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Blocked populations in ring-shaped optical lattices

M. Nigro, P. Capuzzi, and D. M. Jezek
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina

and IFIBA, CONICET-UBA, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina

(Received 25 April 2018; revised manuscript received 26 August 2018; published 19 December 2018)

We study a special dynamical regime of a Bose-Einstein condensate in a ring-shaped lattice where the
populations in each site remain constant during the time evolution. The states in this regime are characterized
by equal occupation numbers in alternate wells and nontrivial phases, while the phase differences between
neighboring sites evolve in time yielding persistent currents that oscillate around the lattice. We show that the
velocity circulation around the ring lattice alternates between two values determined by the number of wells
and with a specific time period that is only driven by the on-site interaction energy parameter. In contrast to the
self-trapping regime present in optical lattices, the occupation number at each site does not show any oscillation
and the particle imbalance does not possess a lower bound for the phenomenon to occur. These findings are
predicted with a multimode model and confirmed by full three-dimensional Gross-Pitaevskii simulations using
an effective on-site interaction energy parameter.

DOI: 10.1103/PhysRevA.98.063622

I. INTRODUCTION

The self-trapping phenomenon has been extensively stud-
ied in double-well systems by means of a two-mode model
[1–8], and was experimentally observed by Albiez et al.
[9–11]. In this regime the population in one site remains
higher than the one in the other well over all the evolution.
This imbalance of particles performs oscillations around the
nonvanishing mean value, whereas the phase difference be-
tween the sites exhibits a running phase behavior. Theoretical
studies of this phenomenon have been also carried out by
several authors in extended regular lattices [12–15]. More
recently, the study of self-trapping has also been addressed in
ring-shaped optical lattices [16–18]. Such works treat three-
and four-well systems. In Refs. [16,17] the dynamics was
investigated through a multimode (M) model that utilized
ad hoc values for the hopping and on-site energy parame-
ters. However, in Ref. [18], such parameters were extracted
from a mean-field approach using three-dimensional localized
“Wannier-like” (WL) on-site functions and including an ef-
fective on-site interaction energy parameter [19,20]. For large
filling numbers, the inclusion of such a realistic interaction
parameter has been shown to be crucial for the accurate
description of the dynamics, yielding a sizable change on
the time periods with respect to those obtained by the stan-
dard model. In contrast, for filling number around unity,
mean-field approaches are not applicable and hence other
microscopic methods have to be used [21,22]. In Ref. [23],
it was demonstrated that an effective interaction can also be
extracted from the Bogoliubov excitations in the case of the
Josephson regime. A systematic study of the self-trapping
regime and the crossover to the Josephson oscillations in
four-well systems including nonsymmetric configurations was
developed in Ref. [18]. It is worthwhile to notice that the dy-
namics in multiple-well condensates constitutes a promising
area provided that successful efforts have been performed to
experimentally construct ring-shaped optical lattices [24].

In this work we demonstrate theoretically the existence of a
dynamical regime that exhibits a novel behavior. If the number
of wells of the lattice is a multiple of 4, there exists a family of
nonstationary states with constant site populations and special
nontrivial phases. These states could be regarded as a special
variation of a ST regime where, in contrast to that observed in
two- and multiple-well condensates [1,2,7,18], the population
imbalance between neighboring sites can be arbitrarily low
and does not exhibit any oscillation in time. For such states
the M model order parameter can be expressed as a linear
combination of particular degenerate Gross-Pitaevskii (GP)
stationary states. However, due to the nonlinear nature of the
GP equation, the states are nonstationary. The dynamics of
these states is governed only by the on-site interaction energy
parameter. We explicitly show that the angular momentum
exhibits a simple oscillating behavior and that the velocity
circulation around the ring alternates periodically between
values −Nc/4 and Nc/4, Nc being the number of weakly
linked condensates. A goal of this work is to obtain an
analytical expression for such a time period which involves
only the imbalance and the effective interaction parameter.
By comparing the evolution of the phase differences obtained
through GP simulations for a four-well system and with the M
model, we can establish the accuracy of such a parameter. The
existence of these states is confirmed numerically by means
of full three-dimensional GP simulations showing a perfect
accordance to the M model predictions for several population
imbalances. Furthermore, a Floquet stability analysis confirms
that for the imbalances studied here the dynamics turns out to
be regular.

The paper is organized as follows. In Sec. II we briefly re-
view the main concepts of the multimode model. In particular,
we rewrite the equations of motion which include an effective
on-site interaction parameter [18] and we outline the construc-
tion of the localized states in terms of the GP stationary ones.
In Sec. III we describe the specific four-well system used in
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the numerical simulations. Section IV is devoted to studying
the properties of these states with blocked occupation num-
bers. As a first step we introduce a continuous family of states
corresponding to fixed points of the M model in the phase
diagram defined by the populations and phase differences. On
the other hand, we demonstrate that they turn out to be quasis-
tationary solutions of the GP equation. Such states are defined
with a particular combination of phases which give rise to
the nonstationary blocked-occupation-number (BON) states.
Second, we show that these BON states describe closed orbits
in the phase diagram whose time period is solely determined
by the on-site interaction energy. By performing GP numerical
simulations with a four-well potential we analyze the hidden
dynamics which includes variations of density in the interwell
regions, oscillations of the velocity field circulation, and an
active vortex dynamics. We end this section with a study
of the Floquet stability of the BON states and a proposed
experimental test. In Sec. V we show how to generalize the
previous results for systems with larger numbers of sites. To
conclude, a summary of our work is presented in Sec. VI and
the definition of the parameters employed in the equations of
motion are gathered in the Appendix.

II. MULTIMODE MODEL

The equations of motion of the multimode model have
been previously studied both for multiple-well systems in
general [20,25] and also in the case of a four-well system
[16,18]. Here, we only review their main ingredients, focusing
on the definition of their localized states extracted from the
stationary solutions of the GP equations.

A. Multimode model equations of motion including
interaction-driven corrections

Using the multimode model order parameter,

ψM (t, r) =
∑

k

bk (t ) wk (r, θ, z), (1)

written in terms of three-dimensional WL functions localized
at the k site, wk (r) [18], one obtains the equations of motion
for the time-dependent coefficients bk (t ) = eiφk |bk| by replac-
ing the order parameter in the time-dependent GP equation.
The 2Nc real equations, written in terms of the populations
nk = |bk|2 = Nk/N and phase differences ϕk = φk − φk−1

including effective on-site interaction corrections [18], are

h̄
dnk

dt
= −2J [

√
nk nk+1 sin ϕk+1 − √

nk nk−1 sin ϕk]

− 2F [
√

nk nk+1(nk + nk+1) sin ϕk+1

−√
nk nk−1(nk + nk−1) sin ϕk], (2)

h̄
dϕk

dt
= (nk−1 − nk )NUeff

−α(nk−1 − nk )NU [Nc(nk−1 + nk ) − 2]

− J

[(√
nk

nk−1
−

√
nk−1

nk

)
cos ϕk

+
√

nk−2

nk−1
cos ϕk−1 −

√
nk+1

nk

cos ϕk+1

]

−F

[(
nk

√
nk

nk−1
− nk−1

√
nk−1

nk

)
cos ϕk

+
(

3
√

nk−2 nk−1 + nk−2

√
nk−2

nk−1

)
cos ϕk−1

−
(

3
√

nk+1 nk + nk+1

√
nk+1

nk

)
cos ϕk+1

]
, (3)

where Ueff = f3DU . The definitions of the tunneling parame-
ters J and F and of the on-site interaction energy parameter
U are given in the Appendix. The coefficient f3D = 1 − α

is obtained from the slope of the on-site interaction energy
as a function of �Nk − N/Nc. As shown in Refs. [18,20],
the introduction of f3D is crucial for obtaining an accurate
dynamics. From this system of equations only 2Nc − 2 are
independent since the variables must fulfill

∑
k nk = 1 and∑

k ϕk = 0.

B. Localized states

In previous works, we have described in detail the method
for obtaining the localized states in terms of GP stationary
states [18,20,25]. Summarizing, first the stationary states
ψn(r, θ, z) are obtained as the numerical solutions of the
three-dimensional GP equation [26] with different winding
numbers n, with n restricted to the values −[(Nc − 1)/2] �
n � [Nc/2] [27] for large barrier heights [25]. Since the ψn

are orthogonal for different n [20,25], one can define orthog-
onal WL functions localized on the k site by the following
expression:

wk (r, θ, z) = 1√
Nc

∑
n

ψn(r, θ, z) e−inθk , (4)

with θk = 2πk/Nc for −[(Nc − 1)/2] � k � [Nc/2]. A dis-
cussion of how to choose the global phases of ψn(r, θ, z) in
order to achieve the maximum localization of wk is given in
Ref. [18].

In its turn, the stationary wave functions can be written in
terms of the localized WL wave functions in Eq. (4) as

ψn(r, θ, z) = 1√
Nc

∑
k

wk (r, θ, z)ein k 2π/Nc . (5)

For the four-well problem, Nc = 4, the states with n = ±1
are degenerate and can be regarded as vortex-antivortex states
since ψ±1 = 1

2

∑
k wke

±i π
2 k have opposite circulation. It is

worth remarking that, as the GP equation is nonlinear, linear
combinations of degenerate stationary states, e.g., the vortex-
antivortex states, are in general nonstationary.

III. THE SYSTEM, TRAPPING POTENTIAL,
AND PARAMETERS

Although the states investigated in this work also exist
for larger numbers of wells, in our numerical simulations we
consider a four-well ring-shaped trapping potential given by

Vtrap(r) = m

2

[
ω2

r r
2 + ω2

zz
2
]

+Vb[cos2(πx/q0) + cos2(πy/q0)], (6)
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where r2 = x2 + y2 and m is the atomic mass. The har-
monic frequencies are given by ωr = 2π×70 Hz and ωz =
2π×90 Hz, and the lattice parameter is q0 = 5.1 μm. Here-
after, time and energy are given in units of ω−1

r and h̄ωr ,
respectively. The length is given in units of the radial oscillator
length lr = √

h̄/(mωr ) � 1.3 μm. We also fix the barrier
height parameter at Vb = 25h̄ωr and the number of particles
to N = 1×104.

For a system of rubidium atoms in the above configu-
ration we have obtained the following multimode param-
eters: the hopping, J = −6.60×10−4h̄ωr ; the interaction-
driven hopping parameter, F = 2.08×10−3h̄ωr ; the on-site
interaction energy, U = 3.16×10−3h̄ωr ; and the effective
on-site interaction energy Ueff = 2.27×10−3h̄ωr , being α =
0.28. We numerically solve the GP equation on a grid of up
to 512×512×256 points and using a second-order split-step
Fourier method for the dynamics with a time step of �t =
10−4ω−1

r . For more details see Ref. [18].

IV. THE STATES

In this section we first analyze a set of stationary points of
the M model with equally populated sites whose associated
order parameters are in general not exact GP stationary states.
These states will be called peculiar. In a second step, we show
that for states with conveniently chosen initial occupation
numbers and the same distribution of initial phases as the
peculiar states, the populations remain blocked during all the
evolution. The properties of such BON states are studied next.

A. Peculiar stationary states

The GP stationary states used for constructing the multi-
mode model give rise to stationary points in the M model.
However, in addition to these standard points, we found a
peculiar set of stationary points in a condensate with Nc =
4l sites. These states are defined by |bk| = 1/

√
Nc and the

following local phases: φ0 = 0, φ1 = f0 − π , φ2 = π , and
φ−1 = f0 for a four-well trap (l = 1). However, for larger l,
the sequence of phases is repeated l times along the ring.
We refer to these states as peculiar because f0 could take
any value, so instead of having isolated points in the phase
diagram we have a continuous family of stationary points
parametrized by f0. This family contains the two stationary
points f0 = ±π/2 which correspond to singly quantized vor-
tex states, namely, GP stationary states with winding numbers
±1. In Fig. 1(a) a scheme of the trap and the condensate is de-
picted qualitatively showing states with different populations,
and in Fig. 1(b) the localized WL function in the z = 0 plane
is shown together with the peculiar initial phases.

We further investigate if the peculiar order parameter could
also be another stationary solution of the GP equation [26],

[
− h̄2

2m
∇2 + Vtrap + gN |ψ (r)|2

]
ψ (r) = μψ (r), (7)

where μ is the chemical potential and g = 4πh̄2a/m is the
interaction strength among atoms with a being their s-wave
scattering length.

FIG. 1. (a) Schematic three-dimensional states density and the
trapping potential of the four-site system (in arbitrary units). (b)
Localized states wk at the plane z = 0; also the peculiar set of initial
values of the phases are indicated.

The normalized-to-unity order parameter associated to the
peculiar points reads

ψM (r, t ) = 1
2 [w0(r) − w2(r)] − 1

2 [w1(r) − w−1(r)]eif0 , (8)

which in terms of GP stationary states can be written as

ψM (r) = 1
2 [(1 + ieif0 )ψ1(r) + (1 − ieif0 )ψ−1(r)]. (9)

The peculiar states are therefore a superposition of vortex
states with opposite circulation. Since the states ψ1(r) and
ψ−1(r) have the same chemical potential μ1 = μ−1 and verify
ψ1(r) = ψ∗

−1(r), applying the GP equation (7) to ψM , we
obtain [

− h̄2

2m
∇2 + Vtrap + gN |ψM (r)|2

]
ψM (r)

= μ1 ψM (r) − gN cos(f0)Im
(
ψ2

1 (r)
)

× [Re(ψ1) − Im(ψ1)eif0 ], (10)

where, in addition, we have that

Im
(
ψ2

1 (r)
) = 1

4 [w0(r) − w2(r)] [w1(r) − w−1(r)] (11)

is almost vanishing if the WL functions are well localized
as in the present case. Therefore, these peculiar stationary
points can be regarded as quasistationary solutions of the GP
equation.

For the particular case of f0 = ±π/2, the second term
on the right-hand side of Eq. (10) vanishes and thus the
order parameter is an exact solution of the GP equation.
Otherwise, a general value of f0 generates an entire contin-
uous family of states that shows a collective motion indepen-
dent of time. The ψ±1 stationary solutions can be regarded
as particular cases of Eq. (9) with maximum angular mo-
mentum. On the other hand, for f0 = 0 we have ψM (r) =
1
2 [(1 + i)ψ1(r) + (1 − i)ψ−1(r)] which is real; hence, its
angular momentum is zero. Nevertheless, an active vortex
dynamics is present, due to the nonzero circulation of ψ±1.
The same holds for f0 = π .

We want to remark that such a family of stationary solu-
tions of the M model does not necessarily exist in ring lattices
with an arbitrary number of wells as it can be straightfor-
wardly deduced from the dynamical equations (2) and (3). For
example, for Nc = 3 even though the degenerate stationary
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FIG. 2. Populations (left column) and phase differences (right
column) as function of time, from top to bottom for �N = 100,
200, and 400 with f0(0) = −π . The solid lines correspond to GP
simulations and the dashed lines to the M model. Black and red lines
correspond to Nk and ϕk with k = 0 and k = 1, respectively. The
dotted blue lines in the top right illustrate the prediction of the M
model with the bare U for k = 1.

states with winding numbers n = ±1 are also present, the
corresponding stationary points in the phase diagram only
exist as isolated points.

B. Nonstationary BON states

When the numbers of particles of alternate sites are equal
and the phases maintain their peculiar relation, φ0 = 0, φ1 =
f0 − π , φ2 = π , and φ−1 = f0, the site populations do not
evolve. This condition gives rise to very special dynamical
states where f0 becomes time dependent. This is shown in
Fig. 2, where we compare the evolution of the occupation
numbers and phase differences using full three-dimensional
GP simulations with the dynamics arising from the M model.
The selected initial population differences, from top to bot-
tom, are �N = 100, 200, and 400, where �N = N0 − N1

and f0(0) = −π . From Fig. 2 it may be seen that in all cases
the number of particles in each site remains fixed in time,
whereas their phase differences evolve faster for larger im-
balances. We have further investigated the GP equation (GPE)
dynamics for imbalances up to �N = 3×103 and verified that
the populations remain constant within 0.1% accuracy.

This family of states bears some resemblance to self-
trapped states; however, there are many important differences
compared to the well-known ST dynamics in double-well
potentials. First of all, the population imbalance can be

arbitrarily small. Instead, to reach these states, it is only
necessary to achieve the peculiar phases described above,
f0(0) being an arbitrary value (given that nk = nk+2). Second,
the hopping parameters J and F play no role in the dynamics;
hence, we cannot associate the emergence of the BON states
to the small enough tunneling energy splitting like in the ST
regime in two wells [9].

The BON state normalized to unity reads

ψM (r, t ) = √
n0[w0(r) − w2(r)]

−√
n1[w1(r) − w−1(r)]eif0(t ), (12)

which, written in terms of GP stationary states, yields

ψM (r) = (
√

n0 + i
√

n1e
if0(t ) )ψ1(r)

+ (
√

n0 − i
√

n1e
if0(t ) )ψ−1(r). (13)

In order to obtain f0(t ) one can rewrite Eqs. (3) and extract
the evolution of f0(t ) from h̄ ϕ̇k = (nk−1 − nk )NUeff. This
yields

f0(t ) = 1

h̄
Ueff�N t + f0(0), (14)

which in turns completely defines all the phase differences at
any time within the M model. In particular, we have ϕ0(t ) =
−f0(t ) and ϕ1(t ) = f0(t ) − π . We note that for n0 = n1 the
state (13) coincides with the peculiar state (9).

It is important to point out here that the perfect agreement
between the results of the GP equation and the M model
observed in Fig. 2 is due to the proper definition of the
on-site interaction energy parameter Ueff = 2.27×10−3h̄ωr

[19,20], instead of using the bare value U = 3.16×10−3h̄ωr .
To illustrate such a difference, we included in Fig. 2 the
evolution of ϕ1(t ) for �N = 100 using the bare parameter
U . Hence, we confirm the accuracy on the calculation of
the effective on-site interaction energy parameter also in this
dynamical regime.

To conclude we note that using Eq. (14) one can obtain the
time period for the phase differences,

TM = 2πh̄

Ueff�N
, (15)

which turns out to be also the time period of the persistent and
collective oscillation around the ring.

1. Angular momentum

An additional evidence of this dynamical regime is re-
flected in the time evolution of other observables. In particular,
we show that within the M model the angular momentum
exhibits a sinusoidal behavior as a function of time with a
period TM .

The expectation value per particle of a general observable
Ô, considering an arbitrary state in the M model, is given by

〈Ô〉 =
∑

k

nk〈wk|Ô|wk〉

+ 2
∑

k

√
nknk+1Re[ei(φk−φk+1 )〈wk+1|Ô|wk〉]. (16)

Since each well is equivalent to all others, except for
a discrete rotation, we have 〈wk|Ô|wk〉 = 〈w0|Ô|w0〉 and
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〈wk+1|Ô|wk〉 = 〈w1|Ô|w0〉 for all k. Hence, the expectation
value becomes

〈Ô〉 = 〈w0|Ô|w0〉
+ 2

∑
k

√
nknk+1Re[e−iϕk+1〈w1|Ô|w0〉]. (17)

For the z component of the angular momentum we have
Ô = L̂z = −ih̄ ∂

∂θ
and then, taking into account that the lo-

calized states can be chosen as real functions, one obtains the
expectation value of angular momentum:

〈L̂z〉 = −2h̄〈w1| ∂

∂θ
|w0〉

∑
k

√
nknk+1 sin ϕk+1. (18)

In a BON state with initial condition f0(0) = −π , as sin ϕk =
− sin f0(t ) for every k, we can write

〈L̂z〉 = −8h̄
√

n0n1〈w1| ∂

∂θ
|w0〉 sin

(
1

h̄
Ueff�Nt

)
, (19)

where the bracket involving the localized states is a negative
number. As expected, the period of this sinusoidal function
is TM . Furthermore, one can see that the stationary state
Eq. (8), corresponding to �N = 0, yields a constant angular
momentum proportional to sin(f0).

2. Underlying dynamics

Although the population in each well remains completely
fixed, the order parameter evolves in time and exhibits spatial
oscillations. In order to analyze such a dynamics we first
investigate the evolution of the density profile. Using the BON
state expression given by Eq. (12), the evolution of the density
ρM (r, t ) = |ψM (r, t )|2 within the M model is given by

∂ρM (r, t )

∂t
= 2

√
n0n1ḟ0(t ) sin f0(t )

×[w0(r) − w2(r)][w1(r) − w−1(r)], (20)

with h̄ḟ0(t ) = Ueff�N [cf. Eq. (14)]. Equation (20) implies
that ρM (r, t ) is approximately stationary within each well,
where the overlap between the WL functions of neighboring
sites is negligible, whereas the density variations are confined
to the interwell regions or junctions where the localized states
do overlap. Moreover, one can infer the change of sign of
∂ρM (r, t )/∂t at the junctions by analyzing Eq. (20). One can
thus conclude that particles oscillate across both junctions of
a given site without changing its net population. Furthermore,
the maximum and minimum density variations during the
evolution occur at times tM and tm when f0(tM ) = 0 and
f0(tm) = π , respectively.

The sense of the particles’ flow across the junctions can be
read off from the spatial profiles of the phases φ(r, t ) of the
wave function. In Fig. 3 we show snapshots of these phases at
several times in the z = 0 plane obtained from both ψM (r, t )
and ψGP(r, t ) in the left and right panels, respectively. In both
cases we have subtracted a global phase φ0(t ) from φ(r, t )
in order to better observe the dynamics. The initial condition
is �N = 200 and f0 = −π , which yield a multimode period
TM � 13.8ω−1

r , in sharp contrast to 2πh̄/(U�N ) = 9.95ω−1
r

that would be obtained with the bare on-site interaction.
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FIG. 3. Phase snapshots at the z = 0 plane obtained from the
M model (left column) and from GP simulations (right column) for
�N = 200. The coordinates x and y are divided by lr = √

h̄/(mωr ).
The GP times, from top to bottom on the right column, correspond
to ta = 3.4ω−1

r , tb = 6.9ω−1
r , tc = 10.3ω−1

r , and td = 13.7ω−1
r . The

plus signs (open circles) indicate the vortex (antivortex) locations.
The indicated phase values correspond to the local phases evaluated
at each site center.

In the left-hand column, from top to bottom, we show the
phase φM (r, t ) obtained from the order parameter ψM (r, t )
for the aforementioned configurations at several times: (a) at
t = TM/4 (f0 = −π/2), there is a π/2 difference between
neighboring sites and the velocity field corresponds to that
of a vortex with a phase gradient in the counterclockwise
direction; (b) at t = TM/2 (f0 = 0), the phase difference
between the right and left sites is π , which corresponds to a
vanishing velocity field; (c) at t = 3TM/4 (f0 = π/2), there is
a −π/2 difference between neighboring sites, the circulation
being clockwise as for an antivortex; and finally, (d) at t = TM

(f0 = π ), there is a π phase difference between the top and
bottom sites. In the figure we have marked with a plus symbol
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and with an open circle the presence of a vortex and an
antivortex, respectively. For the M model, it can be seen that,
in the left column of Fig. 3, there exists a vortex and an an-
tivortex at the origin for the configurations (a) t = TM/4 and
(c) t = 3/4TM , in agreement with the distributions described
above. In the model, the vortex (antivortex) remains fixed
at x = 0, y = 0 during the interval 0 < t < TM/2 (TM/2 <

t < TM ).
On the other hand, in the right-hand column of Fig. 3 we

show phase snapshots obtained from full three-dimensional
(3D) GP simulations for times near the four different situ-
ations previously discussed. We have observed that the GP
evolutions incorporate additional fluctuations and hence the
velocity circulation does not change exactly at quarters of
the period TM . Moreover, the velocity field never vanishes,
as the change of its circulation is associated with a passage of
vortices instead of with the appearance of a nodal surface [6].
Nevertheless, as shown together in Fig. 3, the order parameter
from the M model is able to capture rather accurately the spa-
tial distribution of phases present in the exact GP dynamics.

In particular, from top to bottom in Fig. 3, we show
the results for the GP times: ta = 3.4ω−1

r , tb = 6.9ω−1
r , tc =

10.3ω−1
r , and td = 13.7ω−1

r . In each site we indicate the value
of the local phase φGP(r, t ) evaluated at the center of the
corresponding well to be compared with that obtained in the
M model. It may be confirmed that at every time the phase
difference between alternated sites is always π as predicted
by the model.

It becomes clear from the change of sign in the phase
differences that the velocity field is inverted near each half
period, when the extreme variations in the density at the junc-
tions are achieved. Except for some fluctuations around such
a transition, in the intermediate times the total topological
charge is conserved, whereas the number and the position of
the vortices may change. In particular, in the third row of the
right-hand column of Fig. 3, one vortex and two antivortices
are observed with a total negative charge of −1 instead of the
single fixed antivortex predicted by the M model.

It is worthwhile to recall that the velocity circulation is
quantized along any closed curve inside the superfluid and,
as established in the celebrated Helmholtz-Kelvin theorem
[28], it is conserved during the evolution if the superfluid
condition is not broken [29]. As a consequence, the value of
the circulation can only change when a vortex passes through
the curve (phase slip) or when the density goes to zero.

Although both the GP equation and the M model must obey
the Helmholtz-Kelvin theorem, the order parameter given by
the multimode model cannot predict the motion of vortices or
the generation of vortex-antivortex pairs; hence, the change of
the velocity field circulation could be only provided through
the appearance of nodal surfaces. The nodal surfaces arise
when the minimum in the local density is achieved, i.e., at
f0 = 0, π . For example, at f0 = 0 the order parameter in
Eq. (12) reduces to

ψM (r) = √
n0[w0(r) − w2(r)] − √

n1[w1(r) − w−1(r)],

(21)

which corresponds to the second configuration on the left-
hand column of Fig. 3. If all the populations were equal

this condition would lead to the x = 0 plane. In our case,
the deviation from a plane is due to the difference in the
populations. The intersection of the nodal surface with the
plane z = 0 can be viewed in the graph by the sharp π change
of the phase where the density goes to zero. Similarly, one
can obtain the nodal surfaces for f0 = π , which corresponds
to the fourth configuration. In this case the curve where the
density goes to zero is around y = 0.

In contrast with the M model, the change of the velocity
circulation in the GP frame is produced by the dynamics
of vortices passing through the potential barriers and may
include generation of vortex-antivortex pairs. In fact, we
have observed that several vortex-antivortex pairs may be
spontaneously generated along the barriers, thus simulating a
density closer to that of the M model nodal surface. This active
dynamics of vortices around the transitions is produced in a
timescale much smaller than TM and hence it is not possible
to access the details of the vortex motion within the present
numerical precision. As an illustration, we note that the last
time of the depicted GP snapshots is slightly smaller than the
TM period and there still exists an antivortex around the center
of the system.

3. Velocity field circulation

Taking into account the previous findings for the multi-
mode model one can conclude that in one TM period the
system passes through a sequence of phases that yields an
alternating velocity field circulation between values 1 and
−1 along a curve that connects the four wells. The transition
between these two values occurs at f0 = 0 and f0 = π when
the order parameter develops a nodal surface. In Fig. 4 we
show the velocity field circulation C = ∮

v · dr as a function
of time using the M model and GP simulations. It may be
seen that the same behavior is observed with both approaches.
The M model is thus able to reproduce the behavior of the
circulation although the details of the internal vortex dynamics
is lost. In the GP dynamics the change of circulation is
caused by the motion of vortices together with the creation
or annihilation of vortex-antivortex pairs. Signatures of such
a vortex dynamics could be observed in Fig. 3 where we have
shown the phases around the transition. Another evidence of
a vortex dynamics can also be visualized in the middle panel
of Fig. 4, where an additional change of sign is produced near
the transition.

4. Stability analysis

In this section we investigate the stability of the BON
states by means of a Floquet analysis [18,30] of the mul-
timode dynamical equations. This analysis is based on the
characterization of the linear dynamics around its periodic
orbits. In our case, the BON states are periodic solutions with
constant populations ni (t ) = ni and linear phase differences
ϕi (t ) = ϕ0

i + (−1)i+12π t/TM , where ϕ0
i fulfill the relations

ϕ0
0 = −f0(0), ϕ0

1 = f0(0) − π , ϕ0
2 = 2π − f0(0), and ϕ0

−1 =
f0(0) − π . The linearization of the dynamics around these
states yields the nonautonomous system

dδ

dt
= A[ni (t ), ϕi (t )]

∣∣∣
BON

· δ(t ), (22)

063622-6



BLOCKED POPULATIONS IN RING-SHAPED OPTICAL … PHYSICAL REVIEW A 98, 063622 (2018)

0 20 40 60 80 100
-1

-0.5

0

0.5

1

ωrt

m
C/

2π
h̄

0 20 40 60 80 100
-1

-0.5

0

0.5

1

ωrt

m
C/

2π
h̄

0 20 40 60 80 100
-1

-0.5

0

0.5

1

ωrt

m
C/

2π
h̄

FIG. 4. Velocity field circulation C (in units of 2πh̄/m) as a func-
tion of time for �N = 100, 200, and 400 (from top to bottom). The
circles correspond to the GP results while the solid line corresponds
to the results from the M model. The circulation was calculated along
a square that connects the centers of the four sites in the z = 0 plane.

where δ is a vector comprising both density and phase-
difference fluctuations. As the BON states correspond to sym-
metric initial populations with peculiar phases, it is natural to
consider as variables δ the departures from a symmetric case;
namely, we define

δ1 = (n0 − n2)/2, δ2 = (n1 − n−1)/2, (23)

δ3 = (ϕ0 − ϕ2)/2 + π, δ4 = (ϕ1 − ϕ−1)/2. (24)

Given that the matrix A has a period TM , the linearized
dynamics can be characterized by the so-called Monodromy
matrix M which contains the change of δ after one period,
i.e., M · δ(0) = δ(TM ). The matrix is built from the solutions
of Eq. (22) with canonical initial conditions evaluated at TM

[18,30]. In Fig. 5 we depict elements of M showing the effect
of an initial population fluctuation. The orbits are regular if the
perturbed system remains near the initial one after a period.

0 100 200 300 400
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0

2

4

6

N0 − N1

M
ij

M11

M12

M21

M22

FIG. 5. Selected elements of the Monodromy matrix Mij as
functions of the particle imbalance N1 − N2 of BON states with
f0(0) = π . The horizontal dashed lines mark the values Mij = 0, 1.

This happens when Mii � 1 and Mi �=j � 0. On the contrary,
when the fluctuations are enhanced (|Mij | 	 1), the orbits are
unstable. This may be observed in Fig. 5 for low imbalances.

For the peculiar stationary states (�N = 0), the linear
system is time independent and the problem reduces to a
straightforward diagonalization of A to obtain the excitation
frequencies ω̃ corresponding to the Bogoliubov collective
modes in the case of the full GPE. The four frequencies are
found to be

ω̃ = ±
√

F 2 cos2 f0 ± K
NUeff

2
cos f0 − (K + F )2, (25)

where K = 2J + F . As NUeff 	 K,F , the most stable fre-
quency for a given system is attained for peculiar states
with f0 = ±π/2, which in turn yield an imaginary frequency
ω̃2 = −(K + F )2. Therefore, all f0 give rise to dynamically
unstable peculiar states. The stability of stationary vortex
states (f0 = ±π/2) has been previously investigated in [31]
for circular arrays of Bose-Einstein condensates, finding that
only states with circulation below Nc/4 are stable.

5. Proposed experimental test

The correct preparation of BON states requires a spe-
cial sequence of phases and symmetric initial populations
(nk = nk+1). While the common approach to experimentally
measure both of them is by means of time-of-flight (TOF)
and absorption images, the simple dynamics of BON states
offers an alternative way to confirm its correct realization
using TOF images only. Given that the relative phases among
neighboring sites are revealed in the interference patterns
during the TOF expansion [9], it could be verified that they
obey the peculiar sequence of phases at all times. According
to Eq. (14), in this case f0(t ) must be a linear function whose
slope γ relates to the particle imbalance as

�N = h̄γ

Ueff
, (26)
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which might prove to be a more accurate measure than the
direct estimate from absorption images. On the other hand,
since Eq. (26) requires the use of Ueff instead of the bare U , it
may also serve to confirm its numerical value. By using U the
relative error on the imbalances could be as large as of order
20–30 %, depending on the number of particles [7].

Due to the experimental uncertainty, absorption images
may not be able to reveal a slightly broken symmetry of
the population configuration. However, the evolution of the
phases will depart from linearity and will not be determined
by the single function f0.

V. EXTENSION TO LARGER NUMBER OF WELLS

It is possible to extend the peculiar and BON states to
a larger number of wells provided the sequence of phases
. . . , 0, f0 − π, π, f0, 0, . . . is repeated l = Nc/4 times around
the ring lattice, and the populations alternate between two
values, with n2k = n0 and n2k+1 = n1. This is only possible
when the numbers of wells are multiples of 4. Taking into
account these conditions in Eq. (1) and using Eq. (4) to
eliminate the WL functions wk , we can write the following
BON order parameter in terms of GP stationary states:

ψM (r) =
√

Nc

2

[
(
√

n0 + i
√

n1e
if0(t ) )ψNc

4
(r)

+ (
√

n0 − i
√

n1e
if0(t ) )ψ− Nc

4
(r)

]
. (27)

It is straightforward to show that f0(t ) still obeys Eq. (14),
and thus the corresponding time period is also given by
Eq. (15). Therefore, the analysis performed in the previous
section can be repeated using the same procedure, including
the Floquet theory. However, for these configurations the
velocity field circulation alternates between ±Nc/4 and the
number of nodal surfaces at each half period is equal to l.
Equation (27) shows that an arbitrary linear combination of
ψ± Nc

4
leads to the BON dynamics. For example, even though

for Nc = 8 it is not possible to generate the BON dynamics
with a linear combination of the degenerate ψ±1 states; any
linear combination of ψ±2 will indeed give rise to a BON
dynamics.

Using Eq. (18) the mean value of the z component of the
angular momentum is given by

〈Lz〉(t ) = 2Nch̄〈w1| ∂

∂θ
|w0〉√n0n1 sin(f0(t )). (28)

If we let n0 = n1 then we obtain the most general quasis-
tationary states described in Sec. IV A:

ψM (r) = 1
2

[
(1 + ieif0 )ψNc

4
(r) + (1 − ieif0 )ψ− Nc

4
(r)

]
, (29)

which satisfies[
− h̄2

2m
∇2 + Vtrap + gN |ψM (r)|2

]
ψM (r)

= μNc
4

ψM (r) − gN cos(f0)Im
(
ψ2

Nc
4

(r)
)

× [
Re

(
ψNc

4

) − Im
(
ψNc

4

)
eif0

]
. (30)

Since

Im
(
ψ2

Nc
4

) = 1

Nc

∑
k,k′

wkwk′ sin
[π

2
(k + k′)

]
, (31)

the states in Eq. (29) can be regarded as quasistationary
solutions of the GP equation when the wk are well-localized
functions.

VI. SUMMARY AND CONCLUDING REMARKS

We have studied a particular dynamical regime of a Bose-
Einstein condensate in a ring-shaped lattice which possesses
a set of states with fixed number of particles in each site and
a simple dynamics in their phases. The same distribution of
phases along the sites that gives rise to such nonstationary
states has been shown to generate a continuous family of
stationary points in the phase space of the multimode model.
Such peculiar states have constant nonzero angular momen-
tum, when all the populations are equal, and include two states
that correspond to exact GP stationary solutions.

We have shown that the nonlinearity of the GP equation
governs the dynamics within this regime and that it is respon-
sible for the population blocking in the nonstationary states.
In contrast to the self-trapping phenomenon this effect does
not possess a lower bound for the population imbalance.

We have studied the time evolution of BON states using
both the multimode model and the three-dimensional GP
equation, finding an excellent agreement in the populations
in each site and in their phase differences. This accuracy was
possible due to the inclusion of the effective interaction energy
parameter instead of the bare one. Even though the multimode
model was unable to account for the motion of individual
vortices and the creation or annihilation of vortex-antivortex
pairs, it was demonstrated that it correctly predicts the evo-
lution of the velocity circulation and angular momentum,
characterizing this regime as a persistent current oscillating
around the lattice.

By performing a Floquet stability analysis of the blocked
population states, we have verified that their dynamics is
regular for the particle imbalances here considered. In a four-
well system these states could, in principle, be experimentally
achieved by initially manipulating the position of the potential
barriers in order to have different populations or by using an
elliptic trap in the (x, y) plane with their axis forming a π/4
angle during a short time and then reverting the potential to
a circular harmonic trap. A simple way to produce the initial
distribution of phases would be to start with the same state
as we have used in our numerical calculations. This could be
achieved by illuminating half of the condensate (e.g., x > 0)
with an additional laser for a period of time until it develops a
π phase difference between the half spaces x > 0 and x < 0.
However, any other initial distribution of phases seems feasi-
ble using a spatial light modulator (SLM) [32–34], and hence
also the whole family of stationary M-model states could be
directly generated. Furthermore, given that all the phases lose
their dependence on a single linear function as soon as the
symmetric condition on the site populations is lifted, these
states could be first tested to adjust the population in alternate
wells with arbitrary imbalances. A second phase imprinting
application could then be used to generate the desired state.
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Since the BON states present a simple analytical form for the phase difference between neighboring sites, it could also allow one
to measure the initial population imbalance by means of interference patterns in TOF images, rather than absorption images.

ACKNOWLEDGMENTS

This work was supported by CONICET and Universidad de Buenos Aires through Grants No. PIP 11220150100442CO and
No. UBACyT 20020150100157BA, respectively.

APPENDIX: PARAMETERS

The multimode model parameters are defined by

J = −
∫

d3r w0(r)

[
− h̄2

2m
∇2 + Vtrap(r)

]
w1(r), (A1)

U = g

∫
d3r w4

0 (r), and (A2)

F = −N g

∫
d3r w3

0 (r)w1(r). (A3)

Together with the calculation of these parameters by the preceding definitions we have followed the alternative method
outlined in Ref. [20] which involves directly the energies of the GP stationary states. Both approaches have proven to yield
values equal in less than 1%. We note that we have disregarded the parameter that involves products of neighboring densities
because, for the present system, its contribution turned out to be negligible.
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