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Composite quasiparticles in strongly correlated dipolar Fermi liquids
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Strong particle-plasmon interaction in electronic systems can lead to composite hole-plasmon excitations. We
investigate the emergence of similar composite quasiparticles in ultracold dipolar Fermi liquids originating from
the long-range dipole-dipole interaction. We use the G0W technique with an effective interaction obtained from
the static structure factor to calculate the quasiparticle properties and single-particle spectral function. We first
demonstrate that within this formalism a very good agreement with the quantum Monte Carlo results could
be achieved over a wide range of coupling strengths for the renormalization constant and effective mass. The
composite quasiparticle-zero sound excitations which are undamped at long wavelengths emerge at intermediate
and strong couplings in the spectral function and should be detectable through the radio frequency spectroscopy
of nonreactive polar molecules at high densities.
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I. INTRODUCTION

Ultracold dipolar gases, thanks to their long-range and
anisotropic dipole-dipole interactions, are excellent candi-
dates for exploring quantum many-body behavior [1–3]. The
ground-state properties of the two-dimensional (2D) dipolar
Fermi liquids (DFL) have been widely explored by means
of different techniques, namely the quantum Monte Carlo
(QMC) simulation [4], modified Singwi-Tosi-Land-Sjölander
(STLS) method [5], and Fermi-hypernetted-chain (FHNC)
approximation [6]. The instability of a homogenous 2D liquid
towards density modified phases have been investigated using
different formalisms [7–9]. The Landau-Fermi liquid proper-
ties of a 2D DFL have been addressed by Lu and Shlyapnikov
[10] and it has been shown that its collective density excitation
has an acoustic nature whose survival at long wavelengths
originates mainly from the many-body effects beyond the
mean-field level [6,10,11]. Invaluable information regarding
the excitation spectrum of a correlated many-body system
could be obtained from the self-energy and in particular from
the single-particle spectral function. Dynamics of quantum
fluids and mainly electron liquids have been studied exten-
sively over the past decades.

Quasiparticle (QP) spectral properties of a 2D electron
liquid [12] and a single layer of doped graphene [13,14]
have been investigated within the so-called G0W approxima-
tion and the composite hole-plasmon excitations have been
predicted for both systems. These composite quasiparticles
are named plasmarons and have been experimentally ver-
ified in doped graphene via angle-resolved photoemission
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spectroscopy (ARPES) measurements [15]. In addition, in-
elastic neutron scattering measurements of a monolayer of
liquid 3He has been reported to observe a rotonlike excitation
as an unexpected collective behavior of a Fermi many-body
system [16].

Although the dynamical properties of 2D dipolar Bose
liquids have been theoretically explored [17–19], to the best
of our knowledge such studies for fermionic systems are
restricted to perturbative approaches at weak couplings [11].
In this work, we use the G0W approximation with an effective
interaction obtained from the interacting static structure factor
to calculate the self-energy. We use an accurate interacting
static structure factor data extracted from FHNC approxima-
tion [6] to obtain the effective particle-particle interaction.
Below, we will first illustrate how an excellent agreement
with the QMC data for effective mass and renormalization
constant could be achieved with such a formulation of the
G0W approximation. The quasiparticle properties and in par-
ticular the effective mass obtained from the G0W is usually
very sensitive to the approximations employed for the ef-
fective interaction [20]. The level of agreement with QMC
data we have obtained with this modified G0W formulation
provides a simple but accurate recipe for the investigation of
other strongly interacting Fermi liquids. Then, we move to
investigate the single-particle spectral function of a 2D DFL.
Alongside the usual quasiparticle excitation dispersion below
the Fermi energy, a secondary heavy mode at intermediate and
strong couplings emerges originating from the coupling be-
tween QP and zero-sound excitations. The high-density limit
necessary for the observation of this composite mode requires
nonreactive fermionic polar molecules and radio frequency
(rf) spectroscopy [21,22] could be employed to probe these
features.
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II. THEORY

We consider a single layer of spin-polarized (i.e., single
component) 2D gas of dipolar fermions with their dipole
moments aligned in the perpendicular direction to the 2D
plane at zero temperature. The isotropic dipole-dipole in-
teraction between particles is v(r ) = D/r3, where D is the
dipole-dipole interaction strength [6]. At zero temperature
all properties of this dipolar system will depend on a single
dimensionless coupling constant λ = kFr0, where kF = √

4πn

is the Fermi wave vector at density n and r0 = mD/h̄2 is
the characteristic length of dipolar interaction, m being the
bare (i.e., noninteracting) mass of dipoles. We assume low-
lying excitations and resort to the G0W approximation [23] to
calculate the self-energy, �(k,E),

�(k,E) = i

∫
d2q d(h̄ω)

(2π )3
G0(k − q, E − h̄ω)W (q, ω).

(1)
Here, G0(k, E) = 1/[E − ε0(k)] is the noninteracting
Green’s function with the noninteracting dispersion of
single particle given by ε0(k) = h̄2k2/(2m). In order to
account for the effects of exchange and correlations, we
have replaced W (q, ω) by the Kukkonen-Overhauser (KO)
effective interaction [23]

WKO(q, ω) = v(q ) + w2(q )χ (q, ω), (2)

where v(q ) is the Fourier transform of bare interaction and
w(q ) is effective particle-particle interaction and accounts
for the exchange and correlation effects [23]. The w(q ) is
indeed the screened interaction usually defined in terms of the
many-body local field factors, but here, using the fluctuation-
dissipation theorem, we obtain an approximate expression for
it in terms of the interacting static structure factor S(q ), as [6]

w(q ) = ε0(q )

2n

[
S−2(q ) − S−2

0 (q )
]
. (3)

Here, S0(q ) is the static structure factor of an ideal 2D Fermi
system [23] and for the interacting structure factor we have
used the accurate numerical data from FHNC method reported
in Ref. [6]. The interacting linear density-density response
function χ (q, ω) is written in terms of the screened inter-
action w(q ) in a generalized random-phase approximation
(RPA) form [23] χ (q, ω) = χ0(q, ω)/[1 − w(q )χ0(q, ω)],
where χ0(q, ω) is the noninteracting linear density-density
response function of a 2D Fermi system [23]. The self-energy
is conveniently split into two terms, namely the “Hartree-
Fock” (HF) term �HF(k) and the remaining dynamic term
�ρ (k,E), which originates from the density fluctuations. The
HF contribution could be written as

�HF(k) =
∫

d2q
(2π )2

[v(0) − v(k − q)]nFD[ε0(q )], (4)

where nFD(ε) is the noninteracting Fermi-Dirac distribution
function. The dynamical contribution to the self-energy

�ρ (k,E)= i

∫
d2q d(h̄ω)

(2π )3
G0(k−q, E−h̄ω)w2(q )χ (q, ω)

(5)

itself, for numerical conveniences, is usually further split into
two contributions, a smooth line term

�
(ρ)
line(k,E) = −

∫
d2q d(h̄ω)

(2π )3
w2(q )χ (q, iω)

× E − ξ0(k − q)

[E − ξ0(k − q)]2 + (h̄ω)2
, (6)

with an integral along the imaginary frequency axis, and a
pole term

�
(ρ)
pole(k,E) =

∫
d2q

(2π )2
w2(q )χ [q,E − ξ0(k − q)]

×{�[E − ξ0(k − q)] − �[−ξ0(k − q)]},
(7)

originating from the residue of the single-particle Green’s
function. Here, ξ0(k) = ε0(k) − εF, where εF = h̄2k2

F/(2m) is
the noninteracting Fermi energy and χ (q, z), with z = ω (iω),
is the linear density-density response function along the real
(imaginary) frequency axis, which could be obtained from

χ (q, z) = χ0(q, z)

1 − w(q )χ0(q, z)
, (8)

in terms of the noninteracting density-density response func-
tion χ0(q, z), whose analytic form is given in Appendix A.

III. QUASIPARTICLE ENERGY AND LIFETIME

The interaction between particles has two main effects
on the energy of quasiparticles. First, the energy dispersion
relation and the effective mass of QPs are renormalized, which
is determined by the real part of the self-energy. Second,
owing to the inelastic scatterings, the quasiparticles acquire
a finite decay rate proportional to the imaginary part of the
self-energy.

The excitation spectrum of quasiparticles, measured
with respect to the interacting chemical potential, could
be written as εQP(k) = ξ0(k) + Re �̃(k,E)|E=εQP (k), where
Re �̃(k,E) = Re �(k,E) − Re �(kF, 0). In principle, the
equation of the excitation spectrum should be solved self-
consistently. However, if the interaction is not too strong one
can resort to the “on-shell approximation” (OSA), replacing
εQP(k) → ξ0(k) in the argument of self-energy [20,23,24],
and thus find

εOSA
QP (k) ≈ ξ0(k) + Re �̃(k, ξ0(k)). (9)

Figure 1 shows the wave-vector dependence of quasiparticle
energy and the inverse of its lifetime h̄/τ = 2|Im �(k, ξ0(k))|,
obtained within the on-shell approximation for self-energy at
different values of the coupling strength λ. Generally, two
intrinsic mechanisms contribute to the scattering of quasi-
particles: (i) the excitation of particle-hole pairs which is
dominated at long wavelengths and (ii) the excitation of zero-
sound collective mode that turns on at a threshold wave vector
kc [12,25]. At weak couplings, the system behaves qualita-
tively similar to an ideal Fermi gas thanks to the cancellation
between static HF and dynamical contributions to the self-
energy. At intermediate- and strong-coupling strengths, for
k < kF the QP is only moderately affected by the many-body

063623-2



COMPOSITE QUASIPARTICLES IN STRONGLY … PHYSICAL REVIEW A 98, 063623 (2018)

-4

 0

 4

 8

 12

 16

 20

 24

 0  1  2  3

ε Q
P 

(k
)

k / kF

λ = 1
λ = 4
λ = 8

-5

 0

 5

 10

 15

 20

 0  1  2  3

ε Q
P 

(k
)

k / kF

ξ0 (k)
λ = 16

-5

 0

 5

 10

 15

 20

 0  1  2  3

ε Q
P 

(k
)

k / kF

ξ0 (k)
λ = 16

 0

 4

 8

 12

 16

 0  1  2  3

− h 
/ τ

k / kF

λ = 4
λ = 8

 0

 0.1

 0.2

 0  1  2  3

− h 
/ τ

k / kF

λ = 1

 0

 0.1

 0.2

 0  1  2  3

− h 
/ τ

k / kF

λ = 1

FIG. 1. Top panel: quasiparticle energy (in units of εF) as a
function of k at various coupling strengths. The inset compares
the quasiparticle energy of strongly coupled dipolar Fermi liquid
at λ = 16 with the energy dispersion of a noninteracting system.
Bottom panel: the quasiparticle decay rate h̄/τ (in units of εF) as
a function of k for λ = 4 and λ = 8. The quasiparticle decay rate,
Im �(k, ξ0(k)), vanishes at the Fermi level as |k − kF|2, which is one
of the main features of the Landau theory of Fermi liquid [23]. The
inset of the bottom panel shows the decay rate at weak couplings
(i.e., λ = 1), where the jump at kc is absent.

effects, but, for k > kF and especially around kc, the QP
spectrum is strongly affected as the quasiparticle energy loses
most of its energy through inelastic scattering with collective
modes. A strong dip in the QP spectrum is the zero-sound
dip and its position moves to higher wave vectors increasing
the coupling strength. This zero-sound dip, which resembles
the maxonlike dip reported in 2D 3He [26] and the plasmon
dip in 2D electron liquids [20,24], originates from the decay
of particle-hole pairs into collective modes with conserved
momentum and energy [12,23]. At intermediate and strong
couplings a finite jump in the decay rate takes place at kc, as
the scattering rate is drastically increased at the zero-sound
dip. A similar jump has been reported in a 2D electron liquid
[20] in which it was associated with the nonzero oscillator
strength of the plasmon pole at the wave vector of plasmon
dip. The quasiparticle decay rate vanishes as ≈(E − μ)β for
E → μ at k → kF . From our numerical results, we find that
at weak and intermediate couplings β � 2, while at strong

couplings β is slightly smaller than 2, but we still get 1 <

β � 2 (see Appendix B for more details). This is one of the
main features of the Landau theory for the Fermi liquid [23].

IV. RENORMALIZATION CONSTANT
AND EFFECTIVE MASS

In the presence of interactions, discontinuity of the mo-
mentum distribution at k = kF, that is measured by the renor-
malization constant

Z = 1/[1 − ∂ERe �(k,E)|k=kF,E=0], (10)

is less than unity [23]. The many-body effective mass at the
Fermi level could be obtained from the slope of interacting
excitation spectrum [23] h̄2kF/m∗ = dεQP(k)/dk|k→kF

. De-
pending on whether the quasiparticle energy is calculated by
solving the self-consistent Dyson equation or by using the
OSA, we would find different results for the effective mass.
The effective mass within the Dyson approximation m∗

D is
given by

m

m∗
D

= Z[1 + (m/h̄2kF)∂kRe �(k,E)|k=kF,E=0], (11)

and the OSA for the QP energy for the many-body effective
mass gives

m

m∗
OSA

= 1 + (m/h̄2kF)∂kRe �(k,E)|k=kF,E=0

+ ∂ERe �(k,E)|k=kF,E=0. (12)

In Fig. 2 we compare our numerical results for the renor-
malization constant Z and the effective mass m∗ with the
QMC results of Matveeva and Giorgini [4] over a wide
range of coupling strengths. In the weak-coupling regime, the
self-energy is dominated by the direct and exchange effects.
As the Hartree-Fock self-energy is static the renormalization
constant remains close to one at λ < 1. As the coupling con-
stant increases, the effects of correlation become important,
which causes the reduction of the renormalization constant. A
strong suppression of the renormalization constant is visible
at strong-coupling strengths, but Z never reaches zero. As
the Landau Fermi liquid theory implies 0 < Z � 1 [23], this
could be taken as an indication of the Fermi liquid picture
remaining valid for a dipolar Fermi system up to very strong
couplings. Interestingly, our G0W results agree very well with
the QMC data of Matveeva and Giorgini [4] over the whole
range of coupling strengths where the homogeneous liquid
phase is predicted to be stable. We should note that from
the QMC simulation [4] phase transition to Wigner crystal is
expected at λ = 25 ± 3.

Both OSA and Dyson methods predict a strong reduction
of effective mass with respect to its bare value at strong cou-
plings, but the Dyson results are in a much better agreement
with the QMC data [4]. In the inset of the bottom panel
in Fig. 2 we compare our Dyson results for the effective
mass at weak couplings, with the second-order perturbative
expansion results of Liu and Shlyapnikov [10]: m/m∗ = 1 +
4λ/(3π ) + λ2 ln(0.65λ)/4. Note that the second term on the
right-hand side of this expression is the HF contribution to
the renormalization of effective mass and the third term is the
leading-order contribution beyond the HF approximation.
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FIG. 2. Top panel: renormalization constant Z of a 2D dipolar
Fermi liquid as a function of the dimensionless coupling constant λ,
calculated within the G0W approximation and compared with QMC
results of Ref. [4]. Bottom panel: the relative effective mass of a
2D dipolar Fermi liquid m∗/m as a function of the dimensionless
coupling constant λ, calculated within the G0W approximation and
with Dyson and on-shell approximations for the self-energy, obtained
from Eqs. (11) and (12), respectively. The results are compared with
the QMC data of Ref. [4]. The inset compares our Dyson results
for the relative effective mass with the QMC data of Ref. [4] and the
analytic second-order perturbation theory results of Ref. [10] at weak
couplings.

The Hartree-Fock contribution to the self-energy �HF(k)
has a positive slope at the Fermi wave vector and hence
decreases the effective mass, whereas the dynamic contri-
bution to the self-energy �ρ (k) has a negative slope and
tends to enhance m∗ [27]. But the Hartree-Fock contribution
dominates over the dynamical term over the whole range of
coupling strengths and the effective mass is suppressed with
respect to its noninteracting value.

V. DYNAMICAL STRUCTURE FACTOR
AND SPECTRAL FUNCTION

The dynamical structure factor at the zero temperature is
related to the imaginary part of the density-density response
function as [23]

S(k, ω) = − h̄

nπ
Im χ (k, ω), (13)
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FIG. 3. Density plots of the dynamical structure factor of a 2D
dipolar Fermi liquid [in units of h̄/(πεF )] as a functional of energy E

and wave vector k calculated for different values of the coupling con-
stant λ. Note that the Dirac delta-function form of the structure factor
along the dispersion of zero-sound mode outside the single-particle
continuum has been broadened by 10−4εF for better visibility.

where the interacting density-density response function
χ (k, ω) is approximated by Eq. (8). The behavior of S(k, ω)
for different coupling constants has been illustrated in Fig. 3
as the density plots in the energy-wave vector plane. The
regions of particle-hole continuum together with the disper-
sions of zero-sound modes are clearly visible. Note that, as
the dynamical behavior of the effective interaction w(q, ω)
is not included in our formalism, the imaginary part of the
density-density response function remains zero outside the
particle-hole continuum, except on top of the zero-sound
dispersion where it acquires a Dirac delta function form [23].
The dispersion of collective mode enters the particle-hole con-
tinuum at a characteristic wave vector kzs (e.g., kzs ≈ 0.8 kF

for λ = 4 and kzs ≈ kF for λ = 8) after which the Landau
damping of the collective mode begins.

The spectral function A(k,E), which is a measure of
having a particle with momentum k and energy E, can be
obtained from the imaginary part of the retarded Green’s
function. For a noninteracting system, the spectral function
has a δ-function form. In the presence of interactions, the
modification of single-particle Green’s function G−1(k,E) =
G−1

0 (k,E) − �(k,E) usually broadens the spectral function
A(k,E) = −Im G(k,E)/π . The interacting spectral function
in terms of the self-energy and the noninteracting energy
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FIG. 4. Imaginary (top row) and real (middle row) parts of the G0W self-energy of a 2D dipolar Fermi liquid (both in the units of εF) as
functions of energy at four fixed values of the wave vectors k = 0.02kF, 0.25kF, 0.45kF, and 0.65kF (from left to right). In the middle row the
straight dashed lines show E − ξ0(k) whose cross section with the real part of the self-energy indicate the positions of interacting quasiparticle
energies. In the bottom row, the spectral functions (in the units of 1/εF) are shown as functions of energy at the same fixed values of the wave
vector as upper panels. The positions of peaks in the spectral function correspond to the crossing points of two curves in the middle row and
their width is specified by the imaginary part of the self-energy (top row). The undamped peaks have been broadened by 0.005εF for better
visibility.

dispersion ξ0(k) is written as [23,28]

A(k,E) = −Im �(k,E)/π

[E − ξ0(k) − Re�̃(k,E)]2 + [Im �(k,E)]2
.

(14)

The spectral function is a positive-definite quantity and its ex-
act expression should satisfy the sum rule

∫ ∞
−∞ dE A(k,E) =

1. A fraction Z of the total spectral weight is absorbed by
the quasiparticle peak at E = εQP(k) and the remaining 1 − Z

weight is distributed over the background [23].
Vanishing of the expression inside the first square bracket

in the denominator of Eq. (14) manifests itself as a resonance
in the spectral function. These resonances represent quasi-
particles with specific energies and possible finite lifetimes.
The position of peaks in the single-particle spectral function
could be obtained from the solution of Dyson’s equation for
quasiparticle energy. Figure 4 illustrates the typical behavior
of the imaginary and real parts of the self-energy as well as the
spectral function A(k,E) of the dipolar Fermi gas for λ = 8.
The solutions of the Dyson equation are obtained from the
intersections of the real part of the self-energy Re �̃(k,E)
and the straight line E − ξ0(k). Three peaks in the spectral
function correspond to three distinct solutions of the Dyson
equation for λ = 8. If we account for these peaks according
to decreasing energy, the first peak is associated with the

quasiparticle solution, which is shifted from the noninteract-
ing energy and has a finite width corresponding to the nonzero
damping rate. The second and third peaks result from the
coupling of quasiparticles and collective (i.e., zero-sound)
modes. As it is evident from the behavior of the imaginary part
of the self-energy, the composite quasiparticles are undamped
in the long-wavelength limit. Approximately for k � 0.45kF,
the third peak acquires a finite width and becomes damped and
for k � 0.7kF only the quasiparticle excitation peak survives
in the spectral function.

It is convenient to look at the behavior of Im �(k,E) at k =
0. In this limit, the initial QP energy is Ei = E + εF and the
final energy is Ef = ξ0(q ) + εF. When the difference is equal
to the mode energy, h̄ω, the initial QP can decay by emitting a
composite particle-zero sound excitation. Since h̄ω � ξ0(q )
and Ef − Ei � ξ0(q ), therefore, an initial QP with Ei < 0
can decay into a final state through a resonance process in
which Ef > 0 when dω/dq = h̄−1dξ0/dq = h̄q/2m. When
these conditions are met, Im �(k = 0, E) peaks at a specific
E and its Kramers-Kronig transformation Re �(0, E) changes
sign rapidly around that energy. In Fig. 5, we illustrate the be-
havior of spectral function at k = 0 and for different values of
the coupling constant. As it is seen the composite quasiparticle
peak emerges at λ ≈ 2. Increasing the coupling strength the
composite peak moves towards lower energies and becomes
well separated from the quasiparticle excitation peak.
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FIG. 5. Spectral function of a 2D dipolar Fermi liquid (in units
of 1/εF) versus energy, calculated at k = 0 for different values of
the coupling constant. The undamped peaks have been broadened by
0.005εF for better visibility.

In Fig. 6 we show the density plot of the spectral function
at three different values of the coupling constant λ = 1, 4,
and 8. In the weak-coupling regime (cf. the left panel in
Fig. 6) only the particle-hole excitation dispersion is visible
in the spectral function. In addition to the QP peak, the
composite quasiparticle-zero sound excitation peak emerges
around λ ≈ 2 by illustrating a peak in the Im �(k = 0, E)
around E ≈ −2.7εF. This new peak corresponds to the bound
states of quasiparticles with the zero-sound mode in the 2D
dipolar Fermi liquid. Owing to the repulsion between QP and
composite QP resonances, a gaplike feature between these
two bands is visible at long wavelengths. The composite
quasiparticles are undamped at small k and their dispersion
eventually merges with the dispersion of QPs at a character-
istic λ-dependent wave vector. This corresponds to the wave
vector where the dispersion of zero-sound mode enters the
particle-hole continuum and gets Landau damped. The emer-
gence of a similar feature in electron liquids which is called
plasmaron has been first proposed by Lundqvist [29]. The
plasmaron peak has been predicted in 2D electron liquid [12]
and graphene [13,14] as well and has been experimentally

verified in doped graphene [15] through the angle-resolved
photoemission spectroscopy. But a similar feature has never
been observed in neutral Fermi liquids.

VI. SUMMARY AND CONCLUSION

We explore the quasiparticle properties of a spin-polarized
2D DFL. We employ the G0W approximation with an effec-
tive interaction extracted from the very accurate FHNC data
for the interacting static structure factor. With such an effec-
tive interaction, we are able to achieve a very good agreement
with the QMC data for effective mass and renormalization
constant up to very strong-coupling regimes. We should here
note that based on the existing experiences with the electronic
systems [20,24] results of the G0W method for the effective
mass is very sensitive to the approximations one adopts for the
effective interaction and it is generally very difficult to obtain
a very good agreement with QMC data over a large range of
coupling strengths. Our findings suggest that a modified G0W
approach armed with an effective particle-particle interaction
extracted from accurate static structure factor data might
perform equally well for other strongly interacting quantum
fluids too. A similar procedure could be also implemented in
ab initio electronic structure packages to improve the GW-
DFT results for the quasiparticle spectrum. Then, we switch
to the investigation of the spectral function below the Fermi
energy. Apart from the conventional quasiparticle dispersion,
we observe a composite particle-zero sound dispersion at
intermediate and strong couplings which is a bound state
of a dipolar hole below the Fermi level and the collective
density oscillation. This massive mode is undamped at long
wavelengths and we would expect it to be observable through
rf spectroscopy of ultracold dipolar systems consisting of
nonreactive fermionic polar molecules at intermediate and
high densities. With polar molecules whose dipolar length r0

could easily reach thousands of nanometers, an average planar
density of 106–107 cm−2 would suffice to observe the features
in the spectral function predicted here.
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FIG. 6. Density plot of the spectral function A(k, E) (in units of 1/εF) as a function of energy E and wave vector k, obtained from Eq. (14)
for three different values of the coupling constants λ = 1 (left), λ = 4 (middle), and λ = 8 (right). The spectral function has been broadened
by 0.005εF for a better visibility of the undamped δ-like peaks.

063623-6



COMPOSITE QUASIPARTICLES IN STRONGLY … PHYSICAL REVIEW A 98, 063623 (2018)

FIG. 7. Imaginary part of self-energy (in units of 10−4εF) calculated for different values of the coupling constant at k = kF, and in the
vicinity of the chemical potential. The red dashed lines are the parabolic fit to the imaginary part of self-energy for E → μ.

APPENDIX A: DENSITY-DENSITY RESPONSE FUNCTION OF A NONINTERACTING 2D SYSTEM

The density-density response function of a noninteracting spin-polarized two-dimensional Fermi system, along the real
frequency axis, is the famous Stern-Lindhard function [23]

χ0(q, ω) = 1

S

∑
k

nFD[ε0(k)] − nFD[ε0(k + q)]

h̄ω + ε0(k) − ε0(k + q) + iη
, (A1)

where S is the sample area and η is an infinitesimal positive quantity. After performing the sum over k, the real and the imaginary
parts of the response function read

Re χ0(q, ω) = −ν0

{
1 + 1

q̃

[
sgn(ν−)�(ν2

− − 1)
√

ν2− − 1 − sgn(ν+)�(ν2
+ − 1)

√
ν2+ − 1

]}
(A2)

and

Im χ0(q, ω) = −ν0

q̃

[
�(ν2

− − 1)
√

ν2− − 1 − �(ν2
+ − 1)

√
ν2+ − 1

]
. (A3)

Here, ν0 = m/(2πh̄2) is the density of states per unit area of a spin-polarized 2D system and ν± = ω̃/(2q̃ ) ± q̃/2 with q̃ = q/kF,
and ω̃ = h̄ω/(2εF). The Lindhard function along the imaginary frequency axis, after some straightforward algebra, reads

χ0(q, iω) = −ν0

(
1 −

√
2

q̃

√
a +

√
a2 + ω̃2

)
, (A4)

where we have defined a = q̃2/4 − ω̃2/q̃2 − 1.

APPENDIX B: IMAGINARY PART OF THE SELF-ENERGY

The only contribution to the imaginary part of the self-energy arises from the imaginary part of the pole term

Im �(k,E) =
∫

d2q
(2π )2

w2(q )Im χ [q,E − ξ0(k − q)]{�[E − ξ0(k − q)] − �[−ξ0(k − q)]}, (B1)

where

Im χ (q, ω) = Im χ0(q, ω)

[1 − w(q )Re χ0(q, ω)]2 + [w(q )Im χ0(q, ω)]2 − πδ(ω − �ZS(q ))Re χ0(q,�ZS(q ))
w(q )|∂ωRe χ0(q, ω)|ω=�ZS(q )

. (B2)

The second term on the right-hand side of this expression is the collective mode contribution to the imaginary part of the response
function, with �ZS(q ) being the frequency of zero sound at wave vector q. By defining the dimensionless parameters k̃ = k/kF,
q̃ = q/kF, Ẽ = E/εF, and y = Ẽ − k̃2 − q̃2 + 2k̃q̃ cos φ + 1, we find

Im �(k,E) = −2εF

∫ ∞

0
dq̃ q̃ w(q̃ )

∫ y2

y1

dy
δ(y − �̃ZS)Re χ0(q̃, �̃ZS)

w(q̃ )|∂yRe χ0(q̃, y)|y=�̃ZS

[�(y) − �(y − Ẽ)]

+ 2

π
εF

∫ ∞

0
dq̃ q̃ w2(q̃ )

∫ y2

y1

dy√
(2k̃q̃ )2 − (y − Ẽ − 1 + k̃2 + q̃2)2

Im χ (q̃, y)[�(y)−�(y − Ẽ)]

[1 − w(q̃ )Re χ0(q̃, y)]2+[w(q̃ )Im χ0(q̃, y)]2 ,

(B3)

where y1 = Ẽ − (k̃ + q̃ )2 + 1, y2 = Ẽ − (k̃ − q̃ )2 + 1, and �̃ZS = h̄�ZS/εF .
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Behavior of Im �(k = kF, E) in the vicinity of Fermi energy

The numerical solution of the imaginary part of self-energy for k = kF and E → μ has been illustrated in Fig. 7. This figure
shows that the quasiparticle decay rate vanishes as ∝(E − μ)β for E → μ at k → kF . We have fitted our data into a parabolic
function. It appears that at weak and intermediate couplings the β = 2 power provides an adequate fit to the numerical data. At
strong couplings, a slightly smaller β would provide even a better fit, but still we would find 1 < β � 2.
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