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Transition from supersonic to subsonic waves in superfluid Fermi gases
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We study the propagation of dispersive waves in superfluid Fermi gases in the BEC-BCS crossover. Unlike
in other superfluid systems where dispersive waves have already been studied and observed, Fermi gases can
exhibit a subsonic dispersion relation for which the dispersive wave pattern appears at the tail of the wave front.
We show that this property can be used to distinguish between a subsonic and a supersonic dispersion relation at
unitarity.
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I. INTRODUCTION

Cold atomic gases have given a new boost to the research
on superfluids. Using the high level of experimental control
offered by these systems, the propagation of first [1,2] and
second sounds [3] has been observed, the superfluid fraction
has been measured [3], the dissipationless flow of an impurity
below the critical velocity was demonstrated [4], and the
damping of phonons has been precisely measured in Bose
gases [5,6] and clearly related to elementary three-phonon
processes [7,8].

In this context, cold gases of paired fermions have attracted
special attention due to the possibility of tuning the interaction
strength using a Feshbach resonance [9]. This degree of
freedom allowed for the observation, unique among super-
fluid systems, of a resonantly interacting gas in the so-called
unitary limit [10]. A specificity offered by the controllable
interactions is that the sound branch changes from a su-
personic dispersion relation in the Bose-Einstein condensate
(BEC) limit where the pairs are tightly bound dimers, to a
subsonic one in the Bardeen-Cooper-Schrieffer (BCS) limit
of weakly correlated pairs [11]. Cold Fermi gases are then
one of the rare homogeneous superfluid systems in which a
subsonic dispersion relation can be observed (others being
helium at high pressure [12] and a spin-orbit coupled BEC
[13]). Since dissipative effects are weak in low-temperature
superfluid Fermi gases [14,15], waves propagate much longer
than in a viscous medium. The long-time behavior of a wave
packet is then governed by dispersive effects [16,17], and a
specific behavior, observed in a superfluid in this paper, is
expected for a subsonic dispersion [18].

Describing this dispersive hydrodynamics in a Fermi gas is
a nontrivial task. Since high-amplitude waves excite the pair
internal degrees of freedom, there exists no simple equivalent
of the bosonic Gross-Pitaevskii equation able to describe the
nonlinear wave dynamics and relate it to well-studied math-
ematical models, such as the Korteweg–de Vries equation
[19,20]. Here we study wave propagation in two limiting
cases where rigorous wave equations can be derived from first
principles.
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In Sec. II, we study small amplitude waves completely
characterized by the dispersive spectrum. Due to dispersion,
the plain wave front that would propagate after a perturbation
in a nondispersive medium is perturbed by the formation of
an oscillatory train. The position of these oscillations with
respect to the wave front depends on whether the bending of
the sound branch is supersonic or subsonic and thus changes
when the interactions are tuned from the BEC to the BCS
regime.

In Sec. III, we study the propagation of large-amplitude
long-wavelength perturbations using the nonlinear wave equa-
tion derived in Ref. [21]. With an initial perturbation in the
form of a density depletion, we show the appearance of
a narrow solitary edge traveling slower than the speed of
sound behind the wave front. The secondary peaks caused
by dispersion are smoothened by nonlinear effects but remain
visible. This behavior is reminiscent of the dispersive shock
waves observed in Bose gases [22,23].

Finally, we show how these phenomena can be used to set-
tle the ongoing debate on the interaction regime at which the
collective branch changes from supersonic to subsonic. Calcu-
lations in the random-phase approximation (RPA) [11,24], in
an effective Lagrangian approach [25], in a 4 − ε expansion
[26], or Monte Carlo simulations [27] predict a supersonic
branch at unitarity, whereas a density functional method [28]
finds it subsonic. However, the supersonic or subsonic nature
of the sound branch controls several important macroscopic
properties of the gas, in particular, its dissipative properties
[7]. Here we show that dispersive waves can be used to
obtain a measurement that can settle this controversy using
state-of-the-art experimental techniques to create small-sized
perturbations [29] and to perform high-resolution imaging
[30].

II. LINEAR DISPERSIVE WAVES

At low momentum, the dispersion relation of the sound
branch of a superfluid can be written generically as

h̄ωq = h̄cq

[
1 + γ

8

(
h̄q

mc

)2

+ O

(
h̄q

mc

)4
]
. (1)
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FIG. 1. The RPA dispersion relation of the collective excitations is plotted (a) in the BCS regime (1/kFa = −1), (b) at unitarity (1/kF|a| =
0), and (c) in the BEC regime (1/kFa = 1). The full line corresponds to the full numeric solution of the dispersion, which is compared to its
linear (dotted) and cubic (dashed) approximation at low q. The gray area shows the pair-breaking continuum. Units of the superfluid order
parameter � and k� = √

2m�/h̄, respectively, are used for the energy and the wave number.

In this expression, c is the speed of sound, found from the
density ρ and the chemical potential μ of the gas by the hy-
drodynamic relation mc2 = ρdμ/dρ, m is the mass of the
particles, and γ is a dimensionless parameter controlling the
cubic correction to the linear spectrum. In a superfluid Fermi
gas, the speed of sound is known experimentally for any
interaction strength from the measurements of the equation
of state μ = μ(ρ, a), with a as the s-wave scattering length
[31,32]. For the coefficient γ , which depends on the micro-
scopic physics of the system and trapping geometry, there are
however only theoretical predictions. For homogeneous gases,
several predictions of a positive [11,24–27] or negative [28] γ

coexist at unitarity (|a| = ∞), but only the RPA prediction
of γ exists in the whole BEC to BCS crossover [11]. In
particular, the RPA finds γ to be negative for 1/kFa < −0.14
and positive above. At higher momenta, the full dispersion
relation q �→ ωq was again only predicted within the RPA; it
is obtained by numerically solving the RPA implicit equation
[24,33] {see Eq. (1) in Ref. [11]}. This dispersion relation is
visualized in Fig. 1 for different interaction regimes.

In this paper we explain how dispersive waves can be
used to measure the coefficient γ . Our starting point is the
Schrödinger equation that governs the propagation of a plane
wave of momentum q,

(i∂t − ωq)ψ = 0, (2)

where ψ ∈ R represents a perturbation of the superfluid
density ρ = ρ0(1 + ψ )2. This very intuitive equation is, in
fact, rigorously demonstrated for a superfluid Fermi gas by
writing down, in a functional integral formalism, a quadratic
Lagrangian for the phase and amplitude of the superfluid
order parameter as is performed explicitly in Appendix A.
Replacing ωq by its cubic approximation (1) and restricting
to one-dimensional right-propagating waves Eq. (2) takes the
form

∂tψ = −c ∂xψ + γ h̄2

8m2c
∂3
xψ, (3)

which is nothing else than a linearized Kortweg–de Vries
equation [19,34]. The propagation of unidimensional waves
in (quasi)homogeneous space can be studied in box potentials

[35], provided the transverse size of the box is much larger
than the wavelength of the perturbation [36]. In elongated
harmonic traps, the dispersion of phonons is expected to be
concave in the BEC limit as in a weakly interacting Bose gas
[37] so that no transition from subsonic to supersonic waves
should occur.

We study the propagation of an initial Gaussian perturba-
tion of the superfluid density,

ψ (x, t = 0) = ζe−x2/2σ 2
, (4)

where the amplitude ζ is chosen small enough for the linear
differential equation (3) to remain valid. Upon rescaling the
distances to the width of the perturbation σ and the times to its
duration σ/c, there remains a unique parameter describing the
propagation of waves under Eq. (3), namely, the coefficient of
the third-order derivative γ h̄2/8m2c2σ 2. This parameter thus
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FIG. 2. A comparison of dispersive waves for different predic-
tions of the cubic coefficient γ at unitarity (1/kFa = 0). Both func-
tions are solutions to Eq. (3), starting from a Gaussian perturbation
with ζ = 0.02 and σ = 2.5h̄/mc. For the solid curve the analytic
RPA prediction γ = 0.084 is used, whereas the dotted line is drawn
for γ = −0.044, predicted by Zou et al. [28]. The dispersive waves
are shown at a time t = tsep, and we omitted the symmetric left-
traveling wave for visibility.
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FIG. 3. Dispersive waves in the BCS regime (1/kFa = −1) at
a time t = 2tsep, starting from an initial Gaussian perturbation with
ζ = 0.05 and σ = 3.2h̄/mc. The cubic approximation of the dis-
persion (dotted line) is compared to the full numeric solution (solid
line). The cubic approximation becomes worse moving away from
the primary wave front where high-momentum waves dominate.

controls the time after which the dispersive effects become
important,

tsep = σ

|c(q̃ ) − c| = 2σ

c|γ |
(

mcσ

h̄

)2

. (5)

Here c(q ) = ωq/q is the phase velocity of the waves with
momentum q, and q̃ = 2/σ is the typical wave number of the
high-momentum waves in the perturbation. At time t = tsep

the waves with wave-number q̃ have traveled away from the
main wave front across a distance σ , leading to the formation
of an oscillatory train. The width σ should be chosen narrow
enough for the separation time to remain within experimental
reach yet wide enough for the cubic expansion (1) to be valid.

In Fig. 2 we show the dispersive waves at unitarity
(1/kFa = 0) for σ = 2.5h̄/mc, comparing the prediction of
γ of Ref. [28] to the expression of the RPA. The difference
between supersonic and subsonic dispersive waves is clearly
visible. For the positive γ predicted by the RPA, secondary
oscillations appear at the leading edge of the traveling wave,
whereas for a negative γ , they appear at the trailing edge.
Observing the location of these secondary oscillations is thus
enough to predict the sign of the cubic term in the dispersion.

In the BCS regime γ is certainly negative, offering a
system with a subsonic dispersion. This can be seen in Fig. 3
where secondary oscillations appear behind the traveling wave
front. There we compare dispersive waves generated by the
full dispersion relation to those generated by its cubic ap-
proximation. Both solutions coincide close to the primary
wave front but start to differ further away where higher wave
numbers become important and the cubic expansion is not
valid anymore.

III. SHOCK WAVES

To go beyond the small amplitude approximation and
account for nonlinear effects in our physical situation, we
now search for a nonlinear wave equation. Obtaining such an
equation in a strongly interacting superfluid and especially in
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FIG. 4. The superfluid density following a localized initial per-
turbation in x = 0 (with ζ = −0.3 and σ = 1.14h̄/mc) is shown in
colors as a function of space (on the horizontal axis) and time (on
the vertical axis) in the BEC regime (1/kFa = 2). The black solid
lines represent the light cone x = ±ct . The top panel (a) shows the
nonlinear evolution according to Eq. (6) whereas the bottom one (b)
shows the linear dispersive evolution according to Eq. (2).

a superfluid of fermions is a difficult task. First, the (nonlinear)
Korteweg–de Vries equation (or its extensions that include an
arbitrary amplitude dependence of the speed of sound [20]),
which would seem like a natural generalization of Eq. (2),
describes separately right- and left-traveling waves [38] such
that it does not describe our situation where a perturbation
initially at rest splits into two counterpropagating waves and
where important nonlinear effects take place during the sepa-
ration stage. To correctly describe counterpropagating waves,
we need at least a system of two coupled nonlinear equations
as, for example, the (complex) Gross-Pitaevskii equation.

Second, deriving a fermionic equivalent of the Gross-
Pitaevskii equation is arduous because high-amplitude exci-
tations excite the internal degrees of freedom of the fermion
pairs. A first possibility is to use Bogoliubov–de Gennes
equations of motion, which are a large set of coupled non-
linear equations [39]. Alternatively, Ref. [21] achieves it by
restricting to long-wavelength and low-energy perturbations.
The ensuing nonlinear wave equation on the superfluid order
parameter � takes the following form:

iD(|�|2)∂t� = −C ∂2
x� + Q∂2

t � + A(|�|2)�

+ (
E ∂2

x |�|2 − R ∂2
t |�|2)�, (6)
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where the coefficients C, E, Q, and R, and the functions
A and D of the wave intensity are given in Appendix B
as integrals over the fermionic degrees of freedom. Unlike
the phenomenological system based on hydrodynamics of
Ref. [38] this equation is derived from first principles by
resumming the infinite series of the slow fluctuations of the
order parameter and naturally accounts for the fermionic
contribution to the wave dynamics. Unfortunately, since it
truncates time and space derivatives to second order, it does
not describe correctly the dispersion coefficient γ in the BCS
regime where it depends on higher-order derivatives.

In Fig. 4, we use this equation to track the time evolution
of a large decrease (ζ = −0.3) in the superfluid density in the
BEC regime and compare it to the linear dispersive scenario of
Eq. (2). The secondary oscillations caused by the supersonic
dispersion are still visible at the leading edge of the wave,
but their amplitude is reduced. In the trailing edge a major
nonlinear feature appears: a narrow solitary edge traveling at
a constant speed. Since we chose an initial perturbation that
depletes the density, this speed is here slower than the speed
of sound such that the dispersive oscillations and the solitary
edge are separated by the light cone x = ±ct .

The behavior observed here is reminiscent of the disper-
sive shock waves observed in dissipationless nonlinear media
[17,22,23]. This is remarkable since our complex nonlinear
equation (6) is quite different from the Kortweg–de Vries
equation with which dispersive shock waves are usually de-
scribed.

IV. EXPERIMENTAL OBSERVABILITY

We now discuss the observability of the secondary oscil-
lations generated by the dispersive wave propagation in real
experimental conditions.

A. Propagation time

To be able to see dispersive waves, one should wait a time
of order tsep [defined in Eq. (5)]. At time t = tsep, no matter the
value1 of mcσ/h̄, the primary density excitation has
an amplitude A1 of about 95% of the initial Gaussian
perturbation ζ , whereas the biggest secondary peak A2 is
roughly 15% of ζ . At this time, the spatial distance between
the two peaks is approximately �x � 2.6 σ .

To compare with experimental parameters, we use a system
of 6Li atoms with a typical Fermi temperature of TF = 1 μK.
Using a thin optical barrier to create the initial perturbation,
one can reach a width σ = 1.4 μm [29] [corresponding to
(h̄/mcσ )2 � 0.16 at unitarity]. Then the distance between the
two peaks �x � 3.6 μm is longer than the spatial resolution
of current experiments [30,40]. The minimal value γmin that
can be detected using dispersive waves is then a priori de-
termined by the maximal propagation time in a condensate

1The solution of the wave equation (3) can be made independent of
σ by changing x to x ′ = (x − ct )/σ and t to σ t ′/c = t/σ̃ 2 with σ̃ =
mcσ/h̄. Then the linearized Korteweg–de Vries equation (3) takes
the simple form ∂t ′ψ = ±∂3

x′ψ where the sign is that of γ and with

the initial condition ψ (x ′, t ′ = 0) = ζe−x′2/2.

of size L, tmax = L/c. Imposing that the maximal separation
time is tsep = tmax, taking2 L = 250 μm and c � 20 μm/ms
at unitarity [41], we obtain

|γmin| � 33
h̄

mcL
�

1/kF|a|=0
0.074, (7)

smaller than the value predicted by the RPA at unitarity. To
illustrate, the time used in Fig. 2 is tsep � 20 ms, comparable
to tmax = 13 ms. It should thus be possible to determine the
sign of γ at unitarity within present capabilities.

In the BCS regime |γ | is much larger such that shorter
times are enough to distinguish dispersive waves. For an initial
width σ � 1.2 μm [(h̄/mcσ )2 � 0.1] as used in Fig. 3, the
separation time is tsep � 0.22 ms according to the RPA.

B. Staying in the linear regime

Finally, we introduce a simple criterion on the perturbation
amplitude ζ that guarantees that the waves do not enter the
nonlinear regime described in Sec. III. Even if nonlinearity
does not completely remove dispersive effects, it probably
forbids a precise measurement of γ . We consider the nonlinear
deformation of a wave packet to be significant when the
propagation time exceeds [38]

tnl = σ

|c(ζ ) − c| . (8)

Here, c is the phase velocity of the low-momentum waves
at density ρ0, and c(ζ ) is the same velocity at density3

ρ = ρ0(1 + ζ )2. When t = tnl, the waves in the peak of
perturbation have traveled a distance σ away from the wave
packet, therefore causing deformations of the wave front. In
order for dispersive effects to be visible without nonlinear
deformations, the initial perturbation ζ should be sufficiently
small so that tnl > tsep.

Away from unitarity, where |γ | is not anomalously small,
this condition is well satisfied for perturbations of order ζ ≈
5% for which the secondary peak A2 has an amplitude of
about 1% of the background. A density fluctuation of this
magnitude is within experimental detectability [3,30]. At uni-
tarity, most theories predict |γ | to be very small, which results
in a long dispersive separation time. Therefore, fulfilling the
condition tnl > tsep is possible only for very small pertur-
bations, experimentally challenging to prepare and observe.
Still, the sign of γ can be assessed by entering the nonlinear
regime with more easily detectable larger perturbations. To
clarify this, we extend the nonlinear wave equation (6) in
order to describe a concave dispersion. The coefficient R is
now chosen to reproduce the desired value of γ . In Fig. 5,
we use this model to compare subsonic and supersonic waves
(with values of γ as in Fig. 2) for an increase in the superfluid

2Although box potentials have not reached this size yet [35], the
wave packet can bounce back at the edges, resulting in a longer
propagation length than the size of the box.

3At unitarity and in the BCS limit, where μ is proportional to the
Fermi energy εF, one obtains from mc2 = ρ dμ/dρ that c ∝ ρ1/3 so
that c(ζ ) = c(1 + ζ )2/3. In the BEC limit where μ ∝ ρ, we have
c(ζ ) = c(1 + ζ ).
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FIG. 5. Wave propagation at unitarity according to Eq. (6) where
the coefficients are altered to incorporate two different predictions of
γ (solid line for the RPA prediction and dotted line for the prediction
of Ref. [28]). Only the right-traveling wave is shown at t = 0.5tsep =
2.8tnl from an initial perturbation with ζ = 0.1 and σ = 2.5h̄/mc.

density (ζ = 0.1) sufficiently large to reveal nonlinear effects.
As with more usual nonlinear dispersive wave equations [17],
we observe that the orientation of the dispersive shock wave
(the position of the oscillatory train with respect to the main
peak) depends only on the sign of γ . This indicates that our
scenario to measure the sign of γ is robust against nonlinear
effects.

V. CONCLUSION

We have demonstrated that dispersive waves can be used as
an alternative to Bragg spectroscopy [2,42] to measure the first
dispersive correction to the collective branch of a superfluid
Fermi gas. After a propagation time that we properly define,
there appear deformations either behind or in front of the
wave front, depending on whether the branch is subsonic or
supersonic.

We show that using state-of-the-art experimental tech-
niques it should be possible to assess the nature of the disper-
sion at unitarity. Our paper takes into account possible nonlin-
ear deformations and quantifies their relevance in experimen-
tal conditions, which is rarely performed for Fermi gases.
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APPENDIX A: EQUATION OF MOTION

The equation of motion (2) can be rigorously derived in
the functional integral formalism. Expanding the full action

of the system up to quadratic order in phase θ and amplitude
λ fluctuations of the order parameter gives the Gaussian
fluctuation action [24],

S = S0 +
∫

dω
∑

q

(λ∗ θ∗)M(ω, q)

(
λ

θ

)
, (A1)

with M(ω, q) as the 2×2 Gaussian fluctuation matrix, see
Eqs. (38) and (39) in Ref. [43]. From the action (A1) coupled
linear equations of motion can be derived for the phase
and amplitude fields. Alternatively, one can integrate out the
amplitude field λ in the partition function,

Z =
∫

DλDθ e−S , (A2)

which yields an effective action for the phase field θ ,

S̃ = S0 +
∫

dω
∑

q

det M(ω, q)

M1,1(ω, q)
θ∗θ. (A3)

As the zeros of det M(ω, q) describe the collective mode
dispersion ωq, this action can always be written as

S̃ = S0 +
∫

dω
∑

q

P (ω, q)
(
ω2 − ω2

q

)
θ∗θ, (A4)

where P (ω, q) is some polynomial in ω and q that does
not vanish below the pair-breaking continuum. Extremizing
the action (δS/δθ∗ = 0), switching to the time domain, and
identifying ψ for θ thus leads to Eq. (2) in the main text.

APPENDIX B: EFFECTIVE FIELD THEORY

At zero temperature and in the three-dimensional thermo-
dynamic limit, the coefficients C, E, Q, and R of Eq. (6) are
given by [21]

C =
∫

dk
(2π )3

h̄4k2

6m2

1

4E3
k

, (B1)

E =
∫

dk
(2π )3

h̄4k2

3m2

5ξ 2
k

16E7
k

, (B2)

Q =
∫

dk
(2π )3

h̄2

8E3
k

, (B3)

R =
∫

dk
(2π )3

h̄2

16E5
k

, (B4)

with |�| as the bulk value of the superfluid order parameter
and ξk = h̄2k2

2m
− μ and Ek =

√
ξ 2

k + |�|2, respectively, the
dispersion relations of free fermions and of BCS quasiparti-
cles. The functions A and D of the perturbed order parameter
� are

A(|�|2) = − m

4πh̄2a
− 1

2

∫
dk

(2π )3

(
1

Ek
− 2m

h̄2k2

)
, (B5)

D(|�|2) =
∫

dk
(2π )3

h̄ξk

4E3
k

, (B6)

with Ek =
√

ξ 2
k + |�|2.
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