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Excitations of a vortex line in an elongated dipolar condensate
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We characterize the properties of a vortex line in an elongated dipolar Bose–Einstein condensate. Increasing
the strength of the dipole-dipole interactions (DDIs) relative to the short-ranged contact interactions we find that
the system crosses over to a self-bound vortex droplet stabilized from collapse by quantum fluctuations. We
calculate the quasiparticle excitation spectrum of the vortex state, which is important in characterizing the vortex
response and assessing its stability. When the DDIs are sufficiently strong we find that the vortex is dynamically
unstable to quadrupolar modes.
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I. INTRODUCTION

In this paper we consider the properties of a vortex line
in a dipolar condensate [e.g., see Fig. 1]. For condensates
with short-ranged (contact) interactions, such a vortex line has
been prepared by rotating a cigar-shaped trap about its axis of
symmetry [1]. In that system Kelvin waves [e.g., see Fig. 1(a)]
were observed, emerging from a parametric resonance with
a quadrupolar excitation that could be directly driven with
a rotating perturbation [2] (also see Refs. [3–5]). To date
there has been no reported observation of vortices in a dipolar
condensate; however there has been considerable theoretical
interest in this topic (e.g., see Refs. [6–17]). Notably, Klawunn
et al. [11,13] found that the DDIs affected the Kelvin modes
of a vortex line, and that for negatively tuned DDIs the Kelvin
dispersion relation could develop a roton-feature leading to a
transverse instability of the vortex line.

The recent observation of quantum droplets formed from a
dipolar condensate have opened new directions of research in
this system. These droplets occur for sufficiently strong DDIs
and arise from the interplay of attractive two-body interactions
and the repulsive quantum fluctuation (QF) effects [18–25].
Irrespective of their confinement, dipolar quantum droplets
tend to have an elongated (prolate) density distribution with
the long axis in the direction in which the dipoles are polar-
ized. Recently Cidrim et al. [26] considered whether these
droplets might be able to support a vortex. They presented
predictions for vortex droplet stationary states but observed
that, under time evolution, these states were highly unstable
with a tendency to split into two parts.

The primary system we consider here is an elongated
dipolar condensate confined in a prolate harmonic trap with
a vortex line on its long axis. We use extended mean-field
theory to calculate stationary vortex states. This theory in-
cludes the effects of QFs within a local density approximation,
allowing us to study the system in the condensate and droplet
regimes. For the trap geometry we consider, the condensate
continuously transforms into a vortex droplet as the DDIs

increase in strength relative to the contact interactions, thus
demonstrating a viable scheme for producing vortex droplets.

We also solve the Bogoliubov–de Gennes equations for the
quasiparticle excitations. This allows us to quantify the effect
of the DDIs and QFs on the Kelvin wave modes, and other
relevant low-energy modes, and to assess the origin of dynam-
ical instabilities in the system. We find that the first strong
instabilities to emerge are quadrupolar in character, causing
the condensate to break into two pieces [e.g., see Fig. 1(b)],
consistent with the decay dynamics seen in Ref. [26]. By
turning off the QF term in the generalized mean-field theory
we can assess the effect of this term on stability and the ex-
citation spectrum of the system. Our results show that the QF
terms can have marked differences in the spectral properties,
even before the system is in the droplet regime. Furthermore,
comparison of our results with experiments or alternative
theories may be useful in establishing the accuracy of the QF
term (in the local density approximation) for vortex states.

We briefly outline the paper. In Sec. II we present the gen-
eralized mean-field theory for the stationary state and the as-
sociated formalism for the quasiparticle excitations. The main
results are presented in Sec. III. We begin by examining the
stationary state properties, and the crossover to the vortex
droplet state as the DDIs increases (with the QF term) or the
mechanical collapse of the condensate (without the QF term).
We then present the related excitation spectrum focusing on
the low-energy branches and identify the modes that cause the
vortex to become dynamical unstable. We then conclude our
work.

II. FORMALISM

A. Generalized mean-field theory

The stationary states of a dipolar condensate are described
by the generalized Gross–Pitaevskii equation (GPE) (e.g., see
Refs. [19–25,27–32])

μ� = LGP�, (1)
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FIG. 1. Density isosurface of the s = 1 vortex state of a conden-
sate for (a) purely contact interactions and (b) a dipole interaction
strength close to instability. In panel (a) a Kelvin-wave quasiparticle
is superimposed on the condensate causing the vortex line to wiggle
[mode (k) indicated in Fig. 3(a)]. In panel (b) a quadrupolar quasipar-
ticle is superimposed on the condensate causing the density around
the vortex to split into two pieces [mode (q3) indicated in Fig. 3(d)].
Isosurfaces indicate a density of 1020 m−3.

where

LGP ≡ − h̄2∇2

2M
+ Vtr + �(x) + γQF|�|3 (2)

is the GPE operator, � is the condensate field, and μ is the
chemical potential. Here we consider a cylindrically sym-
metric harmonic trap Vtr = 1

2M (ω2
⊥ρ2 + ω2

zz
2), where ρ =

(x2 + y2)1/2 is the radial coordinate and {ω⊥, ωz} are the
trap frequencies. The effective potential �(x) = ∫

dx′U (x −
x′)|�(x′)|2 describes the two-body interactions where

U (r) = gsδ(r) + 3gdd

4πr3
(1 − 3 cos2 θ ). (3)

Here gs = 4πas h̄
2/M is the s-wave coupling constant, as

is the s-wave scattering length, and gdd = 4πadd h̄
2/M is

the DDI coupling constant, with add = Mμ0μ
2
m/12πh̄2 be-

ing the dipole length determined by the magnetic moment μm

of the particles. The DDI term describes dipoles polarized
along the z axis by an external field, and θ is the angle
between r and the z axis. The leading-order QF correction to
the chemical potential is �μ = γQFn

3/2, which is included in
Eq. (2) by using the local density approximation n → |�(x)|2,

with coefficient [19,25,33]

γQF = 32

3
gs

√
a3

s

π

(
1 + 3

2ε2
dd

)
,

where εdd ≡ add/as .
Here our interest is in axial symmetric stationary states of

the form

�s (x) = ψs (ρ, z)eisφ, (4)

with ψs real where φ = arctan(y/x) is the azimuthal angle.
Of primary interest is the singly quantized vortex state s = 1
that has h̄ per particle circulation about the z axis. We will
also present some results for the ground-state case s = 0.

We solve for the vortex stationary states and the excitations
by using the Fourier–Bessel-type approach introduced by
Ronen et al. [34] and adapted to the vortex problem by Wilson
et al. [12]. We use a cylindrically-cut-off DDI potential (see
Lu et al. [35]) to improve the accuracy of the interaction
matrix elements.

B. Excitations

The collective excitations of this system are Bogoliubov
quasiparticles, which can be obtained as a set of normal modes
by linearizing the time-dependent GPE ih̄�̇ = LGP� about a
stationary state. This expansion about the vortex state (4) is
conveniently taken to be of the form

� = ei(sφ−μt/h̄)

⎧⎨
⎩ψs +

∑
m,j

[
λmjumje

i(mφ−εmj t/h̄)

− λ∗
mjv

∗
mje

i(−mφ+ε∗
mj t/h̄)]

⎫⎬
⎭ (5)

(e.g., see Refs. [34,36]), where λmj is the amplitude of the
mj mode, and umj and vmj are the quasiparticle modes with
respective energy εmj . Here m is the z component of angular
momentum (in units of h̄) of the quasiparticles relative to
the condensate, while the remaining radial and axial de-
grees of freedom are enumerated by the quantum number j .
The cylindrically symmetric amplitudes {umj , vmj } satisfy the
generalized Bogoliubov–de Gennes equations(

Lm+s + Xm −Xm

Xm −(Lm−s + Xm)

)(
umj

vmj

)
= εmj

(
umj

vmj

)
, (6)

where

Ln = LGP + h̄2n2

2Mρ2
− μ, (7)

Xmf = ψse
−imφ

∫
dx′U (x − x′)eimφ′

f (ρ ′, z′)ψs (ρ ′, z′)

+ 3
2γQF|ψs |3f. (8)

See also Ref. [37] for a discussion of this excitation formal-
ism applied to ground-state (i.e., s = 0) droplets. Physically
acceptable solutions with real eigenvalues εmj can be chosen
to satisfy the normalization condition∫

dx
(
u2

mj − v2
mj

) = 1, (9)
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which we refer to as positive-norm solutions. Equation (6)
also admits (unphysical) negative-norm solutions for which
the integration in Eq. (9) instead yields a value of −1.
The Bogoliubov-de Gennes equations possess a symme-
try such that a negative-norm solution in the m subspace
{εmj , umj , vmj } corresponds to a positive-norm solution in the
−m subspace with the transformation: εmj → −ε−mj , umj →
v−mj , and vmj → u−mj . For complex eigenvalues the excita-
tions can exponentially grow, and the system is dynamically
unstable. For this case the integration in Eq. (9) instead yields
zero, so it is not possible to construct normalized excitations.

The numerical solution of Eq. (6) for the case of vortex
stationary states is reasonably challenging, and details of our
approach will be presented elsewhere [38].

III. RESULTS

For our calculations we take N = 112 × 103 164Dy atoms
in a cigar-shaped trap with ω⊥ � ωz, choosing the case
(ω⊥, ωz)/2π = (98.5, 11.8) Hz to match the trap used in
Ref. [2], and taking a scattering length of as = 80a0, where
a0 is the Bohr radius.

A. Stationary-state properties

We present our results for the condensate properties in
Fig. 2 as a function of the DDI strength, parametrized by the
dipole length add . The strength of the DDI can be tuned by
using a rotating magnetic field [39,40] up to the maximum
value (in a static field) of add = 131a0 for 164Dy.

In the absence of the QF term the system becomes me-
chanically unstable to collapse, where the condensate widths
are seen to decrease and the density increases rapidly as
add increases towards add ≈ 85a0 [e.g., see Figs. 2(a) and
2(b)]. Because the DDIs are anisotropic, this type of collapse
instability depends on the geometry of the system [41,42].
Since our trap arranges the condensate into a prolate shape
(which enhances the attractive head-to-tail part of the DDI),
collapse occurs soon after the interactions become dipole
dominated (i.e., when add > as = 80a0).

Including the QF term [see magenta line in Fig. 2] stabi-
lizes the system against mechanical collapse, and the conden-
sate density grows more slowly as add increases. In the regime
add > 85a0 (where collapse would occur without the QF
term) the system crosses over to a quantum droplet, and then
becomes self-bound (i.e., can maintain itself as a localized
structure even in the absence of confinement [23,24]). We can
illustrate this by considering the system chemical potential
and energy [Figs. 2(c) and 2(d)], which both become nega-
tive for add � 120a0, indicating that the state is self-bound
[24,37]. Here the energy is calculated by using the energy
functional

Es =
∫

dx�∗
s

[
− h̄2∇2

2M
+ Vtr + 1

2
� + 2

5
γQF|�s |3

]
�s .

(10)

We can also compare the trapped solutions to free-space self-
bound solutions, i.e., stationary solutions of Eq. (1) with Vtr =
0 [24,26]. These results are shown as green curves in Fig. 2

FIG. 2. Comparison of trapped condensate properties with (ma-
genta lines) and without (blue lines) QF corrections as add varies.
Free-space self-bound droplet solutions (green lines) are also shown.
(a) Peak density npeak = max(ψ2

s ) of the s = 1 condensate. (b)
Condensate widths given by the rms expectations of the x (dotted)
and z (solid line) coordinates. (c) Chemical potential and (d) energy
per particle of the s = 0 ground state (dashed lines) and s = 1 vortex
state (solid lines). Inset to (d) shows the thermodynamic critical
rotation frequency for the s = 1 vortex state. The dotted horizontal
line indicates the radial trap frequency for reference.

and confirm that the trapping potential plays a minor role in
the stationary-state properties for sufficiently large add values.

It is more convenient for experiments to tune as by using
a Feshbach resonance, keeping add fixed. We have repeated
the type of stationary-state analysis presented in Fig. 2 but
fixing add = 131a0 and varying as , i.e., starting from an initial
value as > add and then decreasing as to bring the system into
the regime of dominant dipole interactions. For this case we
find that, without the QF term, the vortex state is unstable to
mechanical collapse at as � 124a0. With the QF terms the
system smoothly crosses over to a vortex droplet attaining a
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negative chemical potential and energy for as � 90a0. Similar
behavior has been observed in experiments [20], where a
droplet was prepared in a prolate trap geometry, albeit for a
nonvortex (s = 0) case and by reducing as . It is not expected
that this behavior will persist in traps with oblate geometries
where the droplet state and the condensate do not smoothly
connect (see Refs. [25,43,44]).

We also show results for the energy E0 of the respective
s = 0 ground states in Fig. 2(d). In a nonrotating reference
frame these states have a lower energy compared with the vor-
tex states when they exist. However, we note that the ground
state for γQF = 0 collapses at a lower value of add than
the vortex state, thus there is a small range of add values
where E1 can be calculated yet E0 is undefined. The energy
difference between the s = 0 and s = 1 states relates to the
thermodynamic critical angular frequency [45]

�c = E1 − E0

Nh̄
, (11)

where �c is the rotation frequency about the z axis required
for the vortex state to become energetically favorable. Our re-
sults for �c [see inset to Fig. 2(d)] show that �c increases with
add . This behavior was expected for a prolate dipolar con-
densate within the hydrodynamic approximation [10,15] (cf.
Ref. [14]).1 For results including the QF term in the droplet
regime the critical rotation frequency can exceed the radial
trap frequency (i.e., for add � 95a0). We note that the self-
bound result (green) terminates at �c ≈ ω⊥ by coincidence
for this choice of interaction parameters.

B. Excitation spectrum

In Fig. 3 we present the results for the quasiparticle
excitation spectra corresponding to stationary states ana-
lyzed in Fig. 2 for various add values, both with and with-
out the QF term. We restrict our attention to excitations
with relative-angular-momentum quantum number |m| �
4, which are the lowest-energy excitation branches, with
higher-angular-momentum excitations beginning at energies
above the range we consider. Our primary focus is on the
m = 0,−1,−2 branches which we discuss further below.
Figures 3(d) and 3(f) show the excitation spectra for add close
to dynamical instability (i.e., where the excitation energies
develop imaginary parts) for the cases with γQF = 0 and
γQF 
= 0, respectively. The imaginary parts of the spectrum are
shown in Figs. 3(α) and 3(β) as a function of add , revealing
that the first dynamically unstable modes develop at add ≈
82.5a0 for γQF = 0 and at add ≈ 94a0 when we include the
QF term.

To visualize the spectra we follow the procedure intro-
duced in Ref. [4]2 to map the excitations onto an effective

1We emphasize that �c is the critical frequency required to make
the s = 0 and s = 1 states energetically degenerate, and does not
mean that the s = 1 state is necessarily dynamically stable when it is
rotated at �c.

2The results of Fig. 3(a) are approximately comparable to Fig. 3 of
Ref. [4], although the larger mass of Dy introduces a scaling of the
kz axis.

dispersion relation as a function wave vector kz along the
vortex line. This is done by ascribing an average axial wave
vector to each excitation according to

〈kz〉mj ≡

√√√√− ∫
dxu∗

mj
∂2

∂z2 umj∫
dx|umj |2 . (12)

With this mapping we see that the excitations in
Figs. 3(a)–3(f) mostly lie on reasonably smooth curves.
Due to finite-size effects of the trapped system, some modes
fall below these smooth curves. For example, consider the
lowest two pairs of m = −1 “bending” modes in Fig. 3(a).
These modes have been analyzed in detail in prior work (see
Ref. [4]), and are surface Kelvin modes that have most of
their amplitude near the top and the bottom of the condensate.

We can arrive at a simple model for the m = 0 phonon
branch based on the assumption that the condensate and
excitations have a Gaussian radial profile of the form χ (ρ) =
l−1
ρ ρe−ρ2/2l2

ρ+iφ/
√

πlρ , which has a maximum at ρ = lρ . For
a system that is uniform in z, we obtain the dispersion relation
[37,46]

εkz
=

√
ε2

0 + 2ε0npeakcf

{
gs − gddFχ

(
kzlρ√

2

)
+ cQFγQFn

1/2
peak

}
,

(13)

where ε0 = h̄2k2
z /2M , cQF = 18

25

√
2πe

5 ≈ 1.33, and

Fχ (q ) = 1 + 3
2q2

[
(q2 + 2)2eq2

Ei(−q2) + q2 + 3
]
, (14)

with Ei being the exponential integral, and npeak being the
peak density. This result can be applied to our case taking lρ as
the radius at which the condensate density is maximum in the
z = 0 plane. We have left cf as a fit parameter3 that accounts
for the spatially varying density along z, and for our fits, cf

varies from 0.14 to 0.38, which is comparable to a similar
factor used in Ref. [4]. In Fig. 3(d) the phonon dispersion
curve provided by Eq. (13) starts at finite kz (just visible near
kz = 0) because it is imaginary (dynamically unstable) for
smaller kz values, suggesting that the trapped system is stable
in this regime due to finite-size effects (i.e., no phonon mode
exists with long enough wavelength to access the instability).

We observe that the phonon spectrum changes appreciably
as add increases, notably changing from being linear to having
curvature and growing more rapidly over the range consid-
ered. We note that μ [see Fig. 2(c)], and hence the speed of
sound c = √

μ/M , decreases with increasing add . The speed
of sound corresponds to the slope of the dispersion curves in
kz → 0 limit. The fitted phonon dispersion lines (13) indicate
that this slope does decrease with increasing add , although
the first discrete excitation in this branch occurs at a kz value
beyond where the linear behavior holds, i.e., the curvature in
the dispersion is already important. This curvature originates
from the momentum dependence of the DDIs in the elongated
geometry: excitations with |kzlρ | < 1 experience an attractive
DDI that reduces the value of εkz

, while excitations with

3For a vortex that is uniform along z and takes the prescribed
Gaussian form radially, we have cf = e/4 ≈ 0.68.
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FIG. 3. (a)–(f) Quasiparticle excitations of an s = 1 vortex with −4 � m � 4 are shown for various add as indicated in each plot. Panels
(a)–(d) show results without QF corrections, while panels (e) and (f) include QF corrections. The parity of excitations along z is even (circles)
or odd (triangles). The solid lines are dispersion relation fits (see text) and the horizontal dotted line indicates −�c [also see inset to Fig. 2(d)].
Panels (α) and (β) show the imaginary parts of dynamically unstable modes. The labels (k) and (q1) to (q5) identify modes we discuss in the
text (also see Figs. 1 and 4).

|kzlρ | > 1 experience a repulsive interaction that increases εkz
.

This behavior is described by the −gddFχ term in Eq. (13).
The m = −1 excitation branch corresponds to Kelvin

waves of the vortex line [e.g., see Fig. 1(a)]. To fit the Kelvin
spectrum we use the dispersion relation introduced by Simula
et al. [4] (also see Refs. [47,48]),

ω(k0 + kz) = ω0 + h̄k2
z

2M
ln

(
1

|rckz|
)

, (15)

valid for |rckz| � 1, where rc is the so-called vortex core
parameter. Following Ref. [4] we take rc, k0, and ω0 as fitting
parameters. In the case of contact interactions the core param-
eter was found to be weakly dependent on system parame-
ters, even when the healing length changed appreciably (see
Refs. [4,5,47]). For our fits (presented in Fig. 3), we find that
rc changes significantly to accommodate the stiffening of the
Kelvin-mode excitation branch as add increases. For example,
rc changes from 0.12 μm in Fig. 3(a) to 0.02 μm in Fig. 3(d).
This stiffening of the Kelvin-mode behavior was predicted for
a vortex line in a uniform dipolar condensate in Ref. [11]
and given a simple interpretation: The density core in the
vortex line can be viewed as a set of holes that effectively
interact with each other via the DDI. For add > 0 these holes
minimize energy in a straight line configuration (i.e., in an
attractive head to tail arrangement). The Kelvin modes cause
the vortex line to wiggle [e.g., see Fig. 1(a)], incurring an
energy cost from the repulsive (side-by-side) component of

the DDI, hence causing the Kelvin-mode energy to increase
with increasing DDI strength.

We find in Figs. 3(α) and 3(β) that the (m = −1) Kelvin-
mode energies can develop an imaginary part for sufficiently
large add values. Often the magnitude of this imaginary part
remains small, so that these modes are weakly unstable, and
will grow slowly. Also the dynamic instability of these modes
oscillates as add changes. Similar behavior has been seen
in other work considering excitations of vortices (e.g., see
Refs. [12,49,50]), and was found to arise from the coupling of
modes that are crossing each other as a parameter is changed
(e.g., see Fig. 4 of Ref. [51]). This suggests that the Kelvin
modes will not strongly grow, but that there is a tendency for
the vortex line to wobble. We note that, for the case without
the QF term [Fig. 3(α)], a pair of Kelvin modes grows to have
a large imaginary part for add � 84a0, but this occurs well
after an |m| = 2 mode has developed as a strong instability.

Finally, we consider the m = −2 excitation modes, which
have a quadrupolar character. As add increases, these modes
tend to lower their energy relative to the other branches, and
notably near instability [see Figs. 3(d) and 3(f)] some of these
modes have negative energy. Figures 3(α) and 3(β) reveal that
the |m| = 2 modes are the first to develop large imaginary
energies both with and without QFs. This suggests that quite
generally the quadrupolar modes will drive the instability of
the dipolar vortex line.

To understand the onset of instability we consider the
density perturbation associated with the unstable modes. The

063620-5



LEE, BAILLIE, BISSET, AND BLAKIE PHYSICAL REVIEW A 98, 063620 (2018)

(q1)
m = −2

= 0.404 ω⊥

z
(μ

m
)

ρ (μm)

(q2)
m = −2

= 0.0489 ω⊥

ρ (μm)

(q3)
m = −2
=−0.522 ω⊥

ρ (μm)

(q4)
m = −2

= 0.287 ω⊥

z
(μ

m
)

ρ (μm)

(q5)
m = −2
=−1.51 ω⊥

ρ (μm)

δn
m

j
(m

−3
)

(q1 )
m = 2

= 1.75 ω⊥

ρ (μm)

γQF = 0, add = 60a0 (q2 )
m = 2

= 1.93 ω⊥

ρ (μm)

γQF = 0, add = 80a0 (q3 )
m = 2

= 1.85 ω⊥

ρ (μm)

γQF = 0, add = 82a0

(q4 )
m = 2

= 1.84 ω⊥

ρ (μm)

γQF = 0, add = 80a0 (q5 )
m = 2

= 1.63 ω⊥

ρ (μm)

γQF = 0, add = 103a0

(q1)

(q2)

(q3)

−(q1 ) −(q2 )
−(q3 )

R
e(

ω
⊥)

add/a0

(a) γQF = 0

pos. norm. modes
neg. norm. modes

dyn. unstable

R
e(

ω
⊥)

add/a0

(b) γQF = 0

(q4)

(q5)−(q4 ) −(q5 )

80 90 100 110 120 130

60 65 70 75 80 85

0 1 2 30 1 2 3

0 1 2 30 1 2 30 1 2 3

0 1 2 30 1 2 3

0 1 2 30 1 2 30 1 2 3

-5

-4

-3

-2

-1

0

1

-2

-1

0

1

1017

1018

1019

0

5

10

15

20

0

5

10

15

20

FIG. 4. Density fluctuations δnmj of various even z parity (q1)–(q5) m = −2 and (q1′)–(q5′) m = 2 quadrupolar modes [as labeled in
Figs. 3(b)–3(f)]. For reference the white lines indicate a contour of the condensate density at 0.1 of its peak value. Panels (a) and (b) show
the m = −2 spectrum, including positive norm (green), negative norm (purple) and the dynamically unstable (orange) modes. Both even-
(solid line) and odd-z-parity (dashed line) modes are shown. The (q1)–(q5) mode energies are indicated with small circles. The negative norm
m = −2 mode energies are the negative of the energies for the corresponding positive norm modes for m = 2 (see Sec. II B). Using this
correspondence we also indicate the (q1′)–(q5′) mode energies on these subplots with small circles.

density perturbation δnmj is the leading-order change in the
condensate density when we add an {mj} quasiparticle to the
condensate and is given by

δnmj = ψs (umj − vmj ). (16)

In Fig. 4 we plot δnmj for the lowest-energy m = −2 mode,
which is the first quadrupolar mode to become dynamically
unstable. The mode shown is identified as (q1) to (q5) for
the different parameter sets and is labeled in Fig. 3 for
reference. Well before instability [i.e., (q1) for γQF = 0 and
(q4) for γQF 
= 0] the lowest-energy quadrupolar mode exists
at the surface (top and bottom) of the condensate, and the
fluctuation affects the density in these regions. These modes
have negligible tunneling through the condensate so that the
even- and odd-z-parity modes are degenerate (see Fig. 3). We
observe that other degenerate pairs of surface modes often
exist, while the rest of the m = −2 branch excitations are
nondegenerate and fall on a smooth effective dispersion curve.

For the γQF = 0 case close to instability [Fig. 3(c)] the
degeneracy is broken between the odd and even modes as
the excitation extends through the bulk of the condensate
[Fig. 4(q2)]. The energy of this mode descends quickly with
increasing add as we move closer to instability [Fig. 3(d)]
and the magnitude of the density fluctuation increases sig-
nificantly [Fig. 4(q3)]. This occurs because the v amplitude
changes phase relative to the u amplitude (which also indi-
cates that the excitation is experiencing an effective attractive
interaction), thus enhancing δnmj . In Fig. 1(b) we indicate
the density pattern of the condensate with the (q3) mode

coherently added, seeing that this perturbation tends to split
the condensate into two parts.

The case with γQF 
= 0 progresses towards instability in a
similar manner. The degeneracy and hence the top and bottom
surface character of the lowest m = −2 modes persists to
higher values of add [see Figs. 3(e) and 4(q4)], but eventually
breaks when the surface modes again extend into the bulk [see
Figs. 3(f) and 4(q5)].

In Figs. 4(a) and 4(b) we see that the dynamic insta-
bility occurs when a positive-norm and a negative-norm
quasiparticle mode in the same subspace collide (also see
Refs. [49,51,52]). As we discussed in Sec. II B, a negative-
norm mode in the m subspace is equivalent to a positive-norm
mode in the −m subspace (albeit with an inverted energy
sign). Thus the emergence of a dynamically unstable mode
in the m = −2 subspace will have a partner excitation in the
m = 2 subspace that it will collide with. In subplots (q1′) to
(q5′) of Fig. 4 we show the m = 2 excitation that partners with
the m = −2 mode shown in Figs. 4(q1)–4(q5).

It is worth taking a step back to consider the behavior of
the quadrupole modes, prior to their instability, in terms of the
various energy contributions. The kinetic-energy cost of the
azimuthal phase winding differs between the two quasiparticle
amplitudes in Eq. (5), being proportional to (m + s)2 for
the umj amplitude, and (m − s)2 for the vmj amplitude [see
Eqs. (6) and (7)]. For m = −2 excitations, this places a greater
energy cost on the vmj amplitude as compared with umj . As a
consequence, far before the instability the relevant m = −2
excitations are strongly confined to the top and bottom ends
of the condensate [Figs. 4(q1) and 4(q4)], minimizing |vmj | by
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reducing their overlap with the condensate. In contrast, for the
partner m = 2 excitations [Fig. 4(q1′) and 4(q4′)] the energy
bias is reversed and the energy is reduced by maximizing
|vmj |, i.e., the excitation extends throughout the bulk of the
condensate. However, even for m = 2 the umj terms still
dominates and the density perturbations shown in [Fig. 4(q1′)
and 4(q4′)] clearly exhibit the effects of its larger centrifugal
energy, pushing the excitation radially further outwards. Even-
tually, for increasing add the attractive component of the DDI
starts to dominate and the m = ±2 partner excitations begin
to hybridize as they approach their instability. As a result, the
m = −2 excitations overcome their high-density aversion and
extend into the bulk of the condensate. The increased tunnel-
ing between the two ends destroys the energetic degeneracy
of the odd- and even-z-parity modes.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have explored the properties of a vor-
tex line in an elongated dipolar Bose–Einstein condensate.
We have presented results for the system properties as the
DDI strength is changed, observing that the system smoothly
evolves from being a trap bound vortex into a self-bound
vortex droplet as the strength of the DDI interaction increases.
We have also presented results for the quasiparticle excitation
spectrum of the system, revealing the behavior of the Kelvin
wave and other low-energy excitations. In the regime of
dominant DDIs we find that this system becomes dynamically
unstable to quadrupolar excitations, which appears to be con-
sistent with the decay dynamics observed in GPE simulations
of vortex droplets [26]. More generally, our work suggests

that vortices in dipolar droplets are unstable (i.e., have a short
lifetime); cf. vortices in binary mixture droplets [53].

We have presented our results both with and without QFs
to reveal their effect on the system. Of course the QFs are
necessary for droplet formation at high values of the DDI,
but also we observe differences even before this regime [for
example in the m = −2 excitation modes at as = 80a0, com-
pare Figs. 3(c) and 3(e)]. Such excitations might be accessible
to direct driving (e.g., see Ref. [2]) or could be probed with
Bragg spectroscopy by using light fields that carry angular
momentum (cf. Refs. [54–56]). This kind of study would also
be useful for gaining a better understanding of the accuracy
of the QF treatment we use here, which is based on the local
density approximation.

Experiments have yet to report the observation of vortices
in a dipolar condensate. Increased understanding of this sys-
tem and the regimes where dynamic instabilities occur will be
important in future experimental studies.
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