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Thermalization and localization of an oscillating Bose-Einstein condensate in a disordered trap

Che-Hsiu Hsueh,1 Russell Ong,1 Jing-Fu Tseng,1 Makoto Tsubota,2,3,* and Wen-Chin Wu1,†
1Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan

2Department of Physics, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
3The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka 558-8585, Japan

(Received 27 July 2018; published 10 December 2018)

We numerically simulate an oscillating Bose-Einstein condensate in a disordered trap [Phys. Rev. A 82,
033603 (2010)] and the results are in good agreement with the experiment. It shows that the disorder acts as
a medium, which results in a relaxation from nonequilibrium to equilibrium, i.e., thermalization. An algebraic
localization is realized when the system approaches the equilibrium, and if the system falls into the regime
when the healing length of the condensate exceeds the correlation length of the disorder, exponential Anderson
localization is to be observed.
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Anderson localization (AL) had been a long-studied phe-
nomenon in electronic systems [1]. When transporting in an
environment with random disorder, waves of electrons get
localized after multiple scattering with the disorder. Recently
there has been a resurgence of studies of AL in a variety
of systems such as photonic crystals [2,3], ultrasound in 3D
elastic networks [4], quantum chaotic systems [5], and cold
atoms [6,7]. The experiment [6] of cold atoms was done
by expanding Bose condensate in a weak random potential
in which the initial healing length (ξ ) of the condensate
exceeds the correlation length (σD) of the disorder, ξ > σD.
The experiment [6] confirmed that the localized condensate
exhibits an exponential density profile in a one-dimensional
geometry, in agreement with the theory of Sanchez-Palencia
et al. [8].

In this paper, we show that an oscillating condensate in a
disordered trap, such as the experiment done by Dries et al.
[9], can also exhibit AL when it comes to equilibrium and
if it falls into the regime ξ > σD. Using exactly the same
parameters of the experiment reported in Fig. 2 of Ref. [9]
for ξ < σD, we perform a numerical simulation based on the
Gross-Pitaveskii (GP) approach in the presence of a spatially
random disorder potential. The results are in good agreement
with the experiment. It allows us to verify that when it
passes an onset time tc (discussed later), the system enters
an algebraical localized state [8]. This motivates us to carry
out another simulation with the same parameters except by
reducing σD to make ξ > σD. In this case, exponential AL is
eventually observed.

Another important factor in such a system is that it pro-
vides a simple framework to investigate the long-standing
question on how an “isolated” many-body quantum system,
without coupling to the reservoir, can relax to a steady
state that seems to be in thermodynamic equilibrium, i.e.,
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thermalization [10–12]. The temporal entropy reveals that a
relaxation process from nonequilibrium to equilibrium does
exist. Random disorder plays the role of a medium (or tran-
sistor) which results in the exchange of partial kinetic en-
ergy with partial potential energy. Both kinetic and potential
energies come to a constant when the system reaches the
thermodynamic equilibrium. There is no dissipation of the
total energy through any kind of friction. The results also
suggest that the system thermalizes first, and when thermal-
ization has occurred, localization establishes itself in a second
stage.

To make a direct comparison with the experiment reported
in Fig. 2 of Ref. [9], we consider a one-dimensional (1D)
Bose gas with a repulsive contact interaction that is trapped
in a harmonic potential Vho(z) = mω2z2/2. In the dilute and
ultracold condition, the condensate wave function ψ (z, t ) is
governed by the GP equation in the presence of a real spatially
random disordered potential Vdis(z),

ih̄∂tψ =
[
− h̄2

2m
∂2
z + Vho(z) + Vdis(z) + Ng|ψ |2 − μ

]
ψ.

(1)

Here N is the total number of atoms, g is the coupling
constant of contact interaction, μ is the chemical potential,
and ψ is normalized to 1,

∫ |ψ |2dz = 1. The initial healing
length at the center of the condensate is defined as ξ =
h̄/

√
2mμ. The disorder correlation length σD is defined by

fitting the autocorrelation function 〈Vdis(z)Vdis(z + �z)〉 =
V 2

D exp(−2�z2/σ 2
D) with VD the strength of Vdis(z) [13].

In the experiment, the condensate is released at a po-
sition off the center of the harmonic trap that results in
the subsequent oscillations. For numerical convenience, we
take an alternative scheme such that the condensate is re-
leased at the trap center but with an initial velocity v0.
To obtain an initial wave function with a velocity v0,
we apply the Galilean transformation ψ = ϕ exp(imv0z)
and the corresponding GP equation for the residual wave

2469-9926/2018/98(6)/063613(5) 063613-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.063613&domain=pdf&date_stamp=2018-12-10
https://doi.org/10.1103/PhysRevA.82.033603
https://doi.org/10.1103/PhysRevA.82.033603
https://doi.org/10.1103/PhysRevA.82.033603
https://doi.org/10.1103/PhysRevA.82.033603
https://doi.org/10.1103/PhysRevA.98.063613


HSUEH, ONG, TSENG, TSUBOTA, AND WU PHYSICAL REVIEW A 98, 063613 (2018)

FIG. 1. (a) Spatial and temporal distribution of an oscillating condensate. The calculated norm of the spatial condensate wave function
is potted in z direction at various times. Black dots are the experimentally measured temporal center-of-mass coordinates, taken from Fig. 2
of Ref. [9]. (b),(c) Close examinations of the results for t < tc ∼ 4 s and for t > tc. (d) Blue line corresponds to the temporal center-of-mass
positions calculated from the numerical results in (c).

function ϕ is

ih̄∂tϕ =
[

1

2m

(
h̄

i
∂z − mv0

)2

+ Vho(z) + Vdis(z)

+ Ng|ϕ|2 − μ

]
ϕ. (2)

Long-term imaginary-time evolution of Eq. (2) gives ϕ which
in turn gives the initial wave function ψ . A cutoff wave
vector kc corresponding to the shortest length scale or the
largest k scale in association with the healing length ξ is
naturally introduced in the simulation which gives the best
results. In natural units h̄ = m = ω = 1, experimental pa-
rameters are μ = 200, ξ = 0.05, v0 = 37.5, VD = 50.9, and
σD = 0.25 [9].

Figure 1(a) shows the spatial and temporal results of the
oscillating condensate simulation. We plot, at various times,
the calculated norm of the spatial condensate wave function in
the z direction. For comparison, black dots correspond to ex-
perimentally measured temporal center-of-mass coordinates
(reported in Fig. 2 of Ref. [9]). Surprisingly it gives a very
good agreement between the simulation and the experiment.
Close examinations of the results are shown in Fig. 1(b) for
t < tc ∼ 4 s and in Fig. 1(c) for t > tc. In view of Fig. 1(b),
the calculated temporal density maxima match well with the
experimental data points. One also sees that a minor (long-
tail) part of atoms oscillate out of phase to the major (central)
part of atoms, which is consistent with the experimental
observation (see, for example, Fig. 5 in Ref. [9]).

In the experiment [9], the system was considered to be
separated into a thermal (noncondensed) component and a
condensed component which can be measured by different
probes. The condensed component can be referred to as the
coherent condensate, while the thermal or noncondensed com-
ponent can be referred to as the incoherent noncondensate.
However, in our simulations based on the GPE framework,
no important incoherent component is generated. The result is
consistent with the conclusion made in the paper of Clément
et al. [14]. Therefore, we reproduce the experimental obser-
vations using a fully coherent theory. The central part of the
condensate is weakly affected by the disorder, while the tails
are subjected to multiple scattering and localization.

Figure 1(c) shows the regime when the system is approach-
ing the equilibrium and the vast localization has occurred
(t > tc). At first glance, the calculated oscillations shown in
Fig. 1(c) seem to be much stronger than the experimental
data. To verify whether a good agreement is achieved be-
tween experiment and simulation, Fig. 1(d) plots the temporal
center-of-mass positions calculated from the numerical results
in Fig. 1(c). As seen, reasonably good agreement between
experiment and simulation is also attained in this regime. In
this regime, the system is seen to consist of both localized
and extended parts—the localized part mainly exists in the
long-tail area and the extended part mainly exists in the central
area [15]. One sees that the oscillations of the central extended
parts are significantly reduced compared to those at t < tc.
It signals that the system is approaching the equilibrium. In
contrast, the long-tail part is seen to be completely static as
the clear evidence of localization.
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FIG. 2. Time evolution of the four energies (in units of h̄ω)
in association with the dynamics shown in Fig. 1. Total energy is
conserved for the entire process. The equilibrium temperature Teq

can be extracted from Ekin(t → ∞) ≡ kBTeq/2 	 364h̄ω that yields
Teq 	 192 nK.

The good agreement between the simulation and the
experiment allows us to study in more detail the two important
phenomena, thermalization and localization. The total energy
of the system consists of four terms: Etot (t ) = Ekin(t ) +
Epot (t ) + Edis(t ) + Eint (t ), where the kinetic energy
Ekin(t ) = ∫ |h̄∂zψ |2/(2m)dz, the potential energy Epot (t ) =∫

Vho|ψ |2dz, the disorder energy Edis(t ) = ∫
Vdis|ψ |2dz, and

the interaction energy Eint (t ) = (Ng/2)
∫ |ψ |4dz. Figure 2

shows the time evolution of the four energies, respectively.
As random disorder potential is rapidly varying in space,
Edis 	 0 (purple line) for the entire process. Moreover,
because both the trapping and disorder potentials are real
and time independent, one expects that there is no energy
loss. Conservation of total energy is indeed confirmed in
Fig. 2 (black line). Of most interest, during the process partial
kinetic energy is in exchange with partial potential energy and
when t 
 tc, both energies are expected to come to a constant.
It seems that the dissipation discussed in Refs. [9,16,17] can
be realized as the result of the exchange between kinetic and
potential energies.

In the current oscillating system with a large initial veloc-
ity, Eint is relatively small compared to both Ekin and Epot.
Thus the energy exchange occurs mainly between Ekin and
Epot. Moreover, as clearly seen in Fig. 2, the energy exchange
rate or the transportation of the condensate is significantly
reduced when t > tc. One can also verify whether the virial
theorem is satisfied when the system approaches equilibrium.
For the current system described by the GP equation (1), the
condition

2Ekin − 2Epot + dEint 	 0 (3)

with d the dimension should be satisfied at equilibrium [18].
From Fig. 2, the condition Epot 	 Ekin + Eint/2 is indeed
satisfied with d = 1. One can extract the equilibrium tempera-
ture Teq from the equilibrium kinetic energy, Ekin(t → ∞) ≡
kBTeq/2 	 364h̄ω with Teq 	 192 nK.

Owing to the random nature of the wave function, it is
particularly useful to study the corresponding wave-action
spectrum nk (t ) in the context of wave turbulence [19]. When

FIG. 3. Temporal entropy of the oscillating condensate calcu-
lated from the simulation in Fig. 1. The inset shows the Rayleigh-
Jeans spectrum for the wave action at t = 7.3 s 
 tc. The fitting
temperature T 	 192 nK agrees with the equilibrium temperature
Teq extracted from the equilibrium kinetic energy shown in Fig. 2.

expressing the condensate wave function ψ (z, t ) in terms of
Madelung transformation, ψ (z, t ) = √

ρ(z, t ) exp [iϕ(z, t )]
with ρ and ϕ the density and phase, the hydrodynamic kinetic-
energy density is K = (m/2)|(√ρu)|2 with u ≡ (h̄/m)∂zϕ

the velocity. To study the scaling laws, one applies the sum
rule K(t ) = ∫ kc

0 K̃(k, t )dk, where K̃(k, t ) is the kinetic-energy
spectrum and kc is the cutoff wave vector mentioned earlier.
The corresponding wave action spectrum is then given by
nk (t ) = k−2K̃(k, t ) and one can define the entropy S(t ) in
association with nk [20–23],

S(t ) =
∫

dk ln[nk (t )]. (4)

Results of S(t ) are shown in Fig. 3. One sees that when
t � 4 s, the Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence
effect, that has positive correlation with the oscillation, be-
comes negligibly small. It confirms the onset time of local-
ization, tc ∼ 4 s. Nevertheless, the entropy saturates at t ∼
2 s (see Fig. 3) which is earlier than tc. It suggests that
the system thermalizes first, and when thermalization has
occurred, localization establishes itself in a second stage. In
the inset of Fig. 3, we show nk at t = 7.3 s 
 tc. It follows the
Rayleigh-Jeans spectrum, nk 	 T/k2, which indicates that the
energy spectrum K̃ is a constant, or equipartition in k space.
In other words, the system corresponds to a nondissipative one
with a detailed balance. The fitting temperature T 	 192 nK
agrees with the equilibrium temperature Teq extracted from
the equilibrium kinetic energy shown in Fig. 2.

Here we further discuss the onset time of localization, tc.
As studied by Bhongale et al. [16], by comparing the conden-
sate center-of-mass speed v to the sound speed c ≡ √

μ/m,
the entire oscillation process can be divided into fast or su-
personic (v > c) and slow or subsonic (v < c) regions. When
v � c, the relatively slow motion of the (central) extended
part does not affect much the distribution of the (long-tail)
localized part. As a matter of fact, the onset time tc can also
be interpreted as the time when the center-of-mass speed is
equal to the sound speed (v = c). It was identified from the
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FIG. 4. (a) In a semilog plot, for the case ξ < σD the eventual
density distribution at t = 7.3 s is shown to exhibit an algebraic
profile at 20 < |z| < 70. (b) A similar study for the case ξ > σD ,
where an AL exponential profile is obtained for the eventual density
distribution at t = 3.7 s. The fitting Lyapunov exponent is γeff =
0.025. (c),(d) The goodness of fit in (a),(b) is further confirmed by
the log-log plots.

experiment [9] that tc 	 4 s when v = c. This is consistent
with the results shown in the temporal density profiles in
Fig. 5.

In the current system of an oscillating Bose condensate in
a disordered trap, the suppression of oscillations is interpreted
as the onset of thermalization. In a Fermi gas in a disordered
trap, Pezzé et al. [15,24] showed that in the weak disorder
limit, the relaxation of center-of-mass oscillations is due to
a dephasing between eigenmodes. It is interesting to see if
the dephasing between eigenmodes can also be realized in the
present Bose system. This will be considered as a future work.

Finally we investigate in detail whether a localization can
be seen in the oscillation experiment. In a semilog plot,
Fig. 4(a) shows the eventual spatial density distributions at
t = 7.3 s. To smoothen the spikes arising from randomness,
the results are taken as the average over a period. As shown
in Fig. 4(a), it is verified that for the current ξ < σD case
the condensate is algebraically localized, in accordance with
the previous theory [8]. As mentioned earlier, in the presence
of random disorder, the condensate is actually separated into
both localized and extended parts. In a free expansion exper-
iment, the extended part will escape whereas the localized
part will remain [6]. When a trapping potential is in place,
the moving extended part is eventually stopped at the center
of the trap, whereas the localized part comprises the long
tails of the condensate. Figure 4(a) shows a well-fitting curve
|ψ (z)|2 ∼ |z|−2 at the range 20 < |z| < 70. The lower bound
is determined by the initial size of the condensate, i.e., the
Thomas-Fermi radius RTF = √

2μ = 20, and the off-fitting
data out of the range |z| > 70 is due to the trapping effect.
To test the goodness of fit in Fig. 4(a), an alternative log-log
plot is given in Fig. 4(c).

According to Sanchez-Palencia et al. [8], the existence
of an algebraic localization requires two conditions. First,
the condensate should be in the Thomas-Fermi regime. Sec-
ond, the disorder spectrum should have finite support to the

FIG. 5. Density profiles at different times obtained from the
calculated results in Fig. 1. It clearly distinguishes between (a) the
extended states (at t < tc) and (b) the localized states (at t > tc).

condensate. Our initial wave function describes a coherent
condensate with a large center-of-mass velocity v0 = 37.5,
or a large center-of-mass kinetic energy Ec = v2

0/2 = 703.
When viewed from the center-of-mass coordinates, the cor-
responding initial kinetic energy is then E′

kin = Ekin − Ec 	
705 − 703 = 2, which is much smaller than the initial in-
teraction energy Eint 	 80 (see Fig. 2). Thus our system is
right in the Thomas-Fermi regime. Second, we consider the
random disorder with a Gaussian-shaped disorder correlation
function, thus it may not have a strict finite support to the
condensate for the algebraic localization to occur. However,
the parameter ξ = 0.05, which is five times smaller than σD =
0.25, so the condition of finite support is valid to a very good
approximation.

As the distinction between the extended states and local-
ized states is not convincingly shown in Fig. 1, in Fig. 5 we
plot density profiles at ten different times from the calculated
results in Fig. 1. Similar to Fig. 4, the results are taken as the
average over a period. Figure 5 clearly shows the distinction
between the extended ones (at t < tc) and the localized ones
(at t > tc).

Can the AL be seen in a similar oscillation experiment?
Here we perform another simulation for the same param-
eters except by reducing σD to 0.01 to make the regime
ξ > σD. In this case, the onset time of localization is found
to be tc 	 2 s. As shown in Fig. 4(b), the results of the
eventual density distributions at t = 3.7 s are well fitted
by an exponential one, |ψ (z)|2 ∼ exp (−2γeff|z|) with γeff

the Lyapunov exponent [8]. Again the goodness of fit in
Fig. 4(b) is further supported by the log-log plot in Fig. 4(d).
The fitting γeff is also in good agreement with the analytic
one, γeff = (π/32ξ )(VD/μ)2(σD/ξ ) exp[−(σD/ξ )2] ≈ 0.025.
Compared to the case ξ < σD, a higher percentage of atoms
can be localized in the case ξ > σD as one sees that the fitting
is as good as in the range 0 < |z| < 70. The off-fitting data
out of the range is again due to the trapping effect.

In summary, we propose that Anderson localization can
be observed in an oscillating condensate in a disordered trap
when the system comes to an equilibrium and when the heal-
ing length of the condensate exceeds the disorder correlation
length. In addition, we show that in such an “isolated” system,
the disorder plays the role as a medium and through it, the
system undergoes a relaxation process from nonequilibrium
to equilibrium. The occurrence of localization can thus be
viewed as the development of thermalization in the system.
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