamiltonian is therefore given by
H = H0 + HI , which is simply the Bose–Hubbard Hamilto-
nian [30] including the effect of the synthetic magnetic field
through complex hopping amplitudes. This Hamiltonian has
been investigated in numerous works [18–20] and its ground
state has been found to have a very large overlap with the
Laughlin state (generalized for torus boundary conditions; cf.
Appendix A) for the appropriate filling fraction ν = N/Nφ in
the so-called continuum limit φ � 1. Here, N is the number
of particles and Nφ is the number of flux quanta contained
in the lattice. For a filling fraction ν = 1/m, where m is an
even integer in the case of bosons, the ground state turns out
to be m-fold degenerate for torus boundary conditions [31].
We focus on the simplest ν = 1/2 case in the following dis-
cussion, because long-range interactions might be necessary

to separate the degenerate ground states from the excited ones
for smaller filling fractions [18].

Although we perform exact diagonalization of small sys-
tems for benchmarking purposes, we use a projection method
[23] in momentum (k) space to deal with larger systems for
which exact diagonalization is time consuming if not totally
out of reach. For this purpose, we first solve the single-particle
problem in k space. We define the Fourier transform of ci in
an Lx × Ly lattice (lattice constant a set to unity):

ckβ =
√

q

LxLy

Ly

q
−1∑

s=0

Lx−1∑
ix=0

csβix e
−iky sqe−ikx ix , (2)

where csβix ≡ ci , the y coordinate of the ith site is given by
iy = sq + β with s = 0, . . . , Ly/q − 1 labeling a magnetic
unit cell that covers q sites along the y direction, and β =
0, . . . , q − 1 is the index of a site inside the unit cell. With this
choice of unit cell, a q-site translation along the y direction
gives a total hopping phase factor of unity (which is equivalent
to the zero-flux case) and the Brillouin zone is reduced to
kx ∈ [0, 2π ) and ky ∈ [0, 2π/q ). By also imposing periodic
boundary conditions (PBCs), the noninteracting Hamiltonian
is written as H0 = ∑

kαβ c
†
kαMαβ (k)ckβ , where M (k) is a

q × q matrix with components Mαα (k) = −2t cos(2παφ +
kx ), Mα(α±1)(k) = −t , M1q (k) = M∗

q1(k) = −t exp(−ikyq )
and all the remaining matrix elements are zero. After diago-
nalizing M (k) we get the single-particle energies εn(k), which
yield the Hofstadter butterfly when plotted as a function of
φ, and the corresponding eigenvectors g(n)(k), where n =
1, 2, . . . , q is the band index. The Hamiltonian H can now be
written in terms of the operators dkn = ∑

β g
(n)∗
β (k)ckβ that

diagonalize H0 as

H =
∑
kn

εn(k)d†
kndkn

+ Uq

2LxLy

∑
kk′Q

n1n2n3n4

d
†
k+Q,n1

d
†
k′−Q,n2

dk′n3dkn4

× g
(n1 )∗
β (k + Q)g(n2 )∗

β (k′ − Q)g(n3 )
β (k′)g(n4 )

β (k), (3)

where g
(n)
β (k) stands for the βth component of g(n)(k).

To lessen the computational burden, we choose to describe
the physics in the lowest band of the single-particle spectrum,
by keeping only n = 1 terms in the Hamiltonian (3). For this
projection to be valid, we require that the strength U of the
interparticle interactions be small enough to avoid scattering
of particles to higher bands [32]. Note that this approximation
is similar to the lowest Landau level (LLL) approximation in
continuum, where the interaction-induced gap is much smaller
than the separation between Landau levels. In the mean time,
U should not be too small as interactions are necessary to
observe Laughlin-type strongly correlated ground states. We
also add to the Hamiltonian H a simple repulsive impurity
potential Vimp = V ni with a sufficiently large strength V > 0
to pin a quasihole on the ith site. The k-space form of ni

should also be projected to the lowest band.
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III. MEAN-SQUARE-RADIUS APPROACH

In this section, we lay out our approach to find the sig-
natures of Laughlin-type correlations through a mean-square-
radius measurement in the lattice. First, we briefly overview
the situation in continuum.

To provide a microscopic explanation for the FQH effect
for the two-dimensional electron gas at filling fraction ν =
1/3, Laughlin put forward the following ansatz wave function
composed of single-particle LLL wave functions [3]:

�FQH(ζ1, . . . , ζN ) ∝
∏
j<k

(ζj − ζk )me− ∑N
i=1 |ζi |2/4	2

B , (4)

where N is the number of particles in the system, ζj =
xj + iyj is the complex-valued coordinate of the j th particle,
m = 1/ν = 3, and 	B = √

h̄/eB is the magnetic length. This
ansatz readily extends to other filling fractions ν = 1/m, m

being an odd (even) integer for fermions (bosons), yielding the
correct symmetry for the wave functions. Indeed, the bosonic
extension of the FQH physics has been successfully carried
out to explore the ground states of rotating atomic condensates
[33]. There is also a simple ansatz for the quasihole wave
function as follows [3]:

�qh({ζi},R) ∝
N∏

i=1

(ζi − R)�FQH(ζ1, . . . , ζN ), (5)

where R is the complex-valued coordinate of the quasihole
that could be pinned by impurities in electronic systems or
repulsive localized potentials in ultracold atomic systems.
Equations (4) and (5) were numerically verified to accurately
describe the low-energy physics of the relevant systems.

In our recent work [26], we proposed to observe quasi-
hole anyonic statistics by measuring the mean square radius
〈r2〉 = ∫

r2n(r)d2r/N , where n(r) is the particle density. For
a many-particle wave function described in the LLL, it is
possible to relate 〈r2〉 to the mean total angular momentum
〈Lz〉 along the z axis through the following relation [34]:

〈r2〉 = 2	2
B

N

( 〈Lz〉
h̄

+ N

)
. (6)

It is this relation that makes a real-space observation of the
exchange statistics possible as the Berry phase [35] of particle
braiding is given by 2π〈Lz〉 (defined modulo 2π ) [26].

We now investigate whether we can exploit Eq. (6) to
predict the correlated nature of the ground state in the lattice.
It is by no means clear from the outset that an equation valid
in an infinite continuous space could be used to describe
a discrete system on a torus. However, it is plausible to
conjecture that, in a limit where the discreteness and boundary
effects are not much pronounced, such an equation can pro-
vide approximate but still useful information. There is ample
analytic and numerical evidence that the ground-state wave
functions on a torus are the appropriately generalized versions
of those in Eqs. (4) and (5) for PBCs [31]. In addition, it
is known that lattice ground states can be constructed with
high fidelity by a discrete sampling of the continuum wave
functions at lattice points as long as φ � 1 [18]; that is, when
the cyclotron orbit characterized by 	B encircles a sufficiently

large number of unit cells with side length a, as can be seen
through the relation (	B/a)2 = 1/2πφ.

We first identify what Eq. (6) means for the continuum
wave functions. The Laughlin (L) state and the quasihole
(QH) state with the quasihole pinned at the origin (R = 0) are
both total angular-momentum eigenstates with eigenvalues
N (N − 1)h̄ and [N (N − 1) + N ]h̄ = N2h̄, respectively, for
the case of m = 2. Using these values we arrive at

〈r2〉N,φ

L = 2N	2
B = N

πφ
a2, (7)

〈r2〉N,φ

QH = 2(N + 1)	2
B = N + 1

πφ
a2. (8)

If the system can be brought sufficiently close to its lowest
energy configuration, these 〈r2〉 values will be peculiar to
Laughlin and quasihole states because all other states with
same angular momenta lie above a sizable energy gap. In
Eqs. (7) and (8) we also introduced the lattice constant a

to establish a link between continuum and lattice physics,
bringing the flux quantum per plaquette φ to the scene. One
may argue that, in the limit φ � 1, the lattice values of 〈r2〉
would approach the continuum expectations given in Eqs. (7)
and (8). However, the artificiality of boundary conditions,
which is more pronounced for small systems, prevents this
expectation from being truly realized. To alleviate this obsta-
cle, we propose to look at certain ratios of 〈r2〉 for different
states, conjecturing that these ratios could be less sensitive to
the boundary conditions. As will be seen in the next section,
this is indeed the case. Incidentally, looking at ratios could
also be experimentally more viable, because they are more
robust against fluctuations. Specifically, we define

RL/QH ≡ 〈r2〉N,φ

L /〈r2〉N,φ

QH = N/(N + 1), (9)

RQH/QH ≡ 〈r2〉N,φ

QH /〈r2〉N+1,φ′
QH = (N + 1)φ′

(N + 2)φ
. (10)

While the ratio in Eq. (9) compares 〈r2〉 values for the
Laughlin and quasihole states with same N and φ, the one
in Eq. (10) is for two quasihole states differing by one particle
and experiencing different fluxes; namely, φ and φ′. The last
equalities in Eqs. (9) and (10) follow from the continuum
expectations given in Eqs. (7) and (8). In the next section,
we compare the continuum expectations with the numerical
results for the lattice. We also discuss in detail how we choose
the value of the flux and the lattice size to obtain Laughlin and
quasihole states.

IV. NUMERICAL RESULTS

In an Lx × Ly lattice, the total number of flux quanta
is Nφ = LxLyφ. We consider simple fractions φ = 1/q and
choose Ly = q so that only one magnetic unit cell fits along
the y axis. Therefore, Nφ equals Lx in our model. For sim-
plicity and in order to deal with a symmetric system, we also
choose Lx = q for the Laughlin state, yielding Nφ = q and
N = Nφ/2 = q/2. We found from the exact diagonalization
of the N = 2, 3 systems in real space that the ground state is
twofold degenerate and the overlap between any of the two
degenerate ground states and an optimal linear combination
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TABLE I. Continuum expectations (Cont.) calculated using Eqs. (7)–(10) and the corresponding numerical results for the lattice (Lat.) with
U = t , V = 5t (0) in the QH (L) case. Results for 〈r2〉N,φ

QH given in parentheses are the converged values obtained via exact diagonalization
using U = 50t .

〈r2〉N,φ

L /a2 〈r2〉N,φ

QH /a2 RL/QH RQH/QH

Cont. Lat. Cont. Lat. Cont. Lat. Cont. Lat.

N = 2 2.547 3.000 3.820
3.571

(4.050)
0.667

0.840
(0.741)

0.500
0.437

(0.493)

N = 3 5.730 6.333 7.639
8.171

(8.210)
0.750

0.775
(0.771)

0.600
0.603

(0.606)
N = 4 10.19 11.00 12.73 13.54 0.800 0.812 0.667 0.670
N = 5 15.92 17.00 19.10 20.21 0.833 0.841 0.714 0.717
N = 6 22.92 24.33 26.74 28.20 0.857 0.863 0.750 0.752
N = 7 31.19 33.00 35.65 37.52 0.875 0.879

of the two Laughlin states generalized for PBCs is ∼99% for
a sufficiently large U .

When it comes to creating the quasihole state, in ad-
dition to applying the impurity potential Vimp to remove
one half of a particle at the position of the quasihole (cf.
Appendix B), we must enlarge the system to the extent that
it exactly contains one more flux quantum; that is, the new
number of flux quanta becomes N ′

φ = Nφ + 1 = 2N + 1. We
do this by increasing Lx by one, thereby introducing q sites
along the y axis, which brings an additional qφ = 1 flux
quantum to the lattice as required [36].

To calculate 〈r2〉 = ∑
i r

2
i 〈ni〉/N one first needs to find

the distance ri = a(i2
x + i2

y )1/2 of each lattice point from a
specified origin by paying attention to PBCs (cf. Appendix C).
In the presence of a quasihole pinning potential, we take the
origin to be the site at which the pinning potential is localized;
when there is no such potential as in the case of the Laughlin
state, any site can be chosen as the origin without altering the
results we present in Table I. Since the ground-state manifold
is twofold degenerate for a sufficiently large U , the expected
value 〈ni〉 is averaged over these two states.

The results for N = 2, 3 come from exact diagonalization
and the rest are found with the lowest-band approximation.
We observe that 〈r2〉 converges very quickly to the quoted
values for an interaction strength U < t for all N but N = 2.
For sufficiently large U , the two lowest-energy states of the
N = 2 system in the presence of the impurity potential are
only nearly degenerate. Combined with the smallness of the
system, this leads to a noticeably different 〈r2〉 for these states
even when the results converge for large U (cf. Appendix D).

As can be noticed from Table I, 〈r2〉 for the Laughlin
case takes some integer and rational values. This is simply
because, as numerically verified, the site densities 〈ni〉 av-
eraged over two degenerate Laughlin states are very nearly
the same (〈ni〉 � N/LxLy), just as the uniform bulk of
the continuum version, and as a result 〈r2〉N,φ

L /a2 is given
by the sum

∑
i r

2
i /LxLya

2 = (2N2 + 1)/3, with Lx = Ly =
q = 2N . Still, since the filling fraction is fixed and most of the
contribution to 〈r2〉 comes from the uniform bulk, continuum
results given by N/πφ = 2N2/π can be considered close to
the lattice ones, given the discrete nature of the lattice. Lattice
and continuum results for 〈r2〉N,φ

QH are also comparable. More
interesting, however, are the results for RL/QH and RQH/QH ,

for which the continuum expectations in Eqs. (9) and (10)
yield N/(N + 1) and N/(N + 2), respectively, for the param-
eters at hand [φ = 1/2N , φ′ = 1/2(N + 1)]. The agreement
between results for RQH/QH is especially remarkable. In
Fig. 1, we plot the relative error E ≡ |Rlat./Rcont. − 1| between
lattice ratios Rlat. and the corresponding continuum expecta-
tions Rcont. in order to see better the convergence of results
as the continuum limit φ ∼ 1/2N � 1 is approached. While
the case for N = 2 can be considered anomalous as discussed
above, E quickly gets smaller to reach the value ∼0.5% for
the ratio RL/QH with N = 7 and ∼0.2% for RQH/QH evaluated
for the quasihole states with N = 6, 7.

We believe that the good agreement observed for certain
〈r2〉 ratios results from satisfying several gross features of the
quasihole state. It seems that as long as the filling fraction
N/Nφ is the correct one so as to remove a fraction (here one
half) of a particle from the quasihole position and increase
the system area accordingly, and the density around the quasi-
hole has a sufficient radial symmetry (although discrete) for
〈r2〉 to be a meaningful quantity, the effect of the underly-
ing lattice on the ratios we investigated quickly diminishes
as the continuum limit φ � 1 is approached. The relation
RL/QH = N/(N + 1) can also be shown to follow from a
simple disk model for the density in continuum, emphasizing

2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12
L/QH
QH/QH

FIG. 1. Relative error E between lattice ratios and the corre-
sponding continuum expectations as a function of the particle num-
ber N . We used the U = 50t results for N = 2, 3. Blue stars are for
RL/QH and red circles for RQH/QH. Lines are drawn as a guide.
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that a detailed knowledge of the actual density profile of the
Laughlin and quasiholes states is not required when it comes
to calculating this specific ratio (cf. Appendix E).

V. CONCLUSION

We proposed a method that depends on real-space
density measurements for obtaining clear signatures of
quasihole states of lattice bosons in a synthetic magnetic field.
We provided strong numerical evidence that certain ratios of
the mean square radii of Laughlin- and quasihole-like states
in the lattice approach the values expected from continuum
physics, even in a small system, when the discrete nature
of the lattice becomes less discernible as in the so-called
continuum limit characterized by small magnetic flux quanta
per unit cell. We believe our proposal will be especially
useful to identify quasihole states in the first experimental
realizations, which will most probably involve a small number
of particles and lattice sites.

The agreement we found between the continuum expecta-
tions and lattice results also encourages us to anticipate that
mean-square-radii measurements in a moderate-sized lattice
can still be used as a means to observe quasihole anyonic
statistics. Therefore, as a future direction, we plan to inves-
tigate the statistical phase in larger lattices, which allow for
larger separation between quasiholes, by employing Monte
Carlo methods. Another interesting venue could be the search
of similar signatures in various fractional Chern insulators.
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APPENDIX A: LAUGHLIN WAVE FUNCTION ON A TORUS

In an L × L torus geometry, the ν = 1/2 Laughlin wave
function of N particles in the Landau gauge A = −Byx̂ has
the form [31]

� (l)(ζ1, . . . , ζN ) = NLF
(l)
CM(Z)e−πα

∑
j y2

j

×
N∏

j<k

(
ϑ

[
1
2
1
2

](
ζj − ζk

L

∣∣∣i)
)2

, (A1)

where ζk = xk + iyk is the complex coordinate of the kth par-
ticle in units of lattice spacing a, Z = ∑

j ζj , φ = Ba2/(h/e)
is the magnetic flux quanta per plaquette, and NL is the nor-
malization factor. The part containing relative coordinates is
written in terms of the elliptic ϑ (theta) functions ϑ[c

d](ζ |τ ) =∑
n eiπτ (n+c)2+2πi(n+c)(ζ+d ), where n runs over all integers.

The center-of-mass part is also given by elliptic functions:

F
(l)
CM(Z)=ϑ

[
l/2 + (Nφ − 2)/4

−(Nφ − 2)/2

](
2Z

L

∣∣∣2i

)
. (A2)

Here, Nφ is the number of flux quanta contained in the L×L

lattice and the label l = 0, 1 indicates the two degenerate
ground states at filling ν = N/Nφ = 1/2.

eigenvalue number
5 10 15 20 25

E
ne

rg
y/

t

-13.16

-13.15

-13.14

-13.13

-13.12

-13.11

V = 0
V = 5t

delocalized    
quasihole states

pinned       
quasihole states

FIG. 2. Energy spectra for N = 4 particles in a lattice with Lx =
9, Ly = 8, and φ = 1/8. Eigenvalues are ordered from smallest
to largest. Periodic boundary conditions are imposed. Strength of
interactions between particles is U = t . In the absence of an impurity
potential (V = 0), there is a nearly degenerate manifold of delocal-
ized quasihole states. The number of such states is determined by
Lx . When an impurity potential is set in (V = 5t), the quasihole in
two of these states is pinned at the position of the localized impurity
potential, their energy being almost unchanged.

APPENDIX B: QUASIHOLE PINNING

In a lattice with the correct filling fraction to obtain a
quasihole and in the presence of interactions, there appears
a degenerate manifold of delocalized quasihole states if there
is no impurity potential [23]. When the impurity potential is
turned on, the quasihole in two of these delocalized quasihole
states gets pinned at the position of the impurity potential
localized on a specific site, without any appreciable energy
cost (see Fig. 2). This twofold degeneracy is the same one ob-
served for the Laughlin states generalized for torus boundary
conditions. The energies of the rest of the delocalized quasi-
hole states are raised and the ground-state manifold becomes
isolated. In Fig. 3, we plot the density profiles before and
after the impurity potential is turned on, showing the pinning
of the quasiholes. When there is no impurity potential, the
quasiholes seem to be delocalized along the direction of the
greater side of the rectangle, forming stripes. We checked that
this is not always the case when the system is kept symmetric
with Lx = Ly = q + 1 and φ = 1/(q + 1).

APPENDIX C: MEASURING 〈r2〉 ON A TORUS

Here, we briefly explain how we calculate 〈r2〉 in a lattice
with periodic boundary conditions. In Fig. 4, we show as a
generic example the (interpolated) density profile 〈ni〉 for the
N = 4 system described in Fig. 2 with the impurity potential
localized at the origin (0,0). The density profile has a nice
radial symmetry around the impurity although the lattice itself
is slightly asymmetric. Although we did not make an explicit
overlap calculation, the density profile and the twofold de-
generate ground-state manifold isolated from excited states
are strong indications that we have the quasihole state. To
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FIG. 3. Density profiles 〈ni〉 (interpolated for better visualiza-
tion) for the system described in Fig. 2. Panels (a)–(c) are for the first
three nearly degenerate delocalized quasihole states in the absence of
an impurity potential (V = 0). Panels (d)–(f) show the density profile
for the first three eigenstates when there is an impurity potential with
strength V = 5t . While the first two profiles in panels (d) and (e)
correspond to the degenerate quasihole states where the quasihole
is pinned at the origin, the third one in panel (f) corresponds to an
excited state.

calculate 〈r2〉 = ∑
i r

2
i 〈ni〉/N we need to find the distance

ri = a(i2
x + i2

y )1/2 of each lattice point from the origin that lies
inside the square delineated by dashed lines in Fig. 4 defining
our finite system. Because the four corner points (0,0), (9,0),
(0,8), and (9,8) can equivalently be taken as the origin for
periodic boundary conditions, the logical choice to define the
distance ri is to take it as the magnitude of the shortest vector
connecting the ith lattice site with these four points.

APPENDIX D: DEPENDENCE OF 〈r2〉QH

ON THE INTERACTION STRENGTH

In this part, we display how the interaction strength U

affects the 〈r2〉QH values. The general trend is that 〈r2〉QH

FIG. 4. Density profile 〈ni〉 for the quasihole state (interpolated
for better visualization) with N = 4, Lx = 9, Ly = 8, and φ = 1/8.
Interaction strength is U = t . Impurity potential with strength V =
5t is localized at (0,0). The 1×8 magnetic unit cell is shown by the
red rectangle. The distance from the origin of point (7,5) should be
taken as the magnitude of the red solid vector and not that of the blue
dashed vector due to periodic boundary conditions (see text).

evaluated for the two lowest-energy (nearly) degenerate states,
although different for small U , quickly approach each other
as U is increased and converge to very close values for large
U . However, the N = 2 case is an exception. In Fig. 5,
we show the results obtained via exact diagonalization for
N = 2. Unlike the results for the systems with larger particle
numbers displayed in Fig. 6, 〈r2〉QH for the two lowest-energy
states never do approach each other although they converge
to certain values for large U . Even for large U these states

0 10 20 30 40 50
3

3.2

3.4

3.6

3.8

4

4.2

0 1 2 3 4 5
3

3.5

4

N = 2

FIG. 5. Dependence of 〈r2〉QH on the interaction strength U for
N = 2 obtained via exact diagonalization. Dash-dotted red line is
calculated for the lowest-energy state, dashed black line is for the
next-lowest-energy state, and solid blue line is the average of these
two results. Inset shows the low-U behavior.
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FIG. 6. Dependence of 〈r2〉QH on the interaction strength U for
(a) N = 3 and (b) N = 4 obtained in the lowest-band approximation.
Dash-dotted red line is calculated for the lowest-energy state, dashed
black line is for the next-lowest-energy state, and solid blue line is
the average of these two results. Insets show the low-U behavior.
Also shown in panel (a) by red circles are the results for the average
〈r2〉QH calculated by exact diagonalization.

are only nearly degenerate. The reason for the discrepancy
in 〈r2〉QH might then be attributed to the fact that the N = 2
system is a bit too small and slight differences in the densities
get amplified in the lattice sampling of 〈r2〉QH.

APPENDIX E: SIMPLE DISK MODEL

We show that the continuum expectation 〈r2〉L/〈r2〉QH =
N/(N + 1) can also be obtained from a simple model where
the density profiles of the Laughlin and quasihole states can
be taken as a disk and a disk with a hole, respectively.

We suppose that the density of the incompressible Laughlin
state is some constant ρ up to a radius RL and zero out of the
disk. The total particle number is simply given by N = πR2

Lρ.
The mean square radius is then

〈r2〉L = 2π

∫ RL

0
r2ρrdr/N = 2πρ

N

R4
L

4
= N

2πρ
, (E1)

where R2
L = N/πρ is used. Next, we punch a hole with radius

rQH at the center of the disk to model the quasihole. We
assume that exactly one half of a particle is removed from this
hole: πr2

QHρ = 1/2. Supposing that the bulk density remains
constant at the value ρ, the quasihole state will extend to a
radius RQH greater than RL. The particle number is still the
same: N = π (R2

QH − r2
QH)ρ. Using this relation, we find

R2
QH − r2

QH = N

πρ
, (E2)

R2
QH = 1

πρ

(
N + 1

2

)
, (E3)

where the second equation is obtained from r2
QH = 1/2πρ.

The mean square radius for the quasihole state is found as

〈r2〉QH = 2π

∫ RQH

rQH

r2ρrdr/N

= 2πρ

N

1

4

(
R2

QH − r2
QH

)(
R2

QH + r2
QH

)
= 1

2

(
R2

QH + r2
QH

) = 1

2πρ
(N + 1), (E4)

where we used Eq. (E2) to obtain the first equality in the last
line and Eq. (E3) together with the relation r2

QH = 1/2πρ to
obtain the last equality. Finally, dividing Eq. (E1) by Eq. (E4)
we arrive at the desired continuum ratio N/(N + 1). Subtract-
ing Eq. (E1) from Eq. (E4), one can also find an estimate for
the quasihole radius as

rQH =
√

〈r2〉QH − 〈r2〉L. (E5)
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