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Measuring the local gravitational field using survival resonances in a dissipatively driven
atom-optics system
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We do a proof-of-principle demonstration of an atomic gravimeter based on survival resonances of dissi-
patively driven atoms. Exposing laser-cooled atoms to a sequence of near-resonant standing-wave light pulses
reveals survival resonances when the standing-wave interference pattern accelerates. The resonant accelerations
determine the local gravitational acceleration and we achieve a precision of 5 ppm with a drop distance less than
1 mm. The incisiveness of the resonances scales with the square of the drop time. Present results indicate that
an appropriately designed atomic gravimeter based on survival resonances might be able to reach a precision of
1 nGal with a 10-cm-high fountain. The relatively simple experimental construction of this technique may be of

interest for a compact absolute atomic gravimeter.
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I. INTRODUCTION

Atom interferometry has provided a variety of techniques
for precision measurements [1-3] with impressive accura-
cies for both fundamental research and practical applications.
Light-pulse atom interferometers exploit atom-light interac-
tions to coherently manipulate matter waves [1,2]. Laser
pulses can act as refractive, reflective, and absorptive elements
for matter waves. The interference phenomena arising from
splitting and recombining matter waves has enabled precision
measurements of rotation [4,5], gravity gradients [6], the
Newtonian gravitational constant [7,8], and the fine-structure
constant [9,10]. The high performance makes it an ideal tool
for testing fundamental laws of physics [11-14]. Among the
many applications of atom interferometry, atomic gravimeters
[15-20] are of great attraction for their range of practical
applications in geophysics, cosmology, and metrology.

The atom optics é-kicked rotor (AODKR) [21,22] provides
a protocol for carrying out interferometric measurements of
the gravitational acceleration g [23-28]. In recent work, we
showed that a variant of it displays a quantum interference
phenomenon deemed “‘survival resonances” [29]. They arise
when spatially periodic dissipation or loss is added to the
temporally periodic kicks in the standard §-kicked rotor. Con-
sequently, the atom number is not a conserved quantity and
a meaningful dynamic observable is the survival probability
of the atoms. Varying the pulse interval reveals a series of
survival resonances when it is an integer multiple of half the
Talbot time. These resonances are a result of matter-wave
Talbot-Lau interference [30,31].

In this work, we investigate an atomic gravimeter that
exploits survival resonances [11,29-31]. To sense the gravi-
tational field, the atoms interact with pulses of a vertically ar-
ranged standing wave (parallel to the local gravitational field).
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Gravity eliminates the survival resonances since it adds extra
phases during the free evolution between light pulses. Nev-
ertheless, linearly sweeping the frequency difference between
the two counterpropagating light waves forming the standing
wave, effectively accelerates the standing-wave interference
pattern such that it co-moves with the free falling atoms.
This leads to reemergence of the survival resonances, from
which we can deduce the local g value. This approach offers
several technical simplicities with respect to present atomic
gravimeters [15-20]. (i) The frequency of the standing-wave
light is close to the atomic transitions, which enables us to
derive it from the same laser source used for cooling and
trapping atoms. This allows for an easier construction since
less or simpler laser systems are required. (ii) The Talbot-Lau-
facilitated interferometric survival resonances allow for their
observation using a thermal atomic cloud effectively without
an unwanted background. This reduces the complexity of the
setup by avoiding the need for cooling atoms beyond standard
polarization gradient cooling. (iii) The experimental output is
a simple internal state detection, similar to the Raman-based
gravimeter [15,17]. The simple implementation makes it an
attractive candidate for a compact atomic gravimeter.

The structure of this paper is as follows. Section II provides
a description of the experimental system. In Sec. III we give
a theoretical description of the survival resonances in the
presence of the gravitational field with a four-level model that
considers the possible atomic transitions on the D, line of
rubidium atoms. In Sec. IV, we utilize the four-level model
to revisit survival resonances without gravitational effects and
study the phase modulation caused by a standing wave with
finite detuning. Section V shows the emergence of survival
resonances when the acceleration of the standing wave is
swept. Section VI gives the dependence of the height and
width of the resonant peak on different experimental param-
eters. For an appropriate parameter combination, Sec. VII
demonstrates a local gravitational acceleration measurement
reaching a precision of 5 ppm by interrogating over a drop
distance about 1 mm. It also discusses the potential limitation
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FIG. 1. (a) Rb D, transition hyperfine structure (not to scale).
(b) Simplified schematic of the vertically arranged standing-wave
light beam. The double arrows and dots represent the polarizations of
the laser beams. (c) Time sequence of the experiment (not to scale).
Acronyms: MOT magneto-optical trap; PGC polarization gradient
cooling; OP optical pumping; DET atomic state detection; and PMT
photomultiplier tube.

and application of the technique. The paper concludes with
Sec. VIIIL.

II. EXPERIMENTAL SYSTEM

In the experiment, we use *Rb atoms and their two hy-
perfine ground states F =3 and F =2 as the initial state
and a “dark” state, respectively [see the atomic level diagram
for the D, line in Fig. 1(a)]. The F =2 ground state is
dark to both the standing wave and detection beam and we
consider the atom to be lost from the system once it goes to
this state. The standing-wave light is tuned close to the open
atomic transition from the F = 3 ground state to the F’' = 2
excited hyperfine state. The detuning is A/27 = —10 MHz
except in measurements where the detuning is the parameter
varied. When exposed to such a standing-wave light beam,
the atoms will scatter photons and be optically pumped out
of the initial ground state at the antinodes, while they remain
at the nodes. The standing-wave light therefore forms an
“absorption grating” that spatially modulates the amplitude
of the atomic wave function. Additionally, the finite detuning
leads to the formation of a spatially periodic dipole potential
that will modulate the phase of the atom. The standing-wave
light beam thereby acts as a hybrid of an amplitude and a
phase grating [29].

Figure 1(b) shows how the standing wave forms due to
the interference between two laser beams (with opposite
wave vectors) counterpropagating in the science chamber. To
achieve a stringent rejection of relative phase noise between

these two components, we deliver them with orthogonal po-
larizations through the same single-mode polarization main-
taining fiber. The output light is collimated to have a Gaussian
profile with a diameter of 7.5 mm (1/¢?) and then split by a
high polarization extinction ratio Wollaston prism. As shown
in Fig. 1(b), beam 1 with frequency w; and polarization
along the y axis is aligned vertically and centered at the
atomic ensemble. The other beam with frequency w, initially
propagates parallel to beam 1 and is then reflected by two
silver-coated polarization maintaining mirrors (M-1 and M-2)
such that it counterpropagates beam 1 at the position of the
atoms. Its polarization is rotated 90 degrees by a half-wave
plate (HWP) and further cleaned by a polarizer. This ensures
that the two beams have the same linear polarization for
high contrast interference. Additionally, having the same light
intensity for each beam (typically 15 mW /cm?) maximizes
the standing-wave contrast. By linearly ramping the frequency
difference between the two beams, the standing-wave interfer-
ence pattern can move with a constant acceleration along the
vertical z axis.

As the timeline in Fig. 1(c) shows, we start each of
the experimental cycles by trapping a cloud of ®Rb atoms
from a thermal atomic beam in a three-dimensional (3D)
magneto-optical trap (MOT). By increasing the detuning
while reducing the optical power of the cooling beams and
simultaneously switching off the quadrupole magnetic field,
we cool the atoms to 5 uK by polarization gradient cooling
(PGC). The repump beam maintains its optical intensity dur-
ing the PGC process to ensure all the atoms are optically
pumped into the F' = 3 hyperfine ground state. After the state
preparation, we turn off the cooling and repump beams and
expose the atoms to the standing-wave pulse sequence. The
period of the sequence is T and the duration for each pulse
is T, where t = 400ns is sufficiently short so that it fulfills
the Raman-Nath condition. N equals to 5 throughout the
paper unless otherwise indicated. A bias magnetic field of
5.6 G is switched on along the x axis (perpendicular to both
the propagation and polarization directions of the standing
wave beam) to quench dark states in the F = 3 manifold.
Immediately after the standing-wave pulse sequence, we use a
photomultiplier tube (PMT) to record the survival probability
(the proportion of the atoms remaining in the F = 3 ground
state) through detecting the fluorescence signal when exciting
the atoms on the closed transition from F =3 to F' =4
[see the long red arrow in Fig. 1(a)]. The measurements are
averaged over 20 experimental runs and the error bar in figures
denotes the standard deviation of the mean unless stated in the
caption.

III. THEORY

We consider the vertical standing-wave arrangement
shown in Fig. 1(b). We need to include the gravitational po-
tential Mgz (M is the mass of atom) and the time-dependent
standing wave which can move spatially to match the free
falling frame of the atoms. Furthermore, the two-level atomic
model in [29] did not capture all features of the resonance
peaks. To improve this, we use a four-level atomic model that
contains all the possible atomic transitions on the D; line. In
this section, we give the theoretical description of the survival
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probability with the four-level model in the presence of the
gravitational field.

A. System Hamiltonian

The four levels we consider in the 83Rb atom consist of one
hyperfine ground state F' = 3 denoted |3), and three excited
hyperfine states |e) with F/ =2, F/ =3, and F’ = 4 on the
D, line [see Fig 1(a)]. The time evolution of the atomic wave
function is governed by the Hamiltonian

H = 2+M +§ fiow — 1) 1oy el
W, — e)le
om T ER £ 2

N
—d-Ele’I(r—n/T,r), 1)

n'=0

where we ignore the atom-atom interaction, which is valid
for a dilute sample. z and p are the atomic position and
momentum operators along the z axis (parallel to the local
gravitational acceleration g). N is the number of pulses ap-
plied to the atoms. We choose the F' = 3 ground state energy
to be zero and use hiw, to represent the atomic energies for the
three excited states. The imaginary term —i/iI'/2 describes
the relaxation of the excited states to the F = 2 dark ground
state, which causes the loss of atoms. In the Hamiltonian,
we ignore the spontaneous decay back to the F = 3 initial
ground state which will lead to an incoherent background in
the experiments. We account for this by manually adding an
offset to calculations based on Eq. (1) when comparing to
the experimental data. The atom-light interaction is described
by using dipole approximation, where d is the electric dipole
moment and E is the electric field of the standing-wave light
beam. We shape the standing-wave pulses as a series of top-
hat functions

o<t <,
' <0Oand? > T,

e, o) = {1 @
0
where t is the pulse duration.

As Fig. 1(b) shows, the standing-wave light field is formed
by the two counterpropagating laser beams: beam 1 (down-
wards propagating with wave vector —k) and beam 2 (up-
wards propagating with wave vector k), where we assume the
standing wave is exactly parallel to the z axis. When the pulse
is on, the electric field E has the form

E(z,1) = %élElei(_kz_‘“") + %é‘zEze"(kz_‘”’) +cc., (3)
where &; and &, denote the polarization vectors for the laser
beams 1 and 2. The two laser beams have parallel linear
polarization so that &, = &,. E; and E, are the electric field
amplitudes and c.c. means the complex conjugate. w; and
w, are the optical angular frequencies for the laser beams 1
and 2. By linearly ramping the optical frequencies of the two
beams with a same constant rate @ = a.grk and opposite sign,
w; = wy + wt and wr, = wy — wt, we are able to accelerate
the standing-wave interference pattern with an effective ac-
celeration a.g. We start with a static standing wave by having
the same frequency w, for the two beams, and initiate its
acceleration when switching off the optical pumping beams,

which is the repump light in this case. For simplicity, we
consider the standing-wave light field to have perfect contrast
by fulfilling the conditions: E| = E;. E(z,t) in Eq. 3 is
therefore

1
E(z,t) =& E; cos (—kz — wot — Eaeffkt2>
. 1 2
+ &1E cos | kz — wot + Eaeffkt
o 1 2
=28 E;cos | kz+ Eaeffkt cos (wopt). 4@

Using Eq. (4) in Eq. (1), transferring H to a rotating frame
that rotates at the light frequency wy, and adapting the rotating
wave approximation reduce H to

: inl
H= 2M+Mgz+2[ (hAge—i-T)Ie)(d

e=2
i, 1 al ,
+ cos (kz + —aegrkt ) Z i —n'T, 1)
X (Ie)(3|+|3)<e|)], (5)

where Aj, denotes the detuning of the standing-wave light
with respect to the three atomic transitions, and €23, represents
the maximum on-resonance Rabi frequency for these transi-
tions at the anti-nodes of the standing wave.

B. Gauge transformations

The Hamiltonian H in Eq. (5) gives the full description
of the system. In principle, one can use it to compute all
the physical quantities that are of interest. Nevertheless, it
is desirable to simplify the calculations by transforming H
to a convenient frame. We first translate the wave function
to a frame that moves at the standing-wave acceleration in
position space |1ﬁ ﬁ|1[/ [where T(Az) =exp(iAzp/h)
is the translation operator and Az = de? 2/2], and the trans-
formed Hamiltonian H that governs the evolution of |1//) is

=TTHT + aestp:

. p? 1
H = o + Mg <Z - Eaefft ) + aetrpt

2' ’ cos (kz)

4
+ Z[ (hA3e + E)|e><e| 1 I8
e=2
N
x (Z M —n'T, r>)<|e><3| + |3><e|)}. 6)
n'=0

Now the standing wave is stationary. However, the system is
not spatially periodic due to the Mgz term. To further sim-
plify H, we apply another gauge transformation: U(Ap) =
exp(—izAp/h) with Ap = Mgt. The gauge-transformed
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atomic state |IZ) = UHJ) is then governed by A=uHu -

Mgz [32]:
~ 2 M
A = 22— (g —aumpt + = (g = 3an)®
4 ihT Q
+ Z|: - (hA3g + %)Ie)(d + fis2s, cos (kz)
e=2
N
x (Z M —n'T, r))(|e><3| + |3><e|>] (7)
n'=0

After these two consecutive gauge transformations, we now
have a system that is spatially periodic, and the position of
the standing-wave pattern is time-independent. This comes at

the expense of having explicit time-dependence in H. The
free evolution when the standing wave is off is governed by

the Hamiltonian Hee = % — (g — aef) pt, where we neglect
the term #(g — 3acg)t? that does not have physical sig-
nificance. Equation (7) is preferable for computation since
the free evolution Hamiltonian only contains p and not z,
which implies that we can perform efficient time evolution
in momentum space. On the other hand, if we invoke the
Raman-Nath approximation during a pulse, the atom-light
interaction only depends on the position z, which again in-
dicates we can expeditiously carry out the computation in
position space. The fast Fourier-Transform (FFT) and inverse
fast Fourier-Transform (IFFT) allow us to transfer the atomic
states between position and momentum spaces efficiently,
which ensures we can numerically simulate the dynamics of
the system quickly.

C. Time evolution

Due to the top-hat nature of our standing-wave pulse se-
quence, we can divide the time evolution governed by Eq. (7)
into two segments: the dynamics during the standing-wave
pulse, and the free dynamics between pulses. By computing
the time evolution of the two situations separately, we can find
the pulse-to-pulse time evolution operator as their product.

1. Grating operator, dynamics during the pulse

During the standing-wave light pulse, the Hamiltonian A
in Eq. (7) reduces to:

4
= inr
Hpulse = Z|:_ <hA3e + T) |€) (el

e=2

n RS2,

cos (kz)(le) (3] + |3><e|)}, ®)

where we omitted the atomic motion since the pulse duration
7 is short (Raman-Nath approximation). The time evolution

of the atomic wave function |/) is given by

W T) = exXp ( pulset)“y O) (9)

As discussed before, we are only interested in the atoms
that remain in their initial F = 3 ground state. Equation (9)
will leave the atoms in a superposition of the different internal

states. However, we can define a “grating operator” G that
describes the effect of the standing-wave pulse on the wave
function of the atoms that remain in F = 3 state as

= (3|exp ( pulset>|3)s (10)

where G only operates on atoms in the F = 3 ground state.

Note that G is a nonunitary operator and the probability for
the atom surviving in the F' = 3 state after one pulse can be

calculated as (¢3|GTG|w3) where the subscript 3 indicates
the wave function is for atoms in the F = 3 ground state.
Importantly, because the gauge-transformed standing-wave
pattern does not move spatially, we only need to calculate the
grating operator once.

2. Dynamics between standing wave pulses

We now study the dynamics between pulses, when the
atom undergoes free evolution that is governed by the Hamil-

tonian Hiee = p2/2M — (g — deir) pt. Note Hiye. is explicitly
time dependent, but it commutes with itself at different times,

which enables us to construct a time-evolution operator F =
exp (—% fl? Hireedt) from t; to f,. Because of the time de-
pendence of the Hamiltonian, the time-evolution operator will
differ for different free space time intervals. In particular, the
time-evolution operator F, from t = (n' — )T to t =n'T
becomes

S B
F”’_eXp< thT>
i p(g —aeii) \ 2
><exp<h|:—2 (2n 1)]T ) (11

The first term arises from the atomic kinetic energy. The
second term incorporates the effect of gravity. When the
acceleration of the standing wave g matches g, it becomes
the identity operator and the system becomes equivalent to
one where the atoms receive pulses horizontally [29].

3. N-pulse train

We can now obtain an expression for the time-evolution op-
erator after an N-pulse train. Taking advantage of the temporal
periodicity of the pulse sequence, we can construct a pulse-

to-pulse evolution operator U, = E,G, fromt = (n' — DT
to t = n'T. Recall that I*:“n/ does not change the internal state
of the atoms so l:]n/ gives the dynamics of the wave function
of the atoms that remain in the F = 3 initial ground state.

After receiving N pulses, the atomic wave function |1/:f3, NT)
is given by

13, NT) = Uy Un_y -~ U113, 0). (12)

Since G is nonunitary, so is this evolution. Equation (12)
allows for the computation of the survival probability of
atoms in the F =3 ground state, which can be measured
experimentally by state detection. Note there is no need for
transferring |3, NT) back to its initial frame before comput-
ing the survival probability. The gauge transforms are unitary
so they do not change the survival probability.
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FIG. 2. The measured (markers with error bars) and calculated
(lines) survival resonances around 7 = Ty aftera N = 7, t = 300 ns
pulse sequence. The incoming light intensity is 9 mW /cm?. The
detunings A are (a) —27 x 3 MHz, (b) 0 MHz, and (c) 27 x 3 MHz.
The red solid (or dark blue dot-dashed) lines are calculations based
on the four-level (or two-level) model.

D. Numerical calculations

To calculate the survival probability of a thermal ensemble
of atoms, we propagate an incoherent set of initially Gaussian
wave packets using Eq. (12). The width of the Gaussian wave
packets is determined by the temperature of the atomic cloud
and the initial positions of the ensemble of wave packets cover
a period of the standing wave homogeneously. We operate
with G in position space where it is diagonal, and then evolve
the wave function between pulses in momentum space where
F, is diagonal. FFT and IFFT rapidly transfer the atomic
wave function between these two spaces making the compu-
tation efficient. Finally, the survival probability compared to
experiments will be averaged over the initial ensemble.

IV. SURVIVAL RESONANCES EFFECTIVELY WITHOUT
THE GRAVITATIONAL FIELD

We now revisit the survival resonances investigated in
Ref. [29] by using the more advanced four-level model. We
study the system in the absence of the gravitational field
by implementing the standing wave either horizontally or
vertically and setting a.; = g.

A. Resonant pulse period

Figure 2 displays the survival probability as a function of
the pulse period T for a N = 7 pulse train, where the standing
wave is formed by retroreflecting a horizontal laser beam.
It shows survival resonance peaks near the Talbot time 7t
for different laser detunings (where Tt = 7 M /lik* = 64.8 s
is the Talbot time for °Rb atoms [29]). The markers with
error bars are measured data and the lines are the numerical
calculation based on Eq. (12). The emergence of the sur-
vival resonances can be conceptually understood through the
matter-wave Talbot-Lau effect (see Fig. 3) [29-31]. In Fig. 3,
we consider an incoherent atomic wave impinging on two
identical pure absorption gratings that are separated by a time
T = Ty /2. The matter-wave density distribution will form an
interference pattern downstream. At time t = 2 x Tt/2, the
pattern becomes a near perfect “self-image” of the grating
itself, with the peak distribution aligned with the slits of the
grating (the nodes of the standing wave). Additionally,
the matter-wave Talbot-Lau effect ensures the formation of
the self-image when the grating separation is any integer

a™
.. =S '
Incoherent .‘.
ncoheren
Atomic waves D‘~ '
& = | t

FIG. 3. The matter-wave Talbot-Lau effect. The color code rep-
resents the atomic density. The vertical axis is the coordinate along
the standing wave, and the horizontal axis is time. When impinging
an incoherent atomic wave onto two identical gratings that are
separated by a time 71 /2, a self-image forms at time 7r/2 after the
second grating.

multiples of half the Talbot time 7" = nTt/2 (where n € N)
[29]. If a third standing-wave pulse is applied when these
self-images form, the atoms have a high probability of sur-
vival since they are localized around the nodes. Furthermore,
when there are more than three pulses, the previous two will
ensure that the atoms are near the nodes of the standing wave
whenever T = nTt /2. This yields the high survival around
T = Ty shown in Fig. 2. For finite detunings, the presence
of the dipole potential gives rise to a microlensing effect
that enhances the peak height and are responsible for the
asymmetry of the peak, for example, seen in Fig. 2(a) [29].

The lines in Fig. 2 are the numerical calculations based
on Eq. (12), with the blue dot-dashed lines for a two-level
model that only includes the excited state closest to resonance
with the standing wave light, and the red lines are for the
four-level model discussed in Sec. III. For the experimental
data we use a horizontal retroreflected laser beam to form
the standing wave and account for the imbalanced intensity
of the standing-wave light using the measured losses from the
view ports and the retromirror. Recall, we also add an offset to
the calculated curve to compensate the incoherent background
due to spontaneous decay back to the F' = 3 ground state. The
four-level model agrees with the measurements without any
fitted parameters.

Treating the atom as a two-level system by only includ-
ing one excited state in the calculation of G (the F' =2
state in Fig. 2), also gives reasonable agreements when the
standing-wave light intensity is fitted. The fitted intensity
agrees with the measurement within 25%. However, we see
that the two-level model fails to capture the asymmetry in the
peak height for red and blue detuning clearly visible in the
experimental data. The asymmetry arises because the other
excited hyperfine states will alter the phase and amplitude
modulations differently on opposite sides of resonance. All
following calculations exclusively use the four-level model
without any fitting parameters since it captures the data best.

B. Long pulse periods

Figure 4 shows four survival resonance peaks with long
pulse intervals, where we use a vertical standing-wave beam
arrangement and set a.¢r = g. In this case, the system behaves
identically to the one where there are no gravitational effects
[see Eq. (11)]. The peaks are at the 15th, 30th, 45th, and 60th
Talbot time 77, which shows that this matter-wave interfer-
ometric phenomenon persists for large pulse periods. For T
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FIG.4. A comb of survival resonances at T =

15th, 30th, 45th, and 60th T, with a vertically arranged standing
wave where aer = g.

longer than 4 ms, the atoms drop out of the detection region
of the PMT.

Figure 4 shows a slow decay of the peak height when
the pulse period is extended. The experimental effects that
can contribute to this could be: low-frequency phase noise of
the standing wave due to vibrations of the reflecting mirrors,
transverse thermal motion of the atoms in the standing-wave
beam that could contain phase distortions, and small residual
forces on the atoms, for example, due to stray magnetic field
gradients. Finally, the atoms being split to higher diffraction
orders will leave the detection area faster than the atoms that
rapidly go to the dark state, which will also yield a monotonic
decay of the signal size with the increasing pulse period.

V. SURVIVAL RESONANCES
WITH GRAVITATIONAL FIELD

The survival resonances can be used to make a measure-
ment of the local gravitational acceleration g. We can con-
ceptually explain this as follows: when the evolution between
pulses includes gravity, the self-image (see Fig. 3) does not
align with subsequent gratings since the atoms accelerate.
Nevertheless, by moving the standing-wave interference pat-
tern spatially, such that it matches the self-image, the survival
resonance re-emerges. Equation (11) displays this since the
second exponential term will suppress survival when a.g # g,
while it becomes the identity operator when g = g.

Figure 5 displays two data series where acg is swept while
keeping 7 = 0.969 ms (15th Tt) or T = 1.941 ms (30th Tr).
We again see survival resonances. In both data sets a peak
appears when a.g matches g. The black lines are fits with a
sum of five Gaussian functions that share peak height, width,
and offset. However, the peak position of each Gaussian is
a free parameter. The peak position of the central Gaussian
yields the local g value.

An interesting feature of the resonances shown in Fig. 5 is
that we observe survival resonances not only when ae = g
but also for auy = g + j(A/2)/T?, where j € Z and A/2 is
the spatial periodicity of the standing wave. To understand
this, we consider the initial thermal atomic cloud as an
incoherent sum of plane waves. The spatial periodicity of
the standing wave in combination with the Bloch’s theorem
ensures the atomic state originating from a plane-wave |pg)

6.0 T r -
7=0.969 ms

Survival probability (%)

T=1.941 ms

9.0 9.4 9.8 10.2 10.6

ap (ms)

FIG. 5. The measured survival probability as a function of the
effective acceleration a., with the pulse period 7" = 0.969 ms (blue)
and 1.941 ms (red). The solid black lines are the fitting curves with
five Gaussian peaks.

to have the form of ), ¢, (t)|po + 2mhik), where py is the
initial momentum and c,(¢) denotes the time-dependent
amplitude of the mth diffraction order. Applying the free

evolution operator F, in Eq. (11) on this state for 7 = Tr/2
yields the final state with the form of ), c.[t = —
DT exp [—i(m*7 + (po + jhk)mm /hk)]| po + 2mhk),
where we omitted a global phase. From this we see that
the effect of the integer j is equivalent to a shift of the
initial momentum py with amount of jik. However, since
the survival probability is averaged over a broad initial
momentum distribution, there is no net effect from shifting it
and a survival resonance equivalent to j = 0 emerge for all
j €Z.

VI. RESONANCE’S DEPENDENCE
ON EXPERIMENTAL PARAMETERS

A leading motivation of this work is to understand the
behavior of survival resonances as a function of aei with
different experimental parameters. To this end, we performed
a series of experiments by studying the incisiveness and height
of the resonances as a function of several variables. Note that
we acquire the resonance peaks as a function of ag by using
the specific T values that allow for an observable survival
resonance. Figures 6, 7, and 8 show the width (and height

6 , : 3 0.08
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FIG. 6. Measured (red circles) and calculated (blue squares)
(a) peak height and (b) peak width (standard deviation o) as a
function of the laser detuning A, at T = 15Tr.
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FIG. 7. Measured (red circles) and calculated (blue squares) peak
width as a function of the pulse number N, with T = 157r.

in one case) as a function of different parameters, where the
width and height are obtained by fitting a Gaussian to the
measured (or calculated) data around the central peak shown
in Fig. 5.

A. Strength of interaction

When the strength of the interaction between the atoms
and the standing-wave light increases the resonant peak as
a function of ac lose height, but becomes narrower. This
effect can, for example, be seen in Fig. 6 for changing the
detuning. Similar data for varying the standing-wave light
intensity shows the same trends. Figure 6 shows that the height
[Fig. 6(a)] and width [Fig. 6(b)] grows as the detuning of the
standing-wave light is increased. When the detuning exceeds
14 MHz, the light scattering rate at the antinodes of the stand-
ing wave is insufficient to remove all atoms and the growth in
the peak height ceases. If the detuning is increased further the
system approaches a standard AODKR and the standing wave
is not dissipative. The atoms thereby survive regardless of
their position and the survival resonances vanish. In Fig. 6(a)
the trends of the experimental data and the calculation agree
but the experimental data shows a smaller peak height. This
is because we use relatively long pulse separations, and as we
saw in Fig. 4, the data display a decay of peak height that is
not captured by the calculation.

107
g
S}
< 107 s
]
2 &
"
g
= 3

107

1 2 4
Pulse period 7' (ms)

FIG. 8. Measured (red circles) and calculated (blue squares) peak
width as a function of pulse period 7 in a double-log scale. Error bars
denote the confidence interval for one standard deviation for the
Gaussian fitting. The blue (or red) curve is a scaling law to the
calculation (or measurement) with a fixed power of —2.

< 40

2

=

<

Jé 3.5¢

g

S

= 3.0

A 9.790 9.800 9.810 9.820

Aegr (M/S?)

FIG. 9. A survival resonance peak against a.s that is similar to
Fig. 5 but with 7=3.882 ms. The red line is a Gaussian fit for
extracting the g value.

B. Number of pulses

In Fig. 7, both the experiment and calculation show that
the peak width becomes narrower when the number of stand-
ing wave pulses (N) increase. This monotonic trend occurs
since a higher N causes a population of higher diffraction
orders that accumulate phase at higher rate during the free
evolution. Higher N therefore requires a.¢ to be close to g to
guarantee that different diffraction orders are in phase at the
application of the subsequent pulses. Furthermore, increasing
N also increases the total interrogation time. Increasing N
decreases the peak height (data not shown) since there is a
finite probability for light scattering even when close to a
standing-wave node.

C. Pulse period

Figure 8 displays the measured (red circles) and calculated
(blue squares) peak width when varying the pulse period T
from the 15th to the 60th Talbot time. The monotonic decrease
can be understood from Eq. (11). The second term, which is
responsible for the peak when a.g is scanned, contains the
product of g — acgr and T2, The width should therefore display
a scaling law as a function of 7' with the power of —2. The
solid lines in Fig. 8 are fits to the calculation (blue curve)
and measurement (red curve) with a 72 law. We see that
the fitted curves capture the data reasonably well. Classical
physics conceptually explains the 7~2 dependence since the
position of a free falling atom is proportional to the square of
the fall time.

VII. MEASUREMENT OF g AND DISCUSSION

While our present apparatus is not optimized for precision
measurements it is interesting to estimate if it is feasible to
reach a precision in the puGal regime which would make the
technique of interest for geoscience applications. So we carry
out a measurement of g and discuss how it can be improved.

A. Measurement of g

To measure g we first map out the survival resonance using
T = 3.882 ms (60" Tr). Figure 9 displays the measured data
and we fit it with a Gaussian function. We then employ a
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standard protocol for performing high-rate measurement by
taking data on the maximal slopes on each side of the
fringe [15]. About 1400 repetitions yields a g value of
980710(5) mGal (corrected for a present angle of 6 = 3.3
mrad between the standing wave and the direction of the
gravitational force).

B. Discussion

The atomic gravimeter presented in this paper shows an
uncertainty of Ag/g =5 x 1075, It is feasible to achieve a
higher precision by implementing the following alterations.
Using a 10-cm fountain geometry instead of a fall distance
about 1 mm will lead to a 300-fold reduction of the uncertainty
due to the narrowing of the peak with 7. By implementing
atomic shot-noise-limited detection and increasing the atom
number from the present ~10° to above 10° should give
further improvement of more than an order of magnitude. It
might therefore be possible to reach a precision in the uGal
regime.

Since we use near resonant light for the standing wave, the
presence of the atoms affects the wavelength of the standing-
wave light by changing the index of refraction [33]. This effect
is presently negligible compared to our uncertainty, but in
improved measurements it will need to be considered. Similar
to other kinds of atomic gravimeters, the effects of Coriolis
force, gravity gradients, wavefront distortions and so on, will
also impact the results and need to be corrected in a similar
manner as done in [15].

The easy implementation of the system also makes it at-
tractive for applications with less requirement to the precision.
For example, determine the first digits of g for standard high
precision atomic gravimeters [15-20], or measure the free fall
of antimatter [34].

VIII. SUMMARY

We study the survival resonances in an atom-optics system
that is driven by temporally and spatially periodic dissipa-

tion. The emergence of such resonances arises due to the
matter-wave Talbot-Lau effect. Modeling the internal states
of the atoms as a four-level system that includes the rel-
evant transitions on the D, line gives excellent agreement
between experiments and calculations, without any fitting
parameters, for short time intervals between pulses. For longer
time intervals we observe a reduction in the peak height
that is not captured by the model, while it still captures the
peak width well. Using a vertical standing wave we observe
survival resonances when sweeping the acceleration of the
standing-wave interference pattern. These resonances allow
us to determine the local gravitational acceleration, and we
characterize their dependence on the experimental parameters.
Our present results indicate that a properly designed system
can reach a precision in the pGal regime with integration
times less than 10 min.

The advantages of utilizing survival resonances for an
atomic gravimeter are the simplicity of the system. Unlike
driving Raman transition or Bragg transition, our standing-
wave light is near resonant, and can therefore be derived
simply from the same laser used for cooling the atoms. The
strong atom-light interaction of near-resonant light also fulfills
the low power requirement. Since the survival resonances are
facilitated by the matter-wave Talbot-Lau effect, they yield a
clear signal, effectively without an unwanted background, us-
ing a thermal atomic source. Finally, the simple internal state
detection and the ability to recycle the atoms from previous
runs will help to increase the repetition rate. Therefore, the
techniques discussed here may be of interest for a compact
absolute atomic gravimeter or applications with less stringent
requirement to the precision.
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