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Center-line intensity of a supersonic helium beam
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Supersonic helium beams are used in a wide range of applications, for example, surface scattering experiments
and, most recently, microscopy. The high ionization potential of neutral helium atoms makes it difficult to build
efficient detectors. Therefore, it is important to develop beam sources with a high center-line intensity. Several
approaches for predicting the center-line intensity exist, with the so-called quitting surface model incorporating
the largest amount of physical dependences in a single analytical equation. However, until now only a limited
amount of experimental data has been available. Here we present a comprehensive study where we compare
the quitting surface model with an extensive set of experimental data. In the quitting surface model the source
is described as a spherical surface from where the particles leave in a molecular flow determined by Maxwell-
Boltzmann statistics. We use numerical solutions of the Boltzmann equation to determine the properties of the
expansion. The center-line intensity is then calculated using an analytical integral. This integral can be reduced
to two cases, one which assumes a continuously expanding beam until the skimmer aperture and another which
assumes a quitting surface placed before the aperture. We compare the two cases to experimental data with a
nozzle diameter of 10 μm, skimmer diameters ranging from 4 to 390 μm, a source pressure range from 2 to 190
bars, and nozzle-skimmer distances between 17.3 and 5.3 mm. To further support the two analytical approaches,
we also perform equivalent ray-tracing simulations. We conclude that the quitting surface model predicts the
center-line intensity of helium beams well for skimmers with a diameter larger than 120 μm when using a
continuously expanding beam until the skimmer aperture. For the case of smaller skimmers the trend is correct,
but the absolute agreement is not as good. We propose several explanations for this and test the ones that can be
implemented analytically.
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I. INTRODUCTION

The supersonic expansion of a gas into vacuum can be used
to obtain a molecular beam with high center-line intensities
with narrow speed distributions [1–6]. Such beams are used in
different applications, for example, surface scattering experi-
ments and atom beam microscopy [7–10]. Noble gas atoms
are very hard to detect due to their high ionization potential
[2]. Therefore, precise prediction of the beam center-line
intensity plays an important role in designing instruments and
experiments with a sufficient signal-to-noise ratio.

In a standard supersonic expansion source used in scat-
tering experiments, a pressurized gas expands from a small
aperture called a nozzle into a vacuum. The expansion is then
collimated using an aperture placed at the end of a conical
structure that points towards the nozzle, forming a beam.
This conical structure is commonly known as a skimmer
(see Fig. 1). The problem of precisely determining particle
intensities after the skimmer attains different levels of com-
plexity depending on the modified Knudsen number Kn∗ at
the skimmer position, which determines the flow regime close
to the skimmer [11]. The modified Knudsen number was
introduced by Bird [11] to describe the changes in the flow
due to backscattering of atoms from the skimmer

Kn∗ = Kn
(

2
5S2

‖
)−2/(ηp−1)

, (1)

where S‖ is the parallel speed ratio, a measure of the velocity
spread of the beam defined in Sec. II B; ηp is the term leading
the inverse power law of the repulsive collision model, where
for a hard-sphere gas ηp → ∞ and for the Lennard-Jones
potential ηp = 13 [12]; and Kn is the Knudsen number

Kn = λ0

rS
= 1

rSσ
√

2n
, (2)

where λ0 is the mean free path of the gas particles, rS is
the radius of the skimmer, n is the number density at the
skimmer, and σ is the temperature-dependent collision cross
section of the gas atoms. In this case, σ can be calculated
either according to the stagnation temperature or according
to the maximum between the stagnation temperature and
the skimmer temperature. For the case of a cold source the
collision velocity will be dominated by the warmer skimmer.
The need for the modified Knudsen number is justified by the
change in the mean free path due to backscattering of atoms
from the skimmer. In Eq. (2) λ0 is the mean free path for
particles unaffected by the skimmer presence.

The Knudsen number is used to estimate the validity of
different flow regimes. Navier-Stokes flow can be assumed
for Kn < 0.2 and free molecular flow for Kn > 1 [11]. As
the gas moves away from the nozzle, the mean free path of
the particles increases and therefore the nature of the flow
dynamics of the problem changes [11]. As explained before,
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FIG. 1. Illustration of all variables used in the ellipsoidal quitting
surface model. Here P is a point on the quitting surface from which
a particle leaves in a straight trajectory until P ′, a point placed on the
detector plane. The point on the quitting surface is given by the set
of Cartesian coordinates (x, y, z), which can be related to the polar
coordinates r , α, and ρ for integration. Here xS is the distance from
the nozzle to the skimmer and xD is the distance from the nozzle to
the detector. Therefore, a = xD − xS. The angles β and θ can also be
expressed in terms of r , α, and ρ.

we use here the modified Knudsen number, but the discussion
of different flow regimes remains the same. The Knudsen
number can only be assumed to be smaller than 0.2 in the
space very close to the expansion origin (the nozzle) and
hence the Navier-Stokes equations cannot be generally used
to model the flow of the beam close to, and after, the skimmer.
Here direct simulation Monte Carlo (DSMC) methods, or
direct numerical integration of the differential equation (under
simplifying assumptions of the physics of the system), can be
used to solve the Boltzmann equation [12,13].

At Kn∗ � 1, the center-line intensity of the beam is known
to be strongly affected by interaction between the beam and
particles reflected from the skimmer [11]. Considering the
reflection of particles from the skimmer wall makes solving
the Boltzmann equation difficult, as DSMC methods are often
computationally heavy. Some work has been done regarding
the effect of skimmer geometries [11,14–16]. However, much
of this work lacks extensive validation due to the lack of
experimental data. This, together with the complexity of some
of the proposed approaches, has caused some authors to avoid
skimmer attenuation by designing experiments where it is not
present.

Another relevant contribution to the beam center-line in-
tensity is the exponential decrease of intensity due to free
molecular scattering of the beam’s atoms with a background
gas in the vacuum chambers [14,16]. The importance of this
contribution will depend on the quality of the pumping system
in the experimental setup and the flux from the nozzle into the
expansion chamber.

Intensity calculations disregarding both the interaction be-
tween the beam and particles reflected from the skimmer, and
collisions with background gas were presented in a range of
analytical models based on a Maxwellian velocity distribution
of the supersonic expansion [17–20]. These models coexist
with simpler treatments, disregarding the Maxwellian nature
of the beam’s velocity distribution (usually compensated by
including a peak factor), for example [5,13,14,21]. Others use
the Beijerinck-Verster model that incorporates cluster forma-

tion and uses the concept of a virtual source [8,18,22]. Ana-
lytical models have the advantage of requiring only relatively
simple numerical solutions of the Boltzmann equation and of
directly showing the dependences with the different variables
in the system. Among the most prolific analytical models are
various adaptations of the quitting surface model [20].

In the quitting surface model, the spherical quitting surface
is assumed to be located at the distance from the nozzle
at which the atoms reach molecular flow [20]. The atoms
then leave the quitting surface following straight trajectories
determined by Maxwell-Boltzmann statistics. The ellipsoidal
Maxwellian velocity distribution over the surface is given
by three parameters: the most probable velocity v̄ along the
parallel direction (corresponding to the radial direction from
the center of propagation) and the parallel and perpendicular
temperatures T‖ and T⊥, respectively. These two temperatures
are associated with the velocity spread of the beam in spher-
ical coordinates [23] and in some models are reduced to a
simpler description with only a radial temperature T‖ [20].

There are two popular ways to estimate the position of
the quitting surface: (i) calculating the terminal Mach number
using the continuum assumption and taking the position of
the quitting surface to be the distance from the nozzle where
the terminal Mach number is close to being reached (see, for
example, [21,24]) or (ii) directly computing the expansion’s
temperatures and observing the point where these tempera-
tures decouple. Decoupling is defined as the point where the
perpendicular temperature is much smaller than the parallel
temperature. Decoupling is typically assumed at a distance
where the temperatures of the expansion fulfill T⊥/T‖ � 0.01,
thus determining the position of the quitting surface. Alterna-
tive cutoff values have also been proposed [13], providing a
certain degree of freedom to the choice of the quitting surface
position. Typically, such temperatures are calculated through
a numerical solution of the Boltzmann equation. Previous
studies already used such an approach to predict the velocity
distribution and intensity in the beam expansion [13,25–27].
Given that (ii) is more general than (i), we use (ii) in this paper.

The quitting surface position can be placed before the
skimmer, at the skimmer, or after the skimmer. If the quit-
ting surface is taken to be before the skimmer, the parallel
temperature T‖ dominates. This means that the condition
T⊥/T‖ � 0.01 is reached close to the expansion source and
that the perpendicular temperature of the beam quickly ap-
proaches 0. If the quitting surface is calculated to be at or
after the skimmer it means that T⊥ tends to 0 slowly. In
this case, the perpendicular temperature T⊥ is mostly used in
the calculations and the expansion is assumed to stop at the
skimmer, even in the case that its calculation gives a position
farther away than the skimmer [20]. Regardless of where
the expansion is assumed to stop, the center-line intensity is
then calculated by integrating over the section of the quitting
surface seen by the detector through the skimmer.

In this paper we present a data set of center-line intensity
measurements for a helium atom beam, using several dif-
ferent skimmer apertures and designs, source temperatures,
and skimmer to nozzle distances. We benchmark these inten-
sity measurements with the quitting surface model and dis-
cuss its shortcomings. Additionally, we present a ray-tracing
simulation of the quitting surface model. This is done using
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a modification of the ray-tracing software known as McStas,
described in detail in [28]. This paper contains a large number
of variables, many of which are used in several formulas. All
formulas are introduced with definitions as they appear in the
text.

II. THEORETICAL FOUNDATION

A. Supersonic expansion

The expansion of gas through a small nozzle undergoes
two different physical regimes: an initial continuum flow,
governed by the Navier-Stokes equations, followed by a
molecular flow regime. In a sonic nozzle (a Laval tube cutoff
in the sonic plane), the total flux per unit time (from now on,
center-line intensity) stemming from the nozzle is typically
calculated using the isentropic nozzle model [18]. The sonic
plane corresponds to the plane where the Mach number Ma =
v/c = 1, where v is the average velocity of the gas and c the
local speed of sound [29]. The equation for the total intensity
stemming from a nozzle then reads [18]

I0 = P0

kBT0

√
2kBT0

m

(π

4
d2

N

)√
γ

γ + 1

(
2

γ + 1

)1/(γ−1)

, (3)

where γ is the ratio of heat capacities (5/3 for helium) and dN

is the diameter of the nozzle. In theory, this diameter must be
corrected with the size of the boundary layer at the nozzle
throat. However, this correction can typically be neglected.
In addition, kB is the Boltzmann constant, T0 and P0 are the
flow stagnation temperature and pressure inside the nozzle,
respectively, and m is the mass of a gas particle. In the second
flow regime, the expansion of the gas is calculated using the
Boltzmann equation, assuming the nozzle is a point source,
and using the collision integral �(Teff ) (corresponding to the
right-hand side of the Boltzmann equation, which gives the
rate of change of molecules in a phase-space element caused
by particles that have suffered a collision) [13,25],

�(Teff ) =
(

kBTeff

πm

)1/2 ∫ ∞

0
Q(2)(E)ζ 5exp(−ζ 2)dζ, (4)

ζ =
√

E

kBTeff
, (5)

where Teff is an effective average temperature intermediate to
the values of the parallel and perpendicular temperatures, Q(2)

is the viscosity cross section, and E is the collision energy
of two atoms in the center-of-mass system. For collisions
between particles following Bose-Einstein statistics, the vis-
cosity cross section can be written as [13,30]

Q(2)(E) = 8πh̄2

mE

∑
l=0,2,4,...

(l + 1)(l + 2)

2l + 3
sin2(ηl+2 − ηl ),

(6)

where ηl are the phase shifts for orbital angular momentum
l, obtained solving the scattering of He atoms in the chosen
two-body potential.

An ellipsoidal Maxwellian velocity distribution is assumed
along the whole expansion [13]. The velocity distribution
of the atoms in the expansion fell is defined in spherical

coordinates by the two independent temperatures T‖ and T⊥
and their two corresponding velocities v‖ and v⊥ as described
in the Introduction,

fell(	v) = n

(
m

2πkBT||

)1/2(
m

2πkBT⊥

)

× exp

(
− m

2kBT||
(v‖ − v̄)2 − m

2kBT⊥
v2

⊥

)
. (7)

The numerical solution of the Boltzmann equation has been
implemented for the Lennard-Jones (LJ) potential [31], de-
fined as

VLJ(rLJ) = 4ε

[(
rm

rLJ

)12

−
(

rm

rLJ

)6
]
, (8)

where rLJ is the distance between any two interacting particles
and rm is the distance at which the potential reaches its
minimum, for the case of He corresponding to rm = 2.974 Å
and ε = 2.974 meV [32].

A detailed description of the potential and its implemen-
tation in the Boltzmann equation can be found in [13]. The
simple LJ potential can be replaced by more sophisticated
potentials, such as the Tang-Toennies-Yu or Hurly-Moldover
potentials [33,34]. However, results of previous calculations
showed that this is only necessary for source temperatures
below 80 K [13,26,35]. In the present study, the source tem-
perature is higher than 80 K and the LJ potential is adequate.
The numerical solution of the Boltzmann equation in the
spherical approximation presented here provides the evolution
of the gas velocity and the temperatures T‖ and T⊥ with
respect to the distance from the nozzle.

B. Quitting surface model

As mentioned in the Introduction, the quitting surface
model assumes that the particles leave in molecular flow from
a spherical surface of radius RF centered at the sonic point.
The center-line intensity of the beam is calculated by integrat-
ing over all the particles leaving from the quitting surface and
arriving at the detector. Sikora separated the quitting surface
model into two approaches: one corresponding to what he
called the quitting surface model and one which he called the
ellipsoidal distribution model. The first approach assumes a
quitting surface placed before the skimmer and a Maxwellian
velocity distribution featuring only the radial component of
the velocity: v‖. The second approach, the ellipsoidal dis-
tribution model, assumes an ellipsoidal Maxwellian velocity
distribution featuring both v‖ and v⊥, together with a quitting
surface placed exactly at the skimmer. For the rest of the paper
we will refer to the two approaches as Sikora’s quitting surface
approach and Sikora’s ellipsoidal distribution approach.

Sikora’s ellipsoidal distribution approach was later adapted
by Bossel to be used for expansions stopping before the
skimmer. In other words, Sikora’s quitting surface approach
(assuming a quitting surface placed before the skimmer) was
adapted to incorporate ellipsoidal distributions [19]. To avoid
confusion, it is enough to consider the position of the quitting
surface itself: In the case of Sikora’s ellipsoidal distribution
approach, the expansion is considered to stop at the skimmer.
In the case of Bossel’s approach, the expansion can be chosen

063611-3



PALAU, EDER, ANDERSEN, RAVN, BRACCO, AND HOLST PHYSICAL REVIEW A 98, 063611 (2018)

to stop at the skimmer or before it. In this paper we present an
attempt to treat expansions stopping after the skimmer using
the quitting surface model (see Appendix A).

Bossel’s approach is the most general approach described
so far, as under the right assumptions it reduces to both ap-
proaches proposed by Sikora. Bossel’s approach corresponds
to integrating Eq. (7) over the quitting surface area seen by the
detector through the skimmer

ID = τI0

2πa2R2
FL

∫ rD

0

∫ rS

0

∫ π

0
g(δ)rρ cos3(β )ε3

× e−S2(1−ε2 cos2 θ )D(b)dρ dr dα, (9)

where rD is the radius of the detector opening; rS is the radius
of the skimmer (see Fig. 1); a is the distance between the
skimmer and the detector; r , β, θ , δ, α, and ρ are geometrical
parameters defined in Fig. 1; τ = T‖

T⊥
is the fraction between

parallel and perpendicular temperatures, which is used to
simplify the integral through ε = (τ sin2 θ + cos2 θ )−1/2; g(δ)
is the angular dependence of the supersonic expansion density
at the quitting surface; L = ∫ π/2

0 g(δ) sin(δ)dδ corresponds to

its integral along the quitting surface; and S =
√

mv̄2

2kT‖
is the

parallel speed ratio at the quitting surface.
Unfortunately, Bossel’s approach has no simple analytical

solutions and is often slow to compute over a wide variable
space. For Si > 5 Sikora showed that both his ellipsoidal
distribution approach and quitting surface approach can be
approximated as [20]

I = I1

∫ 2π

0

d�

2π

[
e−S2

i sin2 θ1
]θ1min(�)

θ1max(�)
, (10)

where � is the angle of rotation about the beam axis, θ1 is the
angle between the vector normal to the quitting surface and the
vector connecting a given point on the quitting surface with a
point in the detector plane, and θ1min(�) and θ1max(�) are the
minimum and maximum angles that fulfill the condition that
the line connecting a point in the quitting surface and a point
in the detector plane must cross the skimmer aperture. In the
case of Sikora’s quitting surface approach, θ1 is defined from

a spherical surface of radius RF and Si = S‖ =
√

mv̄2

2kT‖∞
is the

parallel speed ratio at the end of the expansion. In the case of
Sikora’s ellipsoidal distribution approach, θ1 is defined from
the skimmer aperture (the radius of the quitting surface is then
the distance between the nozzle and the skimmer xS, RF = xS)

and Si = S⊥ =
√

mv̄2

2kT⊥
is the perpendicular speed ratio at the

skimmer (see Fig. 1 for a sketch featuring these geometrical
terms).

Here I1 is defined as the intensity arriving at the detector,
assuming that there is no skimmer. This can be obtained in
two ways:

I1 =
{

I0πr2
DηD

1
(xS+a)2 using Eq. (3) for I0

ηDπr2
Dnv∞

(
xS

xS+a

)2
using density at the skimmer.

Here ηD is the efficiency of the detector in counts per particle.
Sometimes, one might be interested in obtaining the intensity
per area. In order to do so, it suffices to divide I1 by πr2

D.

From Eq. (10) it can be shown that for rS 
 xS, rS 
 a,
a
rS

� Si , and rD 
 a, the intensity arriving at the detector
reads [20]

IS = I1

{
1 − exp

[
−S2

i

(
rS(RF + a)

RF(RF − xS + a)

)2
]}

, (11)

where xS is the distance between the nozzle and the skim-
mer. This equation, with the assumption of Si = S‖ and the
expansion stopping before the skimmer, is usually preferred to
using the perpendicular speed ratio, as measuring the parallel
speed ratio of atoms is a well-established technique [36]. The
simplicity of the model has motivated its usage, for example,
to optimize the intensity of helium microscopes [10,37].

C. Scattering contributions

The atoms leaving the quitting surface do not travel in a
perfect vacuum. Rather, they interact with the background gas
and the particles scattered from the chamber and skimmer
walls. Such interactions can become significant at high nozzle
pressures. There have been various approaches for accounting
for this, from DSMC simulations to simpler numerical models
based on assumptions on the scattering properties of the
skimmer walls [14,38]. Analytical models for the skimmer
contributions are so far nonexistent due to the difficulty
of solving the Boltzmann equation analytically in a typical
nozzle-skimmer geometry. The method that has provided a
better understanding is the DSMC method (see, for example,
[11]). This method is not employed in this paper due to its
complexity, but it can be assumed to be the preferable method
when precise localized predictions are desired.

Here we choose to only model the interaction with the
background gas via free molecular scattering, as it can be
modeled by a simple exponential law [14,16]

I

IS
= exp

( − σ 2nBExS − σ 2nBCa
)
. (12)

Here σ = rm
21/2 is the scattering cross section of the atoms in the

Lennard-Jones potential and nBE and nBC are the background
number densities in the expansion chamber and the subse-
quent chambers, respectively, measured by a pressure gauge
placed far away from the beam center-line.

D. Overall trends

In this section we qualitatively describe important trends in
the expected behavior of the center-line intensities according
to the theory presented above.

(i) For skimmers large enough, the exponential term in
the equation for center-line intensity becomes negligible
[Eq. (11)]. Thus, increasing the radius of the skimmer further
will not lead to an increase in the center-line intensity.

(ii) Larger skimmers display a decrease in center-line in-
tensity at high pressure. This is due to the fact that a larger
skimmer gives a smaller modified Knudsen number [Eq. (1)]
for a given pressure. It is known that for smaller modified
Knudsen numbers in the so-called transition regime, wide-
angled shock waves can form, which compromise the flow
of the beam [11]. Note that the shock wave behavior is not
modeled by the theory presented above.
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(iii) The closer the skimmer is to the quitting surface
(RF − xS → 0), the higher the center-line intensity will be,
as the denominator in the exponential in Eq. (11) reaches its
minimum. This effect is due to the fact that a larger portion
of the quitting surface is captured and this gives a larger
center-line intensity.

(iv) Colder sources produce more intense beams because
the gas passing through the nozzle has a higher density, which
ends up influencing the center-line intensity equation [see
Eq. (3)].

(v) Numerical solutions of the Boltzmann equation as
described in Sec. II A predict an intensity dip at low source
pressures for small skimmers. This dip cannot be extracted
from the equations in a simple manner and will be discussed
further in the following.

E. Ray-tracing simulation

As an independent test of Eqs. (9) and (10), a ray-tracing
simulation of the quitting surface expansion was imple-
mented. The simulation was performed using a modification
of the ray-trace software package known as McStas described
in [28,39,40].

In order to replicate the dynamics assumed during the
derivation of Eq. (9), a spherical source with ellipsoidal
Maxwellian velocity distributions and an anisotropic num-
ber density was programmed. The McStas software works
with sources featuring uniform spatial ray probability dis-
tributions that are later corrected for their real probability
weights determined by the physics of the system (in this
case, the Maxwellian velocity distribution of the source and
the anisotropic number density). This poses a problem when
simulating the quitting surface because most of the rays yield
probabilities that are too low, bringing insufficient sampling
at the detector. To avoid this effect, we only computed the
particles stemming from the surface of the quitting surface
seen by the detector through the skimmer (see Fig. 2). This

xS

xD

R F

δ
rS

SKIMMER

a

m
y

d

rD

DETECTOR

NOZZLE

x

P’

P

FIG. 2. Diagram of the section of the quitting surface considered
in the ray-tracing simulation; only the angle δm seen by the detector
through the skimmer contributes to the intensity at the detector. Here
RF is the radius of the quitting surface, y is the distance between the
axis of symmetry and the projection of the maximum-angle ray on
the quitting surface, rS is the skimmer radius, rD is the radius of the
detector, a is the distance between the skimmer and the detector, d

is the distance from the skimmer to the point where the maximum-
angle ray crosses the symmetry axis, xD is the distance between the
nozzle and the detector, xS is the distance between the nozzle and
the skimmer, and x is the distance from the point of emission of the
maximum-angle ray to the nozzle plane.

reduces the computation power needed for each experiment
and therefore allows for better statistics in the detector.

The simulation is performed as follows. First, a circular
target or focus of interest is set, which determines the area of
the detector, where the rays will hit. Then the point P ′ is gen-
erated randomly over the area of the detector. Subsequently,
a point P over the quitting surface is randomly generated and
its connecting vector 	r is computed. Only the points visible
by the detector through the skimmer are allowed (see Fig. 2).
Therefore, a maximal angle δm is set (see the derivation in
Appendix C)

δm = arcsin
y

RF

= arcsin

⎛
⎝ d

rS
(d + xS) −

√
d2

r2
S
R2

F + R2
F − (d + xS)2

RF
(

d
rS

)2 + RF

⎞
⎠,

(13)

with d corresponding to the distance from the skimmer to the
point where the maximum-angle ray crosses the symmetry
axis (see Fig. 2),

d = arS

rD + rS
, (14)

which means that the point P must be contained within the
following angles:

δ = (0, δm), φ = (0, 2π ). (15)

In Cartesian coordinates, P is

P = RF(sin δ cos φ, sin δ sin φ, cos δ). (16)

Following, a scalar velocity v is randomly generated between
two limiting values along the direction of the vector 	r . From
its Cartesian components, the perpendicular and parallel ve-
locities are obtained:

v‖ = 	v · 	ur = vx sin δ cos φ + vy sin δ sin φ + vz cos δ,

v⊥ = 	v · 	uδ = vx cos δ cos φ + vy cos δ sin φ − vz sin δ,

v⊥′ = 	v · 	uφ = −vx sin φ + vy cos φ.

(17)

A probability weight factor given by the Maxwellian velocity
distribution of the beam is set for the ray traveling from P to
P ′ (see Figs. 2 and 1). The intensity recorded at the detector
will be the sum of all probability weight factors. Therefore,
we can recover Eq. (B1) in angular coordinates to infer the
intensity contributions

dI = I0AD

ASL
fell(	v)g(δ)v2d�dv, (18)

where AD = πr2
D is the area of the detector. For the exper-

iments presented here, this corresponds to the area of the
pinhole placed in front of the detector (see Fig. 3); AS ≈ πy2

is the area of the section of the sphere from which particles
are simulated assuming rS 
 RF (the computed section of the
quitting surface is small enough relative to RF that its area
approximates to the area of a circle). Further, L is defined as in
Eq. (B7), but taking care to integrate only between 0 and δm.
In addition, d� is the solid angle seen through the skimmer
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FIG. 3. Sketch of the experimental setup used for the center-line intensity measurements. A skimmer is used to select the supersonic beam,
followed by two apertures. Vacuum pumps are placed in each chamber to reduce interactions of reflected particles with the beam. Here RF is
the radius of the quitting surface, from where the gas particles are assumed to leave following a molecular flow.

from the center of the detector, which is approximately the
same as the solid angle seen from P ′ through the skimmer.
This approximation is true for detectors placed sufficiently far
away from the skimmer.

III. EXPERIMENTAL SETUP FOR INTENSITY
MEASUREMENTS

The setup used to obtain the experimental measurements
presented in this paper is shown in Fig. 3. All the measure-
ments have been obtained using the molecular beam instru-
ment at the University of Bergen, known as MAGIE. This in-
strument is equipped with a home-built source which enables
the skimmer and nozzle to be positioned relative to each other
with 50-nm precision [5]. This is particularly important to
ensure proper alignment in center-line intensity experiments
using small skimmers. A detailed description of the system
can be found in [41]. In contrast to most other helium atom
scattering instruments with time-of-flight detection, MAGIE
has a movable detector arm, which allows us to measure the
straight-through intensity of the beam without any sample. A
center-line intensity measurement is performed by setting the
initial pressure in the inlet channel and measuring the inlet
channel temperature. For the experiments presented here, the
beam source is either warm (at ambient temperature) or cold
(at roughly 125 K). The helium gas expands through a pinhole
aperture nozzle, 10 μm in diameter to a lower-pressure cham-
ber where it undergoes a supersonic expansion. We use a Pt-Ir
electron microscope aperture as the nozzle (purchased from
Plano GmbH, A0301P) [5]. The expansion is then collimated
by a skimmer placed 5.3 ± 0.1, 11.3 ± 0.1, or 17.3 ± 0.1 mm
away from the nozzle. Figure 4 shows an example of the
alignment procedure. The nozzle is moved across the skimmer
opening in 50-nm steps in a two-dimensional array and even-
tually moved to the position of maximum intensity which is

clearly visible. Note that a displacement of just 0.2 mm leads
to a noticeable change in intensity.

Further downstream, at 973 mm from the nozzle, a 400-μm
aperture is placed to further reduce the background pressure
and thus minimize the beam attenuation. Finally, at 2441 mm
from the nozzle an ionization detector is set. The detec-
tor has an efficiency of ηD = 2.1 × 10−6 (provided by the
manufacturer). Just in front of the detector another aperture
is placed. Two different apertures with diameters of 200
and 50 μm, respectively, were used in the experiments. This
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FIG. 4. Example of the alignment procedure, here done for a cold
source at 60 bars and a 390-μm-diam skimmer. The nozzle is moved
relative to the skimmer in 50-nm steps for three values of xS. The
optimum alignment position of the nozzle relative to the skimmer is
obtained by finding the center point of the maximum of intensity. The
complete intensity plot of the beam is shown in the top left corner.
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TABLE I. Values for the skimmer radius rS and the radius of
the pinhole placed in front of the detector rD for the experiments
presented in this paper.

Skimmer
diameter (μm) rS (μm) rD (μm) (warm) rD (μm) (cold)

4 2 100 100
18 9 100 100
100 50 25
120 60 25 25
390 195 100 25

allows us to measure the center-line intensity. The diameter of
the aperture for each intensity experiment is given in Table I.

Five skimmers were used to collimate the beam, two made
of nickel, two made of glass, and an additional metallic skim-
mer known as the Kurt skimmer. The nickel skimmers have
apertures 120 and 390 μm in diameter. They are produced
by Beam Dynamics (model 2) and have a streamlined profile
[42] (see dimensions in Fig. 5). The glass skimmers are home
made using a Narishige PP-830 glass pulling machine, using
Corning 8161 thin wall capillaries with an outer diameter of
1.5 mm and an inner diameter of 1.1 mm. The glass skimmers
are mounted on a Cu holder (see dimensions in Fig. 5). Their
apertures are 18 and 4 μm, respectively, measured using an
electron beam microscope. Stereomicroscope measurements
on the glass skimmers showed an outer opening angle of
approximately 32.5◦ for the first 200 μm, followed by a more
narrow section of approximately 12.5◦. The inner opening
angle could not be determined, but due to the thin opening lip
(approximately equal to 200 nm), it is expected to be similar
to the outer opening angle. This corresponds to what is known
as a slender skimmer. Slender skimmers are known to produce
better performance than wide-angle skimmers, as long as
the modified Knudsen number at the skimmer is kept large
enough [11]. This condition is fulfilled in the experiments
presented here due to the large values of S‖ and the small
skimmer openings.

The Kurt skimmer is also homemade. It is designed to
be used with interchangeable apertures on 2-mm-diam disks.

Two apertures are used in this study: 5 and 100 μm in
diameter. The dimensions of the Kurt skimmer can be found
in Fig. 5 (note the inverted cone shape before the aperture).
The Kurt skimmer is made of stainless steel type 1.4301.

IV. RESULTS

Throughout Figs. 7–12 we use open circles for the nozzle-
skimmer distance xS = 5.3 mm, triangles for xS = 11.3 mm,
and asterisks for xS = 17.3 mm. The labels are included in
Fig. 7 only. Error bars are not included in the plots because
they are too small to show.

A. Ray-tracing benchmarking of the center-line intensity
integral

A spherical quitting surface is simulated using the ellip-
soidal quitting surface velocity distribution defined in Eq. (7).
The center-line intensity obtained through the ray-tracing sim-
ulation is then compared with Eqs. (9) and (11) for different
spans of the different variables present in the equation. In
all cases the result from the analytical models lies within the
statistical margin of error of the simulation (see Fig. 6). In the
following sections of this paper we will just show the results
from Eqs. (9) and (11).

B. 120-μm and 390-μm skimmers

In this section the measured intensities for the large skim-
mers from Beam Dynamics (see Fig. 5) (120 and 390 μm
diameters) are compared with the predictions from Eq. (12)
for the two variations of the model described in Sec. II A.

1. Warm source T0 ≈ 300 K

The results for a warm source are shown in Figs. 7 and 8.
Figure 7 shows the experimental results and Eq. (12) with the
expansion assumed to stop at the skimmer and Si = S⊥. The
experimental results are reproduced fairly well over the whole
range, but with a trend towards too-high theoretical values for
higher pressures. To obtain nBE → nBE (P0) for Eq. (12), we
use a set of measured background pressures in the expansion

1.5 mm

Base: 28 mm

Height: 

19 mm

Glass 

skimmer

Cu holder

Base: 28 mm

Height: 

25 mm

Top: 5 mm

Disk: 2 mm
Opening: 0.5 mm

(c)(b)

Base: 27.9 mm

Height: 

25.4 mm

Rim: 2.5 mm

(a)

Ø 120, 390 µm
Ø  4, 18 µm Ø  5, 100 µm

FIG. 5. Drawings of the skimmers used for the center-line intensity measurements: (a) the Beam Dynamics skimmers, with diameters of
120 and 390 μm, (b) the glass microskimmers mounted on copper, with diameters of 4 and 18 μm, and (c) the Kurt skimmer, with inserted
apertures of 5 and 100 μm.
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FIG. 6. Plot of the ray-tracing simulation (dashed lines) com-
pared with Eqs. (9) and (11) (respectively, circles and crosses for
Si = S‖ and triangles for Si = S⊥, superposed). The solid (light gray)
green descending line shows the effect on the center-line intensity
of varying the distance between the skimmer and the detector a.
The ascending dashed blue (upper) and red (lower) lines show the
intensity change when varying the radius of the pinhole in front of
the detector rD and the radius of the skimmer rS. The center-line
intensity and the variable values have been normalized to 1 in order
to show all dependences in a single plot. The calculations are done at
a fixed skimmer position xS = 11.3 mm (the center position). Here a

is varied between 0.5 and 2 m, rD is varied between 10 and 100 μm,
and the radius of the skimmer rS is varied between 1 and 10 μm.
While a variable is varied, the others are kept fix at the maximum
value of their span (a = 2 m, rD = 100 μm, and rS = 10 μm). The
source temperature is 115 K and the source pressure is 161 bars.
Both the ray-tracing simulation and the center-line intensity model
assume a quitting surface placed just before the skimmer position
(RF = 11.2 mm).

chamber. From observation this dependence is linear and the
equation obtained is

nBE = 1

kBT0
(mEP0 + nE ), (19)

where mE and nE are the linear fit coefficients from fitting the
measured background pressures PB with respect to P0. Con-
cretely, for this set of measurements mE = 3.9 × 10−4 Pa/bar
and nE = −5.8 × 10−4 Pa if P0 is given in bars and nBE in
SI units (positive values of nBE are guaranteed by the ex-
perimental pressure range P0 � 2 bars). The number density
after the skimmer nBC was experimentally measured to be
approximately 1/20 of nBE and Eq. (19) was used with the
corresponding factor.

Figure 8 shows the values of Eq. (12) for the 120- and
390-μm skimmers, where the expansion is assumed to stop
before the skimmer (in this case for T⊥/T‖ � 0.1), and
Si = S‖. At small source pressures there is good agreement
between experiments and simulations, but the dependence
on the nozzle-skimmer distance is lost. At high pressures
the model becomes nonphysical because the point at which
T⊥/T‖ � 0.1 is calculated to be positioned after the skimmer.
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FIG. 7. Plot of measured and predicted intensities for a warm
source (300 K), 120-μm (pink solid line) and 390-μm (red dashed
line) skimmers, and three values of xS: 5.3 mm (circles), 11.3
mm (upward arrows), and 17.3 mm (asterisks). The intensities are
computed assuming that the expansion stops at the skimmer with
Si = S⊥. Note that, for the larger skimmer, the center-line intensity
becomes independent of the distance between the skimmer and the
nozzle, so all the curves collapse in one simulated curve (in good
agreement with what is observed experimentally). The difference in
intensities between the two skimmers is due to the fact that they were
obtained using different pinholes in front of the detector (see Table I
and Fig. 3).

One must note that the decrease in center-line intensity at high
pressures is not given by the model (11) being unphysical, but
instead by S2

‖r
2
S/R2

F → 0 as P0 increases. If the expansion is
assumed to always stop at the skimmer (RF = xS) as in the
case of Fig. 7, this condition does not hold anymore and the
predicted center-line intensity increases monotonically with
P0. In this case, Eq. (12) is also used. The discrepancy at low
pressures is discussed in Sec. V.

2. Cold source T0 ≈ 125 K

We present the measured intensities for a beam with a
source temperature of 125 ± 2 K and we compare them with
the predictions from Eq. (12). We obtain nBE → nBE (P0) as
in Eq. (19): mE = 5 × 10−4 Pa/bar and nE = 48 × 10−4 Pa.
In the case of cold sources, if one chooses to determine the
quitting surface position by the ratio of temperatures T⊥/T‖ �
0.1, the quitting surface is placed after the skimmer already at
quite low pressures. Thus, computing Eq. (12) for the case
of Si = S‖ and the expansion stopping before the skimmer is
only valid for a few measurement points. Therefore, we only
present the results for the case of the expansion stopping at
the skimmer and Si = S⊥. In general, the prediction power of
the model decreases for a cold source (see Fig. 9).

C. Microskimmers

The center-line intensity plots for microskimmers show
marked dips in the intensity, especially for the cold source
cases. Center-Line intensity dips are also observed at higher
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FIG. 8. Plot of measured intensities for a warm source (300 K)
and 120-μm (pink solid line) and 390-μm Beam Dynamics skim-
mers (red dashed line). The measured intensities are compared to
Eq. (12), with the expansion stopped before the skimmer and Si =
S‖. Note how after the quitting surface has surpassed the skimmer,
the model loses its predictability (light gray for xS = 17.3 mm; dark
gray indicates the whole span for the different values of xS). The
difference in intensities between the two skimmers is due to the fact
that they were obtained using different pinholes in front of the
detector (see Table I).

pressures for a warm source (see Figs. 10 and 11). The model
predicts the dips for a cold source, but in both cases fails to fit
the experimental data well. The center-line intensity measured
for both skimmers is in the same range, while the model
predicts a more pronounced difference between the 18-μm
skimmer and the 4-μm skimmer.

D. Kurt skimmer

To experimentally determine the importance of Kn∗-driven
skimmer effects we use a skimmer designed in such a way that
such effects are expected to clearly dominate over the center-
line intensity trends. This is the case of the Kurt skimmer (see
Sec. III), which due to its inverted-cone walls concentrates
the reflecting particles along the beam center-line, leading
to a low Kn∗ [see Eq. (1)]. Comparing the Kurt skimmer
intensities with the Beam Dynamics skimmers, one sees that
skimmer effects are not clearly observed until about 40 bars,
for nozzle-skimmer distances corresponding to xS > 11.3 mm
(see Fig. 12). This means that the discrepancies at lower pres-
sures between Eq. (12) and the microskimmer measurements
cannot be explained by skimmer interactions only. In fact, the
modified Knudsen number in the case of microskimmers at
40 bars is expected to be larger than in the case of the Kurt
skimmer due to the 1/rS dependence [see Eq. (1)].

Note how skimmer interference in the case of the Kurt
skimmer is not significant until the nozzle-skimmer distance is
set at 5.3 mm (see Fig. 12). A similar effect is seen, for a cold
source, in the case of the 390-μm Beam Dynamics skimmer,
where for xS = 5.3 mm, skimmer interference becomes evi-
dent (see Fig. 9). The same effect is not clearly observed for
the smaller 120-μm Beam Dynamics skimmer. This can be
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FIG. 9. Plot of measured and predicted intensities for a cold
source (125 K) and the Beam Dynamics skimmers: 120 μm (pink
solid line) and 390 μm (red dashed line). The intensities are com-
puted using Eq. (12) and assuming that the expansion stops at the
skimmer with Si = S⊥. The intensities are plotted for three values
of xS: 5.3 mm (circles), 11.3 mm (upward arrows), and 17.3 mm
(asterisks). Note how for P0 > 40 bars and the 390-μm skimmer
(red), in the case of xS = 5.3 mm, skimmer effects are clearly present
and the center-line intensity is significantly lower than for the other
two xS positions. All measurements were taken with rD = 25 μm
(see Table I and Fig. 3).

seen as an experimental confirmation of the importance of the
modified Knudsen number, which predicts stronger skimmer
effects for larger skimmers.

E. Complete experimental data

In this section we plot the complete data set of
measurements carried out during this study, with the
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FIG. 10. Plot of measured and predicted intensities for a warm
source and the glass skimmers: 18 μm (black dashed line) and 4 μm
[green (light gray) solid line]. The intensities are computed using
Eq. (12) and assuming that the expansion stops at the skimmer with
Si = S⊥.
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FIG. 11. Plot of measured and predicted intensities for a cold
source and the glass skimmers: 18 μm (black dashed line) and 4 μm
[green (light gray) solid line]. The intensities are computed assuming
that the expansion stops at the skimmer with Si = S⊥.

exception of measurements corresponding to the Kurt skim-
mer, which are plotted separately. In order to preserve the
relevant intensity magnitude, and thus make comparisons
easier, the intensities plotted have been normalized to the
radius of the aperture in front of the detector used to perform
each measurement. Therefore, in this section the intensities
are given in counts/(s m2). The center-line intensity data for
a warm source T0 ≈ 300 K are shown in Fig. 13 and for a
cold source T0 ≈ 125 K in Fig. 14. Additionally, we plot the
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FIG. 12. Plot of measured and predicted intensities for the
100-μm Kurt skimmer (black dashed line) and a 120-μm (pink solid
line) Beam Dynamics skimmer for a warm source. The intensities
are computed assuming that the expansion stops at the skimmer with
Si = S⊥. Note how strong discrepancies are not observed except
for the case of the 100-μm Kurt skimmer. Two discrepancy modes
can be observed, a very significant one for xS = 5.3 mm and a less
significant one for the rest of the nozzle-skimmer distances.
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FIG. 13. Measured center-line intensities per area in counts/(s ∗
m2) for a warm source and for the following skimmer apertures:
120-μm Beam Dynamics [yellow (light gray) (top)], 390-μm Beam
Dynamics [red (dark gray) (top)], 18-μm glass skimmer [black (bot-
tom)], and 4-μm glass skimmer [green (light gray) (bottom)]. The
circle, triangle, and asterisk markers correspond to nozzle-skimmer
distances xS of 5.3, 11.3, and 17.3 mm, respectively.

difference in center-line intensity per square meter between
cold and warm sources for each experiment (Figs. 15 and
16).

From Fig. 15 one can observe that for large skimmers
cold sources produce a higher center-line intensity than warm
sources, especially for high source pressures. This is given by
Eq. (3) and by the larger speed ratios obtained in cold beams.
For the case of the 120-μm skimmer, this difference reduces
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FIG. 14. Measured center-line intensities per area in counts/(s ∗
m2) for a cold source and the following skimmer apertures: 120-
μm Beam Dynamics [yellow (light gray) (top)], 390-μm Beam
Dynamics [red (dark gray) (top)], 18-μm glass skimmer [black (bot-
tom)], and 4-μm glass skimmer [green (light gray) (bottom)]. The
circle, triangle, and asterisk markers correspond to nozzle-skimmer
distances xS of 5.3, 11.3, and 17.3 mm, respectively.
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FIG. 15. Measured differences between cold source and warm
source beam intensities per area in counts/(s ∗ m2) for the following
skimmer apertures: 120-μm Beam Dynamics (blue solid line) and
390-μm Beam Dynamics (red dashed line). The circle, triangle, and
asterisk markers correspond to nozzle-skimmer distances xS of 5.3,
11.3, and 17.3 mm, respectively. The solid line indicates that where
experimental data were missing, data were extrapolated from the
closest experimental points.

the further away the skimmer is placed from the nozzle due to
the evolution of T⊥ along the beam axis.

For the case of microskimmers, cold sources are gener-
ally less intense than warm sources, except for very large
pressures. This is due to an intensity dip occurring for cold
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FIG. 16. Measured differences between cold source and warm
source beam intensities per area in counts/(s ∗ m2) for the follow-
ing skimmer apertures: 18-μm glass skimmer (black dashed line)
and and 4-μm glass skimmer [green (light gray) solid line]. The
circle, triangle, and asterisk markers correspond to nozzle-skimmer
distances xS of 5.3, 11.3, and 17.3 mm, respectively. The solid
line indicates that where experimental data were missing, data were
extrapolated from the closest experimental points.

sources at low and medium pressures driven by the evolution
of the beam’s perpendicular speed (see Sec. V). The smaller
the collimating skimmer, the larger the influence of this dip
on the measured center-line intensity. This is because larger
skimmers collect particles with a larger perpendicular temper-
ature range.

V. DISCUSSION

The analytical model based on Sikora’s ellipsoidal distri-
bution approach (Si = S⊥, expansion stopped at the skimmer)
predicts the center-line intensity of a helium beam generated
by a source at ambient temperature with reasonable accuracy.
However, the model has several limitations, each of which will
be discussed in detail in this section.

(i) Poor fit at high pressures. For most skimmers, the model
overshoots the measured intensities at high pressures (P0 �
50 bars). This phenomenon is likely due to a combination of
two effects: skimmer interference and a continuing expansion
of the beam after the skimmer. By observing the data, we
can see that in the case of a warm source this overshoot
does not significantly vary when two skimmers with the
same design but different diameter are used (in this case,
the Beam Dynamics skimmers). This points towards the idea
that skimmer interference cannot be the main cause of the
overshoot, as the influence of the particles reflected from
the skimmer is expected to strongly depend on the skimmer
radius. However, in the case of a cold source, the overshoot
is more significant for the 120-μm Beam Dynamics skimmer
than its 390-μm equivalent. What is likely happening is that
the helium beam continues to expand significantly after the
skimmer following different dynamics than before it, due to
the removal of particles by the skimmer edges. According
to the simulations of the expansion performed in this study,
this is particularly relevant for the case of a cold source,
where the quitting surface is often predicted to be several
centimeters after the skimmer. This renders Sikora’s treatment
of a beam that expands due to its nonvanishing T⊥ at the
skimmer unphysical as it assumes no further collisions after
the skimmer.

During the preparation of this paper, efforts were under-
taken to adapt Sikora’s model to a beam expanding after the
skimmer using simple geometrical rules. This was motivated
by the observations made by Doak et al., who used mi-
croskimmers to perform focusing experiments and observed
a deviation between the expected and the measured focal
spot size. They suggested that this may have been due to the
supersonic expansion continuing after the beam has passed
through the skimmer aperture [43]. This adaptation can be
found in Appendix A, but did not produce very promising
results. A treatment using a DSMC simulation of the whole
system is most likely a more accurate approach in order to
predict intensities at large pressure values. This approach is
also much more complex than the analytical models presented
here.

Another possible explanation of these discrepancies would
be the nonphysical nature of a hard quitting surface. Replacing
it with a soft treatment may yield interesting results. The
center-line intensity would be calculated then by integrating
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over a series of infinitesimally spaced successive quitting
surfaces.

The higher overshoot at P0 � 50 bars for the smaller Beam
Dynamics skimmer in the case of a cold source occurs in
all cases except one: xS = 5.3 mm (see Fig. 9). In order
to understand this peculiarity, one must revisit the modified
Knudsen number. The case of xS = 5.3 mm for a cold source
and rS = 390 μm is the case expected to have the lowest
modified Knudsen number [largest rS and number density
at the skimmer; see Eq. (1)]. Therefore, it is likely that this
particular case is the only one showing skimmer interference
governed by the interaction with reflected particles.

(ii) Low predictability of microskimmer intensities. On
the one hand, skimmer interference and skimmer clogging
are known to be determined by the modified Knudsen num-
ber Kn∗, which strongly depends on the skimmer diameter
[Eq. (1)]. Microskimmers are thus expected to show less
interference than their larger counterparts under the same
conditions. This effect is clearly seen in Fig. 9, where skimmer
effects are present only for the larger 390-μm skimmer.

On the other hand, smaller skimmers sometimes have
very thin and long geometries, causing a possible increase
of pressure along the skimmer channel. This effect is likely
what causes the bad fit between the model predictions and the
observed microskimmer center-line intensities.

Notwithstanding, it is important to note that Sikora’s el-
lipsoidal quitting surface model is able to predict the general
trends of microskimmer intensities. This includes the center-
line intensity dip at low pressure for small skimmers. This
dip is driven by the behavior of the perpendicular speed ratio
at low pressures, which is predicted by the simulation of the
supersonic expansion to decrease first and increase later (see
Fig. 17).

However, the experimental observability of this dip is actu-
ally determined by the radius of the skimmer and the distance
between the nozzle and the skimmer. If rS

xS
S⊥ is small enough
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FIG. 17. Predicted value of S⊥ for a cold source (125 K) ac-
cording to the numerical calculation of the supersonic expansion
presented in Sec. II A. The circle, triangle, and asterisk markers cor-
respond to nozzle-skimmer distances xS of 5.3, 11.3, and 17.3 mm,
respectively.

(�0.8), then the term −S2
⊥( rS(RF+a)

RF (RF−xS+a) )2 in Eq. (11) is small
too. This makes the exponential term in Eq. (11) dominate
and the effect of the dip in S⊥ can be clearly observed in the
beam center-line intensity. This explains why this dip is only
experimentally observed for the case of microskimmers. This
good trend replication is particularly relevant for purposes
of optimization, where the value of interest is not so much
the center-line intensity but the combination of parameters
maximizing it.

(iii) Weak dependence on the nozzle-skimmer distance of
the Si = S‖ variant. Only when the expansion is allowed to
stop at the skimmer and the perpendicular speed ratio is used
does the predicted center-line intensity significantly depend
on the nozzle-skimmer distance xS. This is expected, as in
this case the thermal spread of the beam is caused by the
value of the perpendicular temperature at the skimmer T⊥ and
this value varies strongly with xS. Despite S‖ 
 S⊥ causing a
stronger exponential contribution in Eq. (11), the variation on
S⊥ with the skimmer radius is much stronger than the fraction
term in the exponential, making the Si = S‖ variant actually
less dependent on xS (as S‖ remains constant).

VI. CONCLUSION

We presented a data set of center-line intensity measure-
ments for a supersonic helium beam and compare it to various
intensity models. We showed that these models replicate the
experimental data well for skimmers with diameters 120 and
390 μm. In particular, we showed that Sikora’s ellipsoidal
distribution approach, assuming a quitting surface placed at
the skimmer position, with the expansion dominated by the
supersonic expansion perpendicular temperature T⊥ fits the
experimental data best.

We presented a ray-tracing simulation approach, used
to numerically replicate the introduced center-line intensity
models. We showed that the ray-tracing approach and an-
alytical models (Sikora’s and Bossel’s) follow very similar
dependences with the different geometrical variables of the
experiment.

In the presented data set, we observed Knudsen-number-
dependent skimmer interference for a 390-μm skimmer and
a specially designed 100-μm skimmer placed 5.3 mm away
from a cold source. We postulated that the rest of the discrep-
ancies between the experimental data and the model may be
due to either backscattering interferences at quasimolecular
flow regimes or a continuation of the supersonic expansion
after the beam has passed through the skimmer. Another
explanation may be that the assumption of the quitting surface
stopping abruptly at a given distance is is too simple to
adequately describe the physics in this regime.
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APPENDIX A: ADAPTATION TO AN EXPANSION AFTER
THE SKIMMER

An untreated case in the literature is when collisional
expansion continues after the skimmer. A way to approach
this problem is to assume that the expansion is unaffected
by this interaction and simply project the quitting surface
further ahead until its predicted radius RF (see Fig. 18). The
center-line intensity must be calculated using Eq. (12), with
a → a′, rS → r ′

S, and xS → x ′
S:

a′ = a −
[
RF cos

(
arctan

rS

xS

)
− xS

]
, (A1)

r ′
S = RF sin

(
arctan

rS

xS

)
, (A2)

x ′
S = RF cos

(
arctan

rS

xS

)
, (A3)

the results of this adaptation are presented in Fig. 19.

APPENDIX B: DERIVATION OF THE QS MODEL

The contribution to the number density by a differential of
the quitting surface dS placed at a point P to the point P ′
is [19]

dN (xD, 0, zD) = n(RF, δ, η)fell (v, θ )d3v. (B1)

In this equation, n(RF, δ, η) ≡ n(RF)g(δ) is the number den-
sity at the quitting surface, which is allowed to depend on the
angle δ to account for the fact that the nozzle is not actually

xS

xD

R F

rS

SKIMMER

a

rD

DETECTOR

NOZZLE r’S

a’x’S

expansion cone

SS

FIG. 18. Diagram of the supersonic expansion for the case of a
radius of the quitting surface radius higher that the distance between
the nozzle and the skimmer. The quitting surface is assumed to
expand unaffected by the skimmer aperture, except by collimation.
Here RF is the radius of the quitting surface, y is the distance between
the axis of symmetry and the projection of the maximum-angle ray
on the quitting surface, rS is the skimmer radius, rD is the radius
of the detector, a is the distance between the skimmer and the
detector, d is the distance from the skimmer to the point where the
maximum-angle ray crosses the symmetry axis, xD is the distance
between the nozzle and the detector, and xS is the distance between
the nozzle and the skimmer.
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FIG. 19. Plot of measured intensities for a warm source (300 K)
and the following Beam Dynamics skimmers: 120-μm (pink solid
line) and 390-μm (red dashed line) Beam Dynamics skimmers. The
measured intensities are compared to Eq. (12), with the expansion
stopped after the skimmer and Si = S‖.

pointlike; fell(v, θ ) is the ellipsoidal Maxwellian distribution
defined in Eq. (7); v is the modulus of the speed vector; and
θ is the angle between the segment PP ′ and P (see Fig. 1).
Following the derivation from [19], we obtain

N (P ′) = τn(RF)

2πa2

∫ rS

0

∫ π

0
g(δ)r cos3(β )

× ε3e−S2
‖ (1−ε2 cos2 θ )D(b)dr dα, (B2)

where S‖ = U/c‖ is the parallel speed ratio, ε = (τ sin2 θ +
cos2 θ )−1/2, and τ = T‖

T⊥
. The function D(b) is defined as

follows:

D(b) ≡ 2√
π

be−b2 + (2b2 + 1)[1 + erf(b)],

b ≡ S‖ε cos θ. (B3)

The angle β is shown in Fig. 1. Here N (P ′) corresponds to the
number density at a radial position from the axis of symmetry;
to obtain the number density at a circular detector we must
integrate over the arriving differential volume

Ntotal = �x

∫
S
N (P ′)dS = 2π�x

∫ rD

0
N (xD, ρ)ρ dρ. (B4)

Imposing that the proportion of intensities must correspond
to the proportion of number densities, we can obtain the
expression for the center-line intensity arriving at a circular
detector

ID

I0
= Ntotal

2π
∫ RF

RF−�x

∫ π/2
0 n(r )r2g(δ) sin(δ)dδ dr

. (B5)

We obtain

ID = τI0

2πa2R2
FL

∫ rD

0

∫ rS

0

∫ π

0
g(δ)r ρ cos3(β )ε3

× e−S2
‖ (1−ε2 cos2 θ )D(b)dρ dr dα, (B6)
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where I0 is defined in Eq. (3). Here L corresponds to the
integration of g(δ) along the half sphere [all the intensity
emitted by the source is set to be contained in g(δ)],

L ≡
∫ π/2

0
g(δ) sin(δ)dδ. (B7)

APPENDIX C: EQUATIONS FOR THE RAY-TRACING
CODE

Using trigonometry, it is possible to determine exactly
the maximum possible δm within a source-skimmer-detector
geometry (see Fig. 2)

δm = arcsin
y

RF
. (C1)

Now we use the Pythagorean theorem to obtain y, the height
of the triangle containing the angle δm; x is the basis of the
triangle as shown in Fig. 2:

y

d + (xS − x)
= rS

d
, x =

√
R2

F − y2. (C2)

Expanding Eqs. (C2), we obtain the quadratic equation(
yd

rS
− d − xS

)2

= R2
F − y2. (C3)

Expanding in powers of y, we obtain

y2

((((
d

rS

)2

+ 1

)))
+ y

(
−2

d

rS
(d + xS)

)

+ (d + xS)2 − R2
F = 0, (C4)

which can be solved using the quadratic formula

y =
2 d(d+xS )

rS
±

√
4 d2

r2
S
R2

F − 4(d + xS)2 + 4R2
F

2( d
rS

)2 + 2

=
d
rS

(d + xS) ±
√

d2

r2
S
R2

F + R2
F − (d + xS)2

( d
rS

)2 + 1
. (C5)

The distance d is also obtained using trigonometry (see
Fig. 2):

rS

d
= rD

a − d
→ d = arS

rD + rS
. (C6)

To determine whether to take the positive or negative square
root in Eq. (C5), we can take the case x = RF (which corre-
sponds to the case RF → ∞). In this case, from trigonometry
it is easy to see that y = rS

d
(d + xs − RF). Thus, the geomet-

rically sound case corresponds to the negative square root.
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